Chapter 3 Modeling Approaches

» Rigorous coupling wave analysis (RCWA/FMM)
» Finite difference and time domain (FDTD)

» Discrete dipole approximation (DDA)
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Figure 1: J.C. Maxwell and H.R. Hertz




RCWA

To analyze the response of subwavelength gratings, the
vectorial nature of light must be taken into account through a
resolution of the Maxwell equation

- Rigorous Coupled-Wave Analysis (RCWA)
or Fourier Modal Method (FMM)

Fields and permittivities are decomposed in a Fourier basis and
then matched at the grating layer boundaries to yield the
diffraction order complex amplitudes.




Huygen's principle
+ Huygen's principle offers an
explanation for why and how waves

bend (or diffract) when passing an
obstruction
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Sl & 2l Christian
- every point on a wave front acts as R Huygens
a source of tiny spherical wavelets w2 /7 /e (1629-1695)
that travel forward with the same & Ji
speed as the wave

the wave front at a later time is
then the linear superposition of all
the wavelets
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Validity of Scalar Field

REVIEI I : Fraunhofer
Full Wave
Sommerfeld & Fresnel (Near Field) (Far field)

Fresnel-Kirchoff

Solutions

Z>> A




Four basic equations in EM wave

Helmholtz’s equation
Green’s function
Green’s formula

Kirchhoff's formuls




a) Helmholtz’s equation

In source free space, EM filed EFIB satisfies
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Helmholtz's equation V?y + K2y =0
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b) Green’s function

The same as static filed, assume G(X,X')
IS Green function of Helmholtz’s equation :
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We obtain: V°G + k°G = —Azo (X —X')

Note:
Helmholtz’s equation and Green Function:
Same point: they are wave equation

Different: the former Is source free equation, and the
latter IS point source equation.




c) Green'’s formula

Put Gand into Green function, we have
174

.[v [W(X’)V’ZG(X” X) — G (X, T()V'zl//(i')}jr’

= fply ()V'G (X, %) - G(X, )V p(X)]- ds

S
where dS is area unit with vector from V to

inside, if 7 isnormal directioninV, then

ds' = —-nds’




Above equation change to:

[ br)v2e®, ) -6, v 2p(x)

= Bl RV'y(X) -y (RIV'G(X, X))

S

This 1s Green formular.

d) Kirchhoff’s formuls

Regarding G as known parameter which satisfies
Green function, It has

VG + k°G = -4z5(X — X')
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The Fourier Modal Method, also

Coupled Wave Analysis (RCWA),

simulating the optical response of
relief structures, and most especia

known as Rigorous
IS 1deally suited to
2D, periodic surface
ly binary surfaces. It

Involves the expansion into spatial Fourier components of

the both the dielectric function and

the associated fields,

followed by a numerical solution of the boundary

equations. The approach can yield both reflected and

transmitted complex diffraction efficiencies, as well the

assoclated field distributions both inside and outside the

structure.




Calculation examples

v' single metallic slit

v Metallic slit with corrugated grooves

v" Combination of SPP and photonic crystal
v micro-Fresnel lenses

v Metallic nanoparticles

v Nanophotonic structures

v Double slits diffraction with width tuning




RCWA is also called Fourier Modal Method

Figure 2: Diffraction of a Gaussian beam by a glass cylinder




Interaction of a plan wave with a slit-on-glass aperture. The
plane wave is incident from the bottom and has a wavelength
of 549 nm. The slit is 100 nm wide, the Cr layer is 100 nm
thick. The left image is TM polarization and the right image

TE polarization.

