Laser Interference lithography

Laser interference lithography: Principle

 $d = \lambda / (2\sin\theta)$ $I(x) = 2I_0[1 + \cos(2kx\sin\theta)]$ $I(x, y) = 2I_0[2 + \cos(2kx\sin\theta) + \cos(2ky\sin\theta)]$

Lloyds Mirror dual-beam interference system

Patterns generated by dual-beam interference system

Simulated 2D profile

Simulated dots pattern

Experimental flow chart

Measured dots pattern generated by the dual-beam system

100s

AFM measurement results: topography

2D pattern on Cr film

Measured 3D pattern on Cr film

Experimental setup of the detection system

▶ 通过双曝光、结合刻蚀工艺来实现,基底在第 二次曝光之前移动半个周期的距离来实现。

▶移动距离为100纳米的转台。

Reducing exposure wavelength by double frequency of the light source

磷酸二氢钾(KDP),磷酸二氘钾(DKDP)基本特性

	KDP	KD*P
Molecular formula	KH ₂ PO ₄	KD ₂ PO ₄
wavelength	200-1500nm	200-1600nm
Non-linear coefficiency	d ₃₆ =0.44pm/V	d ₃₆ =0.40pm/V

紫外透过,高损伤阈值,双折射系数高等特性

磷酸二氢钾(KDP),磷酸二氘钾(DKDP or KD*P)

山东新光量子科技股份有限公司

Email: sales@newphotons.com

TEL:0539-3105408 FAX:0539-8288308

地址:山东省临沂市高新技术产业开发区 邮编:276017 ◇ 紫外干涉滤光片

中心波长: 220nm-400nm(典型的波长为220mm, 254mm, 280nm, 340nm, 380nm)

中心波长偏差: +/-2nm

峰值透过率:T>15%-40%(与 不同的中心波长有关)

大恒光电

半带宽: 8+/-2nm

两束光正交双曝光示意图和光强分布 的二维等高线图

对于任意角度的双曝光和双光束的多次曝光,最后在光刻胶上得到的图形所对应的光强为:

$$I_t = \sum_{i=1}^n (\Delta t_i) I_i$$

$$I_i = 2I_0\{1 + \cos\left[\frac{2\pi}{d}(\cos(\alpha_i)x - \sin(\alpha_i)y) + \varphi_i\right]\}$$

Δt_i为每次的曝光时间,I_i为每次曝光的光强分布。这种情况下,可调节的变量有λ、θ、Δt和位相差Φ, 通过多次曝光的组合可以产生较为复杂的图形。但是 从可操作性考虑,双曝光和三次曝光比较多。

消色差干涉系统(光栅分光)

在GaN上紫外激光干涉直写光子晶体 GaN photonic crystal patterning

灰度光刻阵列图形grayscale lithography: fresnel lens and micropattern fabrication

导光板 light guide plate

Three-beams exposure

设k的方向余弦为($\cos\alpha$, $\cos\beta$, $\cos\gamma$), 则有: $E_1 = A_1 e^{i\varphi_1} = A_1 e^{i[k(x\cos\alpha_1 + y\cos\beta_1 + z\cos\gamma_1) - \omega t - \delta_1]}$ $E_2 = A_2 e^{i\varphi_2} = A_2 e^{i[k(x\cos\alpha_2 + y\cos\beta_2 + z\cos\gamma_2) - \omega t - \delta_2]}$ $E_3 = A_3 e^{i\varphi_3} = A_3 e^{i[k(x\cos\alpha_3 + y\cos\beta_3 + z\cos\gamma_3) - \omega t - \delta_3]}$ 考虑等光强的三束光,干涉得到的光强分布为: $I = A^{2}[3 + 2(\cos(\varphi_{1} - \varphi_{2}) + \cos(\varphi_{2} - \varphi_{3}) + \cos(\varphi_{3} - \varphi_{1}))]$ 其中

