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Abstract—Depression, as a common mental illness, has
become a significant public health issue, and the recurrence
rate for patients with depression who have been treated
is relatively high. In this study, a mental health monitoring
system based on wearable sensing wristbands with sensors
for voice, activity, and heart rate has been developed. Using
this system, we perform a therapeutic monitoring study for
hospitalized patients with depression and healthy controls
to investigate multimodal changes before, during, and after a course of treatment. The obtained results demonstrate
that there are significant changes in multimodal features such as audio short-time energy and angular velocity shape
skewness with the remission of depressive symptoms. According to Mikels’ emotion wheel, a day’s data for subjects
is defined as three types of emotional units and the emotional state of each emotional unit is recognized as positive
or negative emotions. With this, emotion-sensing-graphs guided by Mikels’ emotion wheel theory are constructed.
The analysis of emotion-sensing-graphs reveals that the same emotions are more closely linked to each other and
the average degree and proportion of positive emotion nodes after a course of treatment have increased significantly.
Finally, an emotion-sensing-graph graph convolutional network (ESG-GCN) model fused three types of emotion-sensing-
graphs with emotion labels has been developed to assess the levels of depression, thereby monitoring the changes in
depressive symptoms. Compared with classical machine learning models, the accuracy, F1 score, and recall rate of the
model perform best and the model achieves a verification accuracy of 0.83.

Index Terms— Depression, emotion-sensing-graph graph convolutional network (ESG-GCN) model, emotion-sensing-
graphs, Mikels’ emotion wheel, wearable sensing wristbands.
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I. INTRODUCTION

DEPRESSION, as a common mental illness, has become
a global public health problem. According to the World

Health Organization (WHO), more than 300 million people
currently suffer from depression [1]. Long-lasting depression
can cause a person to fall into a long-term negative mood,
which can result in a lack of self-confidence, feelings of
guilt, or even a loss of interest in life [2]. Depression can be
alleviated or even cured by psychological therapies, antide-
pressant medications, or a combination of these approaches
[3]. Moreover, as people become more aware of and attach
importance to depression, many patients with depression can
also seek help from professional psychiatrists in a timely man-
ner. However, for patients who have achieved remission after
a course of treatment, depression can easily recur. Research
has shown that the recurrence rate of depression within three
years is as high as 70%–80% [4], [5]. In addition, the
diagnosis of depression is mainly determined by professional
psychiatrists inquiring about the patient’s condition and using
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criteria defined in clinical assessments (such as DSM-IV or
DSM-V) and scales (such as Hamilton depression (HAMD)
scale) so that patients and their families have limited insight
into changes in depression symptoms. Clinicians are also
unlikely to assess changes in a patient’s condition unless
they report regularly for consultations, making it difficult
for patients to receive timely medical assistance as soon
as they experience a relapse. Therefore, the establishment
of long-term dynamic monitoring and evaluation platform
for depression based on wearable sensing technology may
be an effective way to detect changes in depressive symp-
toms, thereby providing early warning and preventing further
deterioration.