™ TE
Figure 3: Passage of light through a slit using the FMM




Young's double slit experiment

In 1801 Thomas Young Centrl brght rings
performed an experiment

that irrefutably demonstrated i . R

the wave nature of light ' >

- before this there had been a lot . K Bright fringes o
of debate between the particle |

camp (Newton) and the wave e
Camp (HuygenS) Two slits 5
5 c ““The slits §; and S, are

interference pattern

Monochromatic (single ouresof monecvomati
frequency) light is first

shone through a single slit gl mm
- this makes the light that passes through the

single slit coherent (we can avoid this step
today using lasers) Monochromatic light

Copyright © 2007 Pearson Prentice Hall, Inc.

the light from the single slit is then used to
illuminate a double-slit, which produces an
interference pattern on a screen behind it
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Transmission

diffraction effect

Hans Bethe 1944

Transmission intansily (%)

experiment
10d

1,000 1500

Wanelength {nm)

The experimental findings
imply that that the array
itself is an active element,
not just a passive geomet-
rical object in the path of
incident light
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Overcoming the diffraction limit with the help
of surface plasmons

surface plasmon
metallic (Ag) film resonance @ 660nm directionality is £+ 3°




The coupling of light into SP modes is governed by geometrical
momentum, selection rules (/.e., occurs only at a specific angle
for a given wavelength), the light exiting a single aperture will
follow the reverse process in the presence of the periodic
structure on the exit surface.

N : 4 _
kX\(ouE;omJg) k§(|ncom|jng)_a{6j where G = 2n/d

Y = [ [
plasmon nksin® reciprocal lattice vectors

Prepagmiing Ryt




Diffraction of nano-sized structures

Constructive
nterference

among the beams
from slits;

Each slit 1s at F-P
resonance

L alanne et al. Nature Phy. (2006) Interfere;lce_ of SW/SPP
Gay et al. Nature Phy. (2006) with 1ncident wave

How Conversion SPP/Light, and Interference occur ?




Field distribution £y, Hz

|Ey |

o ———




SPP coupling & Interference at nano-slit

—r--r— ™ polarized—-——

E=1F~L 1 ..éﬂ_ks'” @

-

detector

Coupling mechanism:

the incident SPP induces oblique
dipole that reradiates Bulk waves
and SPPs

Interference occurs at the slit.

Ung, Sheng, Opt. express (2007)
il /nvited Paper OSA Nanophotonic (2007)




F-P resonance of bulk H,, E, cross the slit

When a>>A, multiple
reflections of bulk waves
of Ey and Hz cross the

slit as F-P resonance
Oscillations of

— Ey and Hz

— Transmission

— Scattered bulk wave

Resonance mode 1n the
slit normal to slit axis

When a<)\, ssmilar
phenomenon




Demonstration of the Interference of
SPP with incident beam (H, field)

Constructive interference: L = 520nm

EaE e

Destructive interference: L = 750nm

(- 1L




Induced dipoles in the slit

Two horizontal dipoles




EXperiInentS Of Gay Nature Physics 2006




Creepillg Waves Ph. Lalanne Nature Physics




Sommertfeld Integral

No exact closed-form
solution 1s available
Ditficult to evaluate
numerically.




Transient behavior of surface plasmon polaritons
scattered at a subwavelength groove
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Freqguency-Dependent Materials
iIn FDTD




I_Iz(t;x,y+Ay,z__Hz(t;x,y—Ay,z) _ I_Iy(t;x,y,z+Az)_Hy(t;x,y,z—Az) _ Ex(t+At;x,y,z)_Ex(t—At;x,y,z)
2AY 2AZ — &(xy,2) At

Hx(t;x,y,z+Az)_Hx(t;x,y,z—Az) _ Hz((t;x+Ax,y,z)_Hz(t;x—Ax,y,z) _ Ey(t+At;x,y,z)_Ey(t—At;x,y,z)
247 2AX = c(x.y.2) At

Hy(t;x+Ax,y,z)_Hy(t;x—Ax,y,z) _ Hx(t;x,y+Ay,z)_Hx(t;x,y—Ay,z) _ Ez(t_At;x,y,z)_Ez(t—At;x,y,z)
2 AX 2 Ay — €(xy.2) At

where E=E(E,,E,,E,) and H=H(H,,H,,H,) are the electric field and the
magnetic induction vectors, respectively, and 2AXx, 2Ay, 2Az are
Increments along the three coordinate directions respectively, At is the

unit time increment, and (X,y,z) is the complex dielectric constant of
the medium at that point.

Equations are simultaneously solved to determine the component
values at the time t+A4t.




