

Microlens Fabricated

Dr. Fu Yongqi

Tutorial Presentation

Designed DOE profile with six annulis

(a) (b) Milled DOEs with continuous relief and designed wavelength of 635nm. (a) micrograph of SEM image in 60° view angle, (b) profile measured by AFM

DOE with continuous relief and 7 annulus directly milled on glass substrate

Cursor Marker Spectrum Zoom Center Line Offset Clear

fu.006

Peak Surface Area Summit Zero Crossing Stopband Execute Cursor

3D model with section view

DOE's with continuous relief directly milled onto BK7 glass substrate by FIB, 3D micrograph measured by AFM

10x10 micro-DOEs array fabricated by focused ion beam milling (FIBM) directly in BK7 glass substrate

Cross-section view of DOE with 3 annulus

10x10 micro-DOEs arraywith 6 annulus fabricated by focused ion beam milling (FIBM) directly in BK7 glass substrate

9x9 micro-refractive lens array with f-number 5, diameter of 60 μ m and *NA* =0.1 fabricated by focused ion beam milling (FIBM) directly in BK7 glass substrate

Beam profile of the 9x9 micro-refractive lens array measured by BeamScope-P5TM

Integrated lens with NA=0.35, and o.5 for refractive and diffractive respectively, fabricated by deposition SiO₂ and milling

Micro-cylindrical lens with size of 3x8x0.9µm directly deposited on glass substrate by FIB SiO₂ deposition

SEM micrograph of microlens in 60° view angle with f#=6, NA = 0.1, and diameter of 10 micron fabricated by SiO₂ deposition on glass substrate

Microlens mold fabricated using FIBM

-5-dB total coupling loss for a passively aligned module.

Micro-cylindrical lens integrated with LD

(a) diagram of original laser diode; (b) integrated micro-cylindrical lens with the laser diode. The microlens with size $50 \times 5 \times 0.85 \ \mu m^3$ covered on the emitting facet, *NA*=0.33.

Original laser diode emitting

Tutorial Presentation

Side view of laser diode before FIB processing

Micro-cylindrical lens integrated with LD

SEM micrograph of the deposited micro-cylindrical lens on emitting surface of laser diode.

Fig.1. Schematic diagram of single-VCSEL integrated with hybrid microlens combined with spherical lens and diffractive lens on the same side for collimating.

设计参数 f=230 µm, NA=0.29, 浮雕深度: 0.4 µm

Fig.2 Diffractive lens with continuous relief directly milled onto backside of VCSEL with GaAs substrate by FIB. SEM image in 30° view angle.

Fig.3 Far-field angle (half divergence angle) measured by BeamScope-P5TM beam scanner, the angle calculated in terms of incline angle of the lines, is 0.6° and 12° with and without microlens respectively.

FIB在光纤端面直写衍射微透镜实验结果

Veeco干涉仪测量结果

实验结果:集成DOE聚焦性能测试

Beam profile (2D & 3D) captured at focal plane Beam scanner: BeamScope-P5TM

FIB在光纤端面直写闪耀光栅实验结果

Integrated blaze grating on single mode fiber

Characterization of the blaze grating by WYKO

Integrated fiber system for strain/temperature sensing

光纤布拉格光栅工作原理

光纤布拉格光栅工作原理

Microlens fabricated by FIB deposition

THE END