Generally, patients with depression exhibit mental retarda-
tion, decreased volitional activity, as well as low mood and
emotional abnormalities. In depressed patients, these charac-
teristics can be sensed through voice [6], [7], activity [8], [9],
and physiological [10] signals. Wang et al. [11] extracted three
types of features of Mel-scale frequency cepstral coefficients
(MFCCs), short-term energy, and spectral entropy of speech
signals reflecting depression information based on audio differ-
ence normalization algorithm. Then, a depression recognition
model based on convolution neural network (CNN) and gener-
ative antagonism network (GAN) was constructed. The results
showed that the depression recognition error was reduced on
the AViD-Corpus and DAIC-WOZ datasets, and the RMSE
and MAE values were increased by more than 5% compared
to existing methods. Seal et al. [12] proposed a deep learning
(DL)-based convolutional neural network (CNN) model, called
DeprNet, for identifying depressed and healthy subjects based
on the EEG data. The model achieved accuracies of 0.9937 and
0.914 in two experiments, namely, the recordwise split and
the subjectwise split. The results showed that the performance
of DeprNet was superior to the other eight baseline mod-
els. Therefore, mental health monitoring systems based on
wearable sensing devices can objectively reflect changes in
symptoms of patients with depression by collecting informa-
tion from sensors such as voice, activity, and heart rate [13],
[14], [15]. Many previous research efforts have shown that this
is a noninvasive, objective, and effective way to track and iden-
tify depression symptoms. A wearable device was utilized to
collect multimodal information such as body movement, steps,
skin temperature, heart rate, and sleep time from patients with
depression and healthy controls, and an evaluation model for
depression symptom severity was established using machine
learning [16]. Pedrelli et al. [17] have validated that it was
effective and feasible to assess depressive symptom levels
through behavioral and physiological features, which were
collected from wearable wristbands and smartphones. Rui et
al. [18] have built a predictive model based on symptom
features that were exploited from multimodal data collected
by wearable sensors and mobile phones to continuously
assess whether or not students were depressed. Thus, through
long-term monitoring and analysis of multimodal features
from wearable sensing devices, it is possible for patients and
doctors to observe depressive symptoms more reliably and for
doctors to make unscheduled evaluations or change the course
of treatment in a more personalized manner.

Graph networks not only contain the properties of things
but also describe the intrinsic connections among things.
Currently, a number of studies have focused on digging deeper
into the information related to depression to construct graph
networks and then using graph neural networks (GNNs) to
evaluate and identify depression levels. Bidja [19] has found
node features and edge metrics highly correlated with depres-
sion and built graph networks that accurately represented the
depression dataset, achieving over 80% accuracy in predicting
depression using GNN on smartphones and wearable sensors.
Chen et al. [20] formulated the subject’s EEG signal as a
graph structure in which the edges were constructed by a
combination of local and global connections. Based on this,
a self-focused graph pooling module was introduced to build
a self-attention graph pooling with soft label (SGP-SL) model
for the detection of major depressive disorder (MDD). There-
fore, it is effective and feasible to fully exploit intrinsic infor-
mation in depression to construct a graph structure for the pre-
diction and assessment of depression. However, depression is a
mood disorder, and most of studies have endeavored to find the
relationship in the data itself, while few studies integrated psy-
chological prior knowledge such as emotion theory into graph
network construction based on wearable sensing devices data.

Majority of prior studies have focused on the identification,
assessment, and prediction of depression based on multimodal
sensors, while dynamic monitoring of depressive symptoms
in patients with depression during treatment has rarely been
investigated. In addition, human emotions are crucial for
identifying a person’s behavior and mental state [21]. For
patients with depression, the symptoms are prolonged with
persistent low mood and anhedonia, and some patients with
depression are also irritable and emotionally abnormal. These
characteristics reflect a direct relationship between depression
and emotion. In this study, we track the treatment process of
hospitalized patients with depression using wearable sensing
wristbands integrating voice, activity, and heart rate sensors.
The multimodal signals of hospitalized patients with depres-
sion before and after a course of treatment are analyzed.
A day’s data of patients with depression and healthy controls
are defined using different emotional units. According to the
psychological prior knowledge of Mikels’ emotional wheel
[22], the emotion of each emotional unit is recognized as posi-
tive or negative emotion. Then, emotion-sensing-graphs guided
by Mikels’ emotion wheel theory are constructed. Meanwhile,
the emotion-sensing-graphs between patients with depression
before and after a course of treatment and healthy controls
are compared. Finally, an emotion-sensing-graph graph con-
volutional network (ESG-GCN) model fusing three types of
emotion-sensing-graphs with emotion labels is built to monitor
the changes of depressive symptoms in patients.