FDTD—Finite-Difference Time-Domain method

Spatially stagger the
vector components of the
E-field and H-field :

spatial accuracy 2"d order
(Yee) or higher

discrete in space Yee cell

At <1/CyAX? + Ay 2 + Az

N
= E and H are §
N

Many challenges when implementing it
to cover wide applications

Kane Yee (1966). "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic
media". Antennas and Propagation, IEEE Transactions on 14: 302-307.




FDTD—Finite-Difference Time-Domain method

Solving Maxwell’'s equations directly : full vectorial method

%—?:—VXE %—?:VXH VeD=p VeB=0 D=¢ B=uH

E and H are discrete intime E(t) > E™ H(t) > H (n+10)at

The basic FDTD time-stepping relation:
E’n+1 _ E’n +0[§X I:I’n+1/2
Fi n+3/2 _ Fi n+1/2 -I-WX E’n+1

Leap-Frog Scheme

E’o ; I:I’1/2 > El > I:i3/2 —

2nd order accurate in time: error ~ At?




What are Dispersive Materials?

 Dispersive materials

— have electrical parameters (permittivity and
conductivity) which vary significantly as a
function of frequency

« Examples include water, metals, body tissue,
plasmas and more

e Many typical materials are frequency-
Independent and the dispersive models are not
needed




When to use Dispersive Material
Capabilities in FDTD?

* Broad-band output Is desired from a geometry
containing this type of material

 |In any simulation (broad-band or single
frequency) In which the electrical parameters
for the material would cause the calculation to
become unstable (for example negative
permittivities)




Types of Dispersive Models in FDTD

Debye

— useful for materials with condensed polar molecules such
as water

Drude

— similar to the Debye model
— with an added electrical conductivity term
— Also available for magnetic materials

Lorentz
— used to describe absorption bands
— often in the optical frequency range

Magnetized Ferrites
— Discussed in a separate section of these notes




Dispersive Technique in FDTD

v FDTD uses an improved implementation of the
Recursive Convolution Technique for dispersive
materials

v" Separate Total Field and Scattered Field formulations
for increased accuracy when incident plane wave
excitation Is specified

v Increases memory load and execution time moderately

v" Second order accuracy




The Debye Model

e Describes the time-domain exponential
decay in the permittivity

— due to the alignment of dipolar molecules to
an applied field

e Typical example is water

— many materials with high water content have
similar characteristics




The Debye Model Parameters

e The Debye permittivity is described by
the equation

Es — Ex

g(w):goo I 1+ Jwro




Limits on Debye Parameters

e |In order to produce a realistic material and
a stable calculation, some limits are
placed on the parameters

 The imaginary part of the complex
permittivity may not be negative

 Infinite frequency permittivity = 1

e Static permittivity > infinite frequency
permittivity




Complex Permittivity for Water

ror
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Permittivity and Conductivity for Water

Felative Permittivity and Electrical Conductivity for Water
Felative Permittivity and Ennductiuitg{%éfrﬂ%H J
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Effect of Debye Parameters

o Relative Permittivity for Three Different Relaxation Times
Permittivity

a0 T T T T T

H0 = 9.4e-17 {water) —o—
t0=9,4e-11 —+— |
t0=9,4de-137 —a—

an
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40

30
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The Drude Model

e The Drude model describes a material
similar to the Debye model

— with the addition of an electrical
conductivity term

— where o Is the conductivity.

&w)= & A c-e 9
1+ Jwro  Jweo




Simple Drude Model Limits

o Simplified limits for Drude model:

—identical to those of Debye (¢..=1, e.>¢..)

