Sub-MicroMachining with Ultrafast Pulse Laser Interference for the Drilling of Microvias

University of Electronic Science and Technology of China

Prof. Yongqi Fu

Ultrafast Laser Sub-spot Ablation Mechanism

 permits the ablation of features smaller than the focal spot size when operated near threshold as only a fraction (the central region) of the focused light will exceed the threshold intensity.

• with a **femtosecond pulsed laser**, it is possible to control that only 1/10 (10%) of the focal spot size will machine.

Handbook of Micromachining - Clark-MXR, Inc.

WHY FEMTOSECOND PULSED LASER

M. Carsten et. al., 1996, Optics Communications

Er:YAG 50 ns

Ti Sa 700 fa

- Can machine any materials
- No melt zone, no microcracks
- Highly reproducible
- Does not affect surrounding material
- Can machine sub-micron features
- Can machine inside transparent materials

Limitation of Current Laser Ablation Technology:

- reached its lowest limit when it hit the 1/10th of the laser focal spot size range
- smallest ablation feature reported is 200 nm [1]
- the smaller the ablation feature size, the more pronounced the problem of tapering & low aspect ratio

..... Laser light pulses

femto-LASIK

•········ Suction device

Flap edge

Microscopic bubbles

Femtosecond Laser Micromachining

SUB MICRON MACHINING

Femtosecond Laser Micromachining

Photomask Development

Micro-gear (25µm X 25µm) fabricated by lithography with the mask fabricated by novel system

Internal 3-D micromachining micro eagle inside transparent materials Using Femto-second Laser

Submicron machining

Inside surface machining

CW AND PULSED LASERS

Ultrafast Pulse Laser Interference

Interference is the phenomenon where two or more beams overlaps resulting in a series of bright & dark bands called *fringes*

Micromachining

How will the interfered laser beam give better machining performance?

Conventional Non-Interfered Laser Beam vs. Interfered Laser Beam

2D profile of the conventional non-interfered Gaussian laser beam

2D profile of the interfered Gaussian-like laser beam

3D profile of the interfered Gaussian-like laser beam **3D profile of the conventional non-interfered Gaussian laser beam**

Experimental Details:

Experimental Variables	Value
Pulse length	150fs
Wavelength	400nm
Repetition rate	1kHz
Environment	Ambient condition
Workpiece material	100nmCopper Film

X22,000

1.Mm

26 33 SEI

20kU

Direct beam Hole diameter & 1µm Beam energy: 5 nJ

Plans for Future Improvement

- to obtain finer features, sharper & finer fringes must be achieved. This may be done by:
 - * changing the curvature of the lens used (the larger the curvature, the more fringes will be obtained, the denser the fringe pattern obtained)
 - * multiple interference (Fabry-Perot etalon)
 * obtaining a Bessel beam (axicon)
 * zone plate (multiple diffraction)

Beam profile of 2-beam interference fringe

Beam profile of multiple interference fringe

Two-beam interference fringes

Multiple-beam interference fringes

For constructive interference, when the 2 waves are in phase, the total intensity is proportional to $(E_1 + E_2)^2$

$$I_{total} \propto E_{total}^2 = (E_0 + E_0)^2 = 4E_0^2 \rightarrow I_{total} = 4I_0$$

Hence, 2 constructively interfered beams will give us light of four(4) times the intensity of either wave.

Alpha 1000/S

Output Specifications

Model	Standard	Picosecond Extension		
Repetition rate (kHz)	1			
Wavelength (nm)	800 ± 20 (1)			
Pulse duration	< 100 fs (2)	< 1.5 ps (3)		
Energy per pulse	800 µJ up to 2 mJ (4)	> 600 µJ		
Pulse-to-pulse stability (% rms)	< 1,3			
Pre-pulse contrast ratio	> 500 : 1			
Post-pulse contrast ratio	> 100 : 1			
Typical picosecond contrast	> 1.000 : 1 @ 1 ps			
	> 10.000 : 1 @ 5 ps			
	> 100.000 : 1 @ 10 ps			
Typical time-bandwidth product	1.5 x Fourier-transform limit			
Beam profile before compressor	Gaussian			
Typical M ²	<13			
Pump system	YIE 12 W @ 527 nm			

The threshold of a material can be calculated from the equation:

 $F_{th} \approx \frac{\Omega \rho \lambda}{4\pi k A}$

where,

 Ω = latent heat of evaporation by unit mass ρ = density of the material λ = wavelength of laser light k = extinction coefficient of the material A = absorptivity of the material

Calculated ablation threshold at laser wavelength of 400nm

Material	Latent Heat of Evaporation Ω	Density ρ	Extinction Coefficient at 400nm k	Absorptivity A	Threshold Value F _{th}
Platinum	2405 J/g	21.45 g/cm ³	2.84 cm ⁻¹	48%	120 mJ/cm ²
Gold	1738 J/g	19.30 g/cm ³	4.56 cm ⁻¹	20%	117 mJ/cm ²
Copper	4796 J/g	8.96 g/cm ³	2.21 cm ⁻¹	84%	72 mJ/cm ²

Coherence Length
$$=\frac{\lambda^2}{2\Delta\lambda}$$

 $=\frac{800^2}{2(10)}=32 \times 10^3 \text{ nm}$
 $=32 \,\mu\text{m}$

where,

 $\lambda = \text{laser wavelength in nm}$ $\Delta \lambda = \text{laser bandwidth in nm}$

Newton's Ring Setup

Results:

- 300nm holes were drilled using the interfered laser beam on the 100nm thick Cu film compared to the 1µm holes drilled with the conventional non-interfered laser beam at the same beam energy and machining parameters.
- This is equivalent to a 300% decrement in feature, a substantial reduction and improvement in feature size.

Source: Laser Laboratorium Göttingen e.V.

The layers of the organic solar cell are structured by means of ultrashort pulse laser. Source: 3D-Micromac.

Applications:

> drilling of microvias in the semicon industry

micro-drilling of microscale fluidic devices such as ink-jet printer nozzles and drug-delivery systems

direct writing on mask for lithographic applications

microsurgery & non-intrusive surgical techniques
the potential is limitless as the quest for

miniaturization is endless!!