II. METHODOLOGY

Fig. 1 shows the overall architecture of the designed plat-
form. In stage 1, a multisensor wearable wristband has been
developed. Fifty-seven patients with depression and 21 healthy
controls who are evaluated by psychiatrists are selected and
their basic information has been recorded. Subsequently, the
baseline data of audio information for subjects are collected.
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Fig. 1. Overall proposed architecture consisting of two stages.

Fig. 2. Developed wearable sensing device. (a) Wearable sensing
wristband. (b) Front view of a core board. (c) Rear view of a core board.
(d) NB-IoT board.

During the experiment, the subjects wear a wearable sensing
wristband for one day at a time (8:00 A.M.–22:00 P.M.) to
collect the data of audio, activity, and heartrate, and they are
asked to fill out questionnaires to assess their psychological
states. In stage 2, activity and heartrate features are calculated
after the multimodal data is preprocessed. We then use a
principal component analysis (PCA) to compress and fuse
multimodal features. The state of patients with depression
is often directly related to their moods. Therefore, consider-
ing emotional changes and the relationship among emotions,
we have separately defined 10, 20, and 30 min as emotional
units to construct emotion-sensing-graphs guiding by Mikels’
emotion wheel. Thus, we have performed admission and
discharge analysis, analysis of emotional changes, and analysis
of emotion-sensing-graphs to observe changes for patients
with depression after a course of treatment. Finally, an ESG-
GCN model has been developed to monitor and track changes
in depressive symptom levels for patients with depression and
three types of emotion-sensing-graphs with emotion labels are
fused to train and improve the performances of the model.

A. Wearable Sensing Wristbands
We have developed a wearable sensing wristband that

incorporates a diverse range of sensors, enabling noninvasive
and objective collection of voice, activity, and physiological
information over a long period of time. The diagrammatic rep-
resentation of a wearable sensing wristband can be observed

in Fig. 2. In order to optimize the size of the wearable sensing
wristbands, reduce power consumption, and clarify functional
zoning, the wearable sensing wristbands are designed as a core
board, a narrowband Internet of Things (NB-IoT) board, and
a heart rate board. The board size is 34 × 40 mm, and the
three boards adopt a multilayer overlapping structure inside
the wearable sensing wristbands. Most sensors and devices
are integrated on the core board, mainly including recording
module WM8978, acceleration, gyroscope sensor LSM6DSL,
and an OLED where the operating status and real-time sensor
data are displayed. In order to accomplish real-time trans-
mission of data, the NB-IoT board encompasses an NB-IoT
module. The wearer’s heart rate and body temperature are
collected by the MK0703A and SHT31 sensors on the heart
rate board, respectively. The entire system runs in an orderly
manner under the control of the main controller STM32F405G,
which is based on the arm-cortex4 kernel and integrates a
DSP module. In addition, a Micro-USB interface and SD card
module are utilized for program debugging and data storage,
respectively. The whole system is powered by a lithium battery
(3.7 V, 1800 mAh) and supplies power to each module through
a voltage conditioning circuit.

B. Feature Extraction of Wearable Sensing Wristband
Data

Audio, activity, and heart rate data have been gathered from
the newly designed wearable sensing wristbands. However,
due to the presence of noise and external environmental
interference in the original signals, direct utilization of the
signals for analysis and processing is challenging. Therefore,
feature extraction is carried out using the collected data from
the wearable sensing wristbands for subsequent analysis and
building models.

1) Audio Feature Extraction: The audio processing flow is
shown in Fig. 3. In the field of speech signal processing,
the preprocessing techniques for speech signals collected
in a natural environment mainly include digital discretiza-
tion, framing, preemphasis, and windowing. The WM8978
encoding and decoding chip for wearable sensing wristbands
has completed the digitization of the audio signal using an
internal ADC converter, and its sampling frequency is set
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Fig. 3. Audio data processing flow on wearable sensing wristbands.

to 8 KHz to ensure that the audio signal is not distorted.
In addition, preprocessing methods, such as framing, preem-
phasis, and windowing, are embedded into wearable sensing
wristbands. Considering the limited computing power of the
devices and privacy protection concern, only eight audio
features of short-term energy, entropy, formants (including five
values), and brightness [23], [24] are extracted online and real
time on wearable sensing wristbands.