 $\cos(\varphi_1 - \varphi_2) = \cos[x(\cos(\varphi_1 - \cos(\varphi_2)) + y(\cos(\varphi_1 - \cos(\varphi_2)) + z(\cos(\varphi_1 - \cos(\varphi_2)) + (\delta_2 - \delta_1))]$

图14: 分波前三光束干涉系统

图15: 分振幅三光束干涉系统

Schematic diagram of experimental system

Equalized three beams interference generated pattern

三次曝光的光强分布图。每次曝光的夹角为60度。(a)位相差 ϕ 3=0; (b) ϕ 3= π /2; (c) ϕ 3= π 。 ϕ 1和 ϕ 2始终为0。

对应于上图的曝光结果

Four-beams exposure

用四束单色单色相干光以各自的角度同时照射到涂有光 致抗蚀剂的基片表面。设基片置于**xoy**平面内

 $E_n = A_n e^{i\varphi_n} = A_n e^{i[k(x\cos s\alpha_n + y\cos \beta_n + z\cos \gamma_n) - \omega t - \delta_n]}$

当各束光的光强相同时

 $I = 2A^{2}[2 + \cos(\varphi_{1} - \varphi_{2}) + \cos(\varphi_{2} - \varphi_{3}) + \cos(\varphi_{3} - \varphi_{4}) + \cos(\varphi_{4} - \varphi_{1})]$ 其中

 $\cos(\varphi_n - \varphi_m) = \cos[x(\cos\alpha_n - \cos\alpha_m) + y(\cos\beta_n - \cos\beta_m) + z(\cos\gamma_n - \cos\gamma_m) + (\delta_m - \delta_n)]$

当四束光在两个正交的平面内入射,并且入射角相同时,光强的分布可以简化为:

 $I = 2A^{2} \{2 + \cos(2kx\sin\theta) + \cos(2ky\sin\theta) + 2\cos[k(x-y)\sin\theta] + 2\cos[k(x+y)\sin\theta] \}$

Schematic diagram using four-beams

Experimental system of the fourbeams interference lithography

Four-beams interference produced pattern with equal intensity distribution

(a) Dual-beam interference; (b) four-beams interference

Patterns generated by eight-beams exposure

Immersion Lithography Improving the manufacturing process

Lithography For 45nm

- Immersion effectively decreases wavelength by putting water between the projection lens and the silicon wafer
 - If a fluid of refractive index n fills the space between the lens and the wafer, then the effective wavelength = the vacuum wavelength of the light ÷ by n
 - For air, n is approximately equal to 1.0
 - For water, n is approximately equal to 1.4 because water is denser than air
- Shorter effective wavelengths enable smaller features to be patterned

40 percent gain in resolution over conventional lithography

Lithography

Immersion photo lithography

浸没式光刻原理图

增加系统的数值孔径,可以将193 nm光刻延伸到45 nm 节点以下。

图 2 水作为浸没式光刻技术的液体,理论上数值孔径可以达到 1.3 以上,实现 更大 的数值孔径就需要在高折射率液体、光学材料以及光刻胶等领域取得突 破性的 进展。(来源: Sematece)

提高数值孔径的解决方案

- 水土平面镜头土石英光学材料: ~1.37
- 第二代浸没液体土平面主镜头土石英光学材料: ~1.42
- 第二代浸没液体+弯曲主镜头+石英光学材料: ~1.55
- 第三代浸浸液体土新光学镜头材料土新光刻胶: ~1.65
- 第三代浸没液体+新光学镜头材料+新光刻胶+半场尺寸: ~1.75 来源 Advanced Mask Technology Center

300mm wafer from Inteland transistor with65nm feature size

450mm wafer

Light source 光源

Mask 掩膜

Lens to reduce image 缩图透镜

Die being exposed on wafer 即将曝光的晶圆

IMEC开发的EUV alpha demonstration tool

zoi..com.cn

08