—with added condition that electrical
conductivity (o) <0

e | imited set of materials fit this condition

 More general conditions available




General Drude Model Limits

 Infinite Frequency Permittivity (¢_) > 1
e lIfe,>¢, thenco >0

e If g, < ¢, then the conductivity must satisfy

the condition o —
o> E0(Eo — &s)

70




Example Drude Materials

e |sotropic Plasmas

e Metals such as gold, aluminum, and
chromium at optical frequencies

e Some biological tissues

 Negative Index Materials (NIM), Double
Negative (DNG) materials




Techniques for Using Drude

e Some materials, such as plasmas, fit the
Drude model exactly

e For the general case

— a curve-fitting technique should be used to find
the best-fit parameters for the Drude model

e Curve-fitting used for following metal
examples
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The Lorentz Model

e Characterized by a high resonance in the
permittivity at a single frequency

 Infinite and static permittivity values as
with Debye

e Resonant frequency and damping
coefficient values define the peak
permittivity




The Lorentz Model Expression

The Lorentz complex permittivity is defined as

2

o

(W) =8H&— &)

o 2 jod -’

where o  Is the resonant frequency and o Is the
damping coefficient, both in radians/second




Limits on the Lorentz Parameters

e As with Debye, ¢,> ¢,

e wy;>0 and 6>0

e A conductivity value (c) may also be used
and it must be > 0




Example Lorentz Complex Permittivity

e g, = 2.25,

e 0,=4.0x 10,8 =0.28 x 10"°




Complex Perm for Lorentz

rr

o Complex Permittiwvity for Lorentz Material e=e’ - je
Permittivity
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XFDTD Electrical Material Parameters

Edit Electrical Material

tatenal Type:

b aterial Mame:

" Momal © Debpe € Lorentz € Thinwie © Anisobropic |E|.3.3tri.3

" Monlinear Diagonally Anisotropic

Conductivity [S4m);

Rela=ation Time [=);

Hezonant Erequency [HE]:

S8R Density [kgdmd):

B289

1e-003

0

0

Relatirve Permittivity [Infinite Freq):
Static Permittiity:

Lramping Coetficient [HE];

taiire B adiuz [mnm)

.

-7 102e+00

0

0

Cancel




Dispersive XFDTD Examples

e Examples are for radar cross-section
(RCS) results versus frequency for a
sphere

e An analytical solution (Mie Series) is
readily available for this case for validation

e Drude materials are used as they are the
most commonly encountered




Drude Plasma Example

A 3.75 mm radius plasma sphere is simulated using the
Drude model.

Broad-band RCS at a single angle computed

Both staircased and dielectric-conformal meshing
(coming in XFDTD 6.3) spheres simulated

This example comes directly from

“FDTD Calculation of Scattering From Frequency-
Dependent Materials” by Raymond Luebbers, David
Steich, and Karl Kunz, IEEE Transaction on Antennas
and Propagation, Vol. 41, No. 9, September 1993.




Drude Plasma Example (2)

Cell size of 150um is used (25 FDTD cell radius
for sphere)

XFDTD Parameters: =5 x 101", =14.396,
e.=1, 6,=-80.295

71x71x71 cell space with 10 cell borders
10 cells/wavelength at maximum frequency

Gaussian Pulse plane wave with width of 32
time steps is incident




RCS of Drude Plasma Sphere

RCS ¢ dBam? RCS we Frequency for Irude Flasma Sphere

_30 T 1 1 1 1

Exact {hie Serieé}

#FOTD - Staircased Irude sphere
KFOTD - Conformal Drude sphere

2e+10 4e+10 Be+10 Be+10 le+ll 1,2e+11 1,4e+11 1,EBe+11 1,8e+11  Ze+ll

Frequency (Hz!




Optical Frequency Gold Sphere

At optical frequencies many metals exhibit
Drude characteristics

A material of high current interest is gold
RCS is computed for a 75nm radius sphere

A curve-fit Drude model is used for Gold with
parameters ¢_= 9.012, £,.=-12990, 6=1.276 x 107,
75=9.02 x 10-1°




Gold Sphere XFDTD Calculation

A Gaussian pulse plane wave is incident with
width 32 time steps

25,000 time steps are runina 71x71x71 cell
space

Sphere radius is 25 cells with 3nm cell size

Both staircased and dielectric-conformal
spheres simulated




RCS of Drude Plasma Sphere

RCS ¢dBsm? RCS ws Frequency for Drude Flasma Sphere

_30 1 T 1 1 I

Exact {Mie Series!