2) Activity Features Extraction: We have collected activity
data from wearable sensing wristbands, with a sampling
frequency of 85 Hz. The activity data are mainly generated
through wrist motion, which includes the 3-D spatial data
of the three-axis gyroscope and the three-axis accelerometer.
To facilitate feature extraction, we use the synthetic accelera-
tion and synthetic angular velocity scheme
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where ai and qi are the synthetic acceleration and synthetic
angular velocity at the i th moment, respectively, and ax

i , ay
i ,

and az
i represent triaxial (x-, y-, and z-axes) accelerometer

readings. qx
i , q y

i , and q z
i represent triaxial (x-, y-, and z-

axes) angular velocity readings. The original data of synthetic
acceleration and synthetic angular velocity are processed
by sliding windows, and each window contains 256 sam-
pling points. To better capture the activity state and remove
abnormal data, adjacent windows overlap by 50%. From the
data within each window, time-domain features are computed
and frequency-domain features are simultaneously extracted
from the transformed frequency-domain sequences using fast
Fourier transform (FFT). We have also calculated the signal
amplitude area (SMA), which is the sum of the areas enclosed
by the acceleration values of the three axes (x , y, z). Details
of the features in the time and frequency domains are shown
in Table I. The shape feature value is the 2-D area formed by
FFT results. The shape statistics are defined as follows:
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where S =
∑N

i=1 C(i), C(i) is the power spectral density
(PSD) magnitude for the i th frequency bin. In this article,

TABLE I
43 TIME- AND FREQUENCY-DOMAIN FEATURES OF ACTIVITY DATA

“ang_shape_skew” represents the shape skewness feature of
the angular velocity.

3) Heartrate Feature Extraction: Changes of heart rate will
reflect both altered physical and psychological states. There-
fore, the calculation of heart rate is particularly critical.
The MK0703A module for wearable sensing wristbands uses
photoplethysmography (PPG) signals to calculate the heart
rate value in real time. In this study, eight features are
extracted from heart rate data, including mean, variance,
standard deviation, mode, maximum, minimum, range, and
first-order difference. The calculation of various features is
illustrated as follows:

mean =
1
N

N∑
n=1

Sn (6)

var =
1

N − 1

N∑
n=1

(Sn − mean)2 (7)

diff =
1

N − 1

N−1∑
n=1

|Sn+1 − Sn| (8)

range = max − min (9)

where Sn represents the heart rate at nth time and N represents
the length of a segment of data.

C. Emotion-Sensing-Graphs Model
The categories of emotional experience for major depres-

sive patients include depressed mood, feeling sad, loss of
pleasure, feeling empty, irritable mood, inappropriate guilt,
and feelings of worthlessness in the DSM-IV [25]. According
to Mikels’ emotion wheel, there are eight basic emotions.
Excitement, awe, contentment, and amusement belonged to
the positive emotions are distributed in the left semicircle,
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Fig. 4. Overall framework of identifying the levels of changes in depressive symptoms.

and fear, sadness, disgust, and anger belonged to negative
emotions are distributed in the right semicircle. Moreover,
an individual’s emotions can be expressed in their voice,
behavior, and physiological changes [26], [27], [28], [29].
Therefore, inspired by this, we have analyzed changes in
multimodal features to identify the activity features associated
with emotions based on emotion data from healthy controls
and thus incorporated subjects’ emotions into modeling. The
framework of ESG-GCN model is presented in Fig. 4.

