
Chapter 3 Modeling Approaches

Rigorous coupling wave analysis (RCWA/FMM)

Finite difference and time domain (FDTD)

Discrete dipole approximation (DDA)

Mutiple multipole program (MMP)

Mie theory

Beam propagation method





Figure 1: J.C. Maxwell and H.R. Hertz



RCWA
• To analyze the response of subwavelength gratings, the 

vectorial nature of light must be taken into account through a 
resolution of the Maxwell equation

Rigorous Coupled-Wave Analysis (RCWA)
or Fourier Modal Method (FMM)

Fields and permittivities are decomposed in a Fourier basis and 
then matched at the grating layer boundaries to yield the 
diffraction order complex amplitudes.
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Huygen’s principle
• Huygen’s principle offers an 

explanation for why and how waves 
bend (or diffract) when passing an 
obstruction

– every point on a wave front acts as 
a source of tiny spherical wavelets
that travel forward with the same 
speed as the wave

– the wave front at a later time is 
then the linear superposition of all 
the wavelets

Christian 
Huygens 
(1629-1695)
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Four basic equations in EM wave

HelmholtzHelmholtz’’ss equationequation

GreenGreen’’s functions function

GreenGreen’’s formulas formula

KirchhoffKirchhoff’’ss formulsformuls



a) a) HelmholtzHelmholtz’’ss equationequation

In source free space, EM filed           satisfiesBE
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b) Greenb) Green’’s functions function
The same as static filed，assume                    
is Green function of HelmholtzHelmholtz’’ss equationequation ：

where
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and

And as
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and

We obtain：

Note：
HelmholtzHelmholtz’’ss equationequation and Green Function:
Same point: they are wave equation
Different: the former is source free equation, and the 
latter is point source equation.
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c) Greenc) Green’’s formulas formula
Put G and      into Green function，we have

where     is area unit with vector from V to 

inside，if        is normal direction in V，then
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Above equation change to：

This is Green formular.

d) d) KirchhoffKirchhoff’’ss formulsformuls
Regarding G as known parameter which satisfies 
Green function, it has
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because

Put into Green function，and obtain
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The Fourier Modal Method, also known as Rigorous 
Coupled Wave Analysis (RCWA), is ideally suited to 
simulating the optical response of 2D, periodic surface 
relief structures, and most especially binary surfaces. It 
involves the expansion into spatial Fourier components of 
the both the dielectric function and the associated fields, 
followed by a numerical solution of the boundary 
equations. The approach can yield both reflected and 
transmitted complex diffraction efficiencies, as well the 
associated field distributions both inside and outside the 
structure.



Calculation examples

single metallic slit

Metallic slit with corrugated grooves

Combination of SPP and photonic crystal

micro-Fresnel lenses

Metallic nanoparticles

Nanophotonic structures

Double slits diffraction with width tuning



Figure 2: Diffraction of a Gaussian beam by a glass cylinder

RCWA is also called Fourier Modal Method 



TM                                                       TE

Figure 3: Passage of light through a slit using the FMM

Interaction of a plan wave with a slit-on-glass aperture. The 
plane wave is incident from the bottom and has a wavelength 
of 549 nm. The slit is 100 nm wide, the Cr layer is 100 nm 
thick. The left image is TM polarization and the right image 
TE polarization. 



Young’s double slit experiment 
• In 1801 Thomas Young 

performed an experiment 
that irrefutably demonstrated 
the wave nature of light 

– before this there had been a lot 
of debate between the particle 
camp (Newton) and the wave 
camp (Huygens)

• Monochromatic (single 
frequency) light is first 
shone through a single slit 

– this makes the light that passes through the 
single slit coherent (we can avoid this step 
today using lasers)

• the light from the single slit is then used to 
illuminate a double-slit, which produces an 
interference pattern on a screen behind it





d=2.0μm d=2.8μm
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Metal layer



Wave optics: diffraction effect

d
if λ/2 > d, the trans-
mission through the 
hole will be strongly 
suppressed
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experiment
The experimental findings 
imply that  that the array 
itself is an active element, 
not just a passive geomet-
rical object in the path of 
incident light
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Overcoming the diffraction limit with the help 
of surface plasmons

500 nm

250 nm

light

metallic (Ag) film
surface plasmon 
resonance @ 660nm directionality is ± 3o



Yu et al., Phys. Rev. B 71, 041405 (2005)

The coupling of light into SP modes is governed by geometrical 
momentum, selection rules (i.e., occurs only at a specific angle 
for a given wavelength), the light exiting a single aperture will 
follow the reverse process in the presence of the periodic 
structure on the exit surface.

kx (outgoing) = kx (incoming) ± NG, where G = 2π/d

nk sinθkplasmon reciprocal lattice vectors

kSP>G

kSP<G























Frequency-Dependent Materials 
in FDTD
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where E=E(Ex,Ey,Ez) and H=H(Hx,Hy,Hz) are the electric field and the 
magnetic induction vectors, respectively, and 2Δx, 2Δy, 2Δz are 
increments along the three coordinate directions respectively, Δt is the 
unit time increment, and (x,y,z) is the complex dielectric constant of 
the medium at that point. 