—di) EH% HFOTD - Staircased Drude sphere
! KFOTD - Conformal Drude sphere

de+10 Be+10 Be+10 le+1l  1,2e+11 1,4e+11 1,6e+11 1,.8e+11  Ze+ll

Frequency (Hz?




Ez Field in XZ Plane with Hollow DNG
Sphere at 20 GHz




Discrete dipole approximation




Electrodynamic Analysis of Localized
Surface Plasmon
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Discrete dipole approximation

* Recognise that a ‘point
scatterer’ acts like a dipole

* Replace with an array of
dipoles on cubic lattice

++++++
++++

» Solve for E field at every
point dipole — know
scattered field

++++
++++++
+++++++
++++++++
++++++++
+H+++++++
++++++++
+++++++




DDA simulation details Neal, Palify-Muhoray

« Discrete dipole approximation (DDA) simulation
determines susceptibilites

simulation Salves:
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Results: computed dipole moments for Au NRs

Meal, Palffy-Muhoray
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Discrete Dipole Approximation

Consider N dipoles, the ith dipole p; located at r; and haw-
ing polarizability ;.

P = ﬂ‘-;EIac,i
Filoc: = EoeT—%t — 5. . AL - Dy

A;; - p; = dipole field (near-field + far-field contribution)
at r; due to p;.

Solve for p;. Then extinction coefficient O, 15 given by

4k Npar
|ED|2[H1‘Z: Efj exp(—iwt) - py (1)

CE:I#
by optical theorem. (N, is the number of particles in the
cluster.)

c; is related to e; of the i** particle by requiring that it given
the correct first scattering coefficient in the Mie expansion.

Refs. for DDA: E. M. Purcell and C. K. Pennvpacker, Ap.
J. 186, 705 (1973); J. J. Goodman et al, Opt. Lett. 16, 1198
(1991).




Discrete Dipole Approximation

Purcell & Pennypacker, Ap. J. 186, 175 (1973);
Goodman, Draine & Flatau, Opt. Lett. 16, 1198
(1991).

|dea: break up small particle into small volumes,
each of which carry dipole moment.

Dipole moment due to local electric field from all the

other dipoles.

Calculate total cross-section, using multipole-
scattering approach.

Can be used for anisotropic, and absorbing,
scatterers.

Connect polarizability of small volume to dielectric
function, using Clausius-Mossotti approximation




Discrete Dipole Approximation (DDA)

Standard method for determining the scattering
properties of non axis-symmetric particles, completely
flexible concerning target geometry

Approximation:
- Describe the actual target by an array of polarizable points (dipoles);

- Representation as electrical dipoles, magnetic dipoles and multipoles
are neglected.

Required conditions:
- Best if targets have sizes comparable to wavelength (i.e. Mie-region)
- Materials should have [m-1| < 1 to 3, m = complex refractive index

- d: .interdipole separation” should be smaller than structural lengths
and wavelength A

- numerical studies indicate |m|kd < 1, k=27/A (wave number)




DDA source code
DDSCATG6.1 (Draine and Flatau, 2003), publicy available

(GNU)
FORTRAN (f77) software package (highly portable)
Calculation of :

- absorption, scattering, extinction efficiency factor

- 4x4 Mueller scattering intensity matrix, amplitude
scattering function

Variables

- target type/orientation (random/non-random)

- scattering angles

- number of dipoles

- frequency, complex refractive index
Size parameter (SP) < 15, [mkd| < 0.5




Validation of DDA

DDA single scattering properties —
comparison to Mie calculations

DDA single scattering properties —
comparison to T-matrix calculations




DDA single scattering properties - comparison
to Mie calculations

Spheres (ice) at 300 GHz, m = 1.775 + i*0.003
MIE-reference E
DDA (N=523) =
DDA (N=4189)
DDA (N=14137)
DDA (N=33510)

Solid ice spheres at 300 GHz

Criterion for DDA application:
mkd < 0.5
(see Draine and Flatau, 2003)

m: complex refractive index
k: wave number

d: dipole separation

N: number of dipoles

N~ 1/d