Equations are simultaneously solved to determine the component 
values at the time t+Δt.
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FDTD—Finite-Difference Time-Domain method

Yee cell
E and H are 
discrete in space

Z

Y

X

Hy

Ez

Hz

Hx

Ey

Ex

(x,y,z)

Yee 
cell

Spatially stagger the 
vector components of the 
E-field and H-field : 
spatial accuracy 2nd order 
(Yee) or higher
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Kane Yee (1966). "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic 
media". Antennas and Propagation, IEEE Transactions on 14: 302–307. 

Many challenges when implementing it 
to cover wide applications



FDTD—Finite-Difference Time-Domain method

E and H are discrete in time
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What are Dispersive Materials?
• Dispersive materials 

– have electrical parameters (permittivity and 
conductivity) which vary significantly as a 
function of frequency

• Examples include water, metals, body tissue, 
plasmas and more

• Many typical materials are frequency-
independent and the dispersive models are not 
needed



When to use Dispersive Material 
Capabilities in FDTD?

• Broad-band output is desired from a geometry 
containing this type of material

• In any simulation (broad-band or single 
frequency) in which the electrical parameters 
for the material would cause the calculation to 
become unstable (for example negative 
permittivities)



Types of Dispersive Models in FDTD
• Debye

– useful for materials with condensed polar molecules such 
as water

• Drude
– similar to the Debye model 
– with an added electrical conductivity term
– Also available for magnetic materials

• Lorentz
– used to describe absorption bands
– often in the optical frequency range

• Magnetized Ferrites
– Discussed in a separate section of these notes



Dispersive Technique in FDTD

FDTD uses an improved implementation of the 
Recursive Convolution Technique for dispersive 
materials

Separate Total Field and Scattered Field formulations 
for increased accuracy when incident plane wave 
excitation is specified

Increases memory load and execution time moderately

Second order accuracy



The Debye Model

• Describes the time-domain exponential 
decay in the permittivity
– due to the alignment of dipolar molecules to 

an applied field

• Typical example is water
– many materials with high water content have 

similar characteristics



The Debye Model Parameters

• The Debye permittivity is described by 
the equation

( )ε ω ε ε ε
ωτ

= +
−

+
∞

∞s

j1 0



Limits on Debye Parameters
• In order to produce a realistic material and 

a stable calculation, some limits are 
placed on the parameters

• The imaginary part of the complex 
permittivity may not be negative

• Infinite frequency permittivity  ≥ 1

• Static permittivity  >  infinite frequency 
permittivity



Complex Permittivity for Water



Permittivity and Conductivity for Water



Effect of Debye Parameters



The Drude Model

• The Drude model describes a material 
similar to the Debye model
– with the addition of an electrical 

conductivity term
– where σ is the conductivity.
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ωτ
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Simple Drude Model Limits
• Simplified limits for Drude model: 

– identical to those of Debye (ε∞≥1, εs>ε∞)
– with added condition that electrical 

conductivity (σ) < 0

• Limited set of materials fit this condition

• More general conditions available



General Drude Model Limits

• Infinite Frequency Permittivity (ε∞) ≥ 1

• If εs > ε∞ then σ ≥ 0

• If εs < ε∞, then the conductivity must satisfy 
the condition

0

∞0 )−(
 ≥ 

τ
εεεσ s



Example Drude Materials

• Isotropic Plasmas

• Metals such as gold, aluminum, and 
chromium at optical frequencies 

• Some biological tissues 

• Negative Index Materials (NIM), Double 
Negative (DNG) materials



Techniques for Using Drude

• Some materials, such as plasmas, fit the 
Drude model exactly 

• For the general case
– a curve-fitting technique should be used to find 

the best-fit parameters for the Drude model

• Curve-fitting used for following metal 
examples



Complex Perm for Drude Plasma



Complex Permittivity For Gold



The Lorentz Model

• Characterized by a high resonance in the 
permittivity at a single frequency

• Infinite and static permittivity values as 
with Debye

• Resonant frequency and damping 
coefficient values define the peak 
permittivity



The Lorentz Model Expression

The Lorentz complex permittivity is defined as
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where ω 0 is the resonant frequency and δ is the 
damping coefficient, both in radians/second



Limits on the Lorentz Parameters

• As with Debye, εs > ε∞

• ω0 > 0  and  δ > 0

• A conductivity value (σ) may also be used 
and it must be ≥ 0



Example Lorentz Complex Permittivity

• εs = 2.25, = 1.0

• ω0 = 4.0 x 1016 , δ = 0.28 x 1016

• σ = 0



Complex Perm for Lorentz 



XFDTD Electrical Material Parameters 



Dispersive XFDTD Examples

• Examples are for radar cross-section 
(RCS) results versus frequency for a 
sphere

• An analytical solution (Mie Series) is 
readily available for this case for validation

• Drude materials are used as they are the 
most commonly encountered



Drude Plasma Example
• A 3.75 mm radius plasma sphere is simulated using the 

Drude model.  

• Broad-band RCS at a single angle computed

• Both staircased and dielectric-conformal meshing 
(coming in XFDTD 6.3) spheres simulated

• This example comes directly from 
“FDTD Calculation of Scattering From Frequency-

Dependent Materials” by Raymond Luebbers, David 
Steich, and Karl Kunz, IEEE Transaction on Antennas 
and Propagation, Vol. 41, No. 9, September 1993.



Drude Plasma Example (2)
• Cell size of 150μm is used (25 FDTD cell radius 

for sphere)

• XFDTD Parameters:   τ0=5 x 10-11,  σ=14.396, 
ε∞=1, εs=-80.295

• 71x71x71 cell space with 10 cell borders 

• 10 cells/wavelength at maximum frequency

• Gaussian Pulse plane wave with width of 32 
time steps is incident



RCS of Drude Plasma Sphere



Optical Frequency Gold Sphere

• At optical frequencies many metals exhibit 
Drude characteristics

• A material of high current interest is gold

• RCS is computed for a 75nm radius sphere

• A curve-fit Drude model is used for Gold with 
parameters ε∞= 9.012, εs=-12990, σ=1.276 x 107, 
τ0=9.02 x 10-15



Gold Sphere XFDTD Calculation

• A Gaussian pulse plane wave is incident with 
width 32 time steps

• 25,000 time steps are run in a 71x71x71 cell 
space

• Sphere radius is 25 cells with 3nm cell size

• Both staircased and dielectric-conformal 
spheres simulated



RCS of Drude Plasma Sphere



Ez Field in XZ Plane with Hollow DNG 
Sphere at 20 GHz



Discrete dipole approximationDiscrete dipole approximation





Discrete dipole approximation
• Recognise that a ‘point 

scatterer’ acts like a dipole

• Replace with an array of 
dipoles on cubic lattice

• Solve for E field at every 
point dipole → know 
scattered field







Discrete Dipole Approximation



Discrete Dipole Approximation
• Purcell & Pennypacker, Ap. J. 186, 175 (1973);  

Goodman, Draine & Flatau,  Opt. Lett. 16, 1198 
(1991).

• Idea: break up small particle into small volumes, 
each of which carry dipole moment.

• Dipole moment due to local electric field from all the 
other dipoles.

• Calculate total cross-section, using multipole-
scattering approach.

• Can be used for anisotropic, and absorbing, 
scatterers.

• Connect polarizability of small volume to dielectric 
function, using  Clausius-Mossotti approximation 



Discrete Dipole Approximation (DDA)

Standard method for determining the scattering
properties of non axis-symmetric particles, completely
flexible concerning target geometry

Approximation:
– Describe the actual target by an array of polarizable points (dipoles);
– Representation as electrical dipoles, magnetic dipoles and multipoles

are neglected.

Required conditions:
– Best if targets have sizes comparable to wavelength (i.e. Mie-region)
– Materials should have |m-1| < 1 to 3, m = complex refractive index
– d: „interdipole separation“ should be smaller than structural lengths

and wavelength λ
– numerical studies indicate |m|kd < 1, k=2π/λ (wave number)



DDA source code
DDSCAT6.1 (Draine and Flatau, 2003), publicy available 
(GNU)

FORTRAN (f77) software package (highly portable)

Calculation of :

- absorption, scattering, extinction efficiency factor

- 4x4 Mueller scattering intensity matrix, amplitude 
scattering function 

Variables

- target type/orientation (random/non-random)

- scattering angles

- number of dipoles

- frequency, complex refractive index

Size parameter (SP) < 15, |mkd| < 0.5



Validation of DDA

• DDA single scattering properties –
comparison to Mie calculations

• DDA single scattering properties –
comparison to T-matrix calculations



DDA single scattering properties – comparison 
to Mie calculations

Criterion for DDA application:
mkd < 0.5
(see Draine and Flatau, 2003)

m: complex refractive index
k: wave number
d: dipole separation
N: number of dipoles

N ~ 1/d

Solid ice spheres at 300 GHz 