1) Emotional Recognition: Generally, patients with depres-
sion show low emotion, decreased interest in things, and
emotional instability. Emotional recognition is helpful for
screening and treating depression. In this study, we have
analyzed changes in multimodal features in healthy controls
and patients with depression, as well as in patients with
depression before and after a course of treatment. For healthy
controls, the emotion states of the whole day are recorded
in the experiment. In this way, we find that audio features
and activity features, namely, audio short-term energy and
angular velocity shape skewness (“ang_shape_skew”), have
significant changes before and after a course of treatment.
These two features of healthy controls and patients also have
a consistent trend. Therefore, we can infer that the short-term
energy and angular velocity shape skewness have a direct
relationship with the patient’s emotions. However, the values
of audio short-term energy fluctuate in a small range, and it is
difficult to distinguish the emotion states. The activity feature
for “ang_shape_skew” is determined to mark the emotional
state of an emotional unit of the subjects. Human emotions
are very complicated, so it is difficult to accurately identify
the fine-grained emotional states of patients by a feature.
Moreover, according to Mikels’ emotion wheel, there are pos-
itive and negative polarities in emotions. Positive emotions are
distributed in the left semicircle, while negative emotions are
distributed in the right semicircle. Therefore, in our research,
emotions are divided into two categories, namely, positive and
negative emotions.

2) Emotion-Sensing-Graphs Construction: In this study,
eight audio features, 43 activity features, and eight heart
rate features are extracted. Although high-dimensional features
implicitly provide more information, there are also many

redundant features. In addition, the feature dimension is too
high, while unnecessary noise interference can be introduced
so that the performance of the model is worsened. There-
fore, we apply PCA to fuse multimodal features and select
low-dimensional features of audio, activity, and heartrate that
are correlated to depression. Since the patient’s emotions are
constantly changing, the data are divided into intervals of every
10, 20, or 30 min. We then determine the emotional states
for each interval. This approach allows us to build emotion-
sensing-graphs based on the relationship between the changes
and evolution of emotions and depression.

According to the characteristics of the experimental data,
we define an undirected emotion-sensing-graph G I G :=

(V, E, H), where V is the set of nodes, namely, an emotional
unit is regarded as a node, E is the set of edges between
nodes, and H is the features of the nodes. The network
topology of graph G I G is defined by the adjacency matrix
A∈R|V |×|V | where Au,v = 1 if euv∈E else Au,v= 0. Currently,
three types of measures, such as Pearson correlation, k-nearest
neighbor (KNN), and distance-based rules, are applied to
represent the connection relationships of graphs. In this work,
the relationship among emotions is measured by Pearson
correlation methods. We apply an exponential function to scale
the elements. According to Mikels’ emotion wheel, adjacent
emotions are similar to each other, while opposite emotions are
opposite to each other. We have added an emotional guidance
item where the same type of emotions will increase the con-
nection weight of emotion-sensing-graphs. In order to obtain
a clearer indication of an individual’s emotional of changes
and connection structure throughout the day, thresholds are
applied to select the connection weights. These are based on
the following expressions:

∂ (u, v) = sim (u, v) + (−1)(γ (E(u),E(v))) ϕ (10)
sim (u, v) = exp (− (1 − ρ (u, v))) (11)

Au,v =

{
1, if ∂ (u, v) ≥ k
0, otherwise

(12)

where ρ(u, v) is the correlation coefficients between two
emotional nodes u and v, the term γ is the Kronecker
delta function, E(u) and E(v) are the emotional states of
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Fig. 5. Architecture of ESG-GCN model.

emotional units, and ϕ is the emotional similarity coefficient.
In particular, the threshold k should satisfy a moderate positive
correlation among emotion nodes and maintain a moderate
connection of emotion-sensing-graphs.

3) Emotion-Sensing-Graphs Learning: Depression can often
reoccur after treatment, and it is difficult for doctors to mon-
itor the patient’s state over time. Therefore, monitoring and
assessment for the status of patients through wearable sens-
ing wristbands facilitates their treatment and prevents further
deterioration. In this article, we have developed emotion-
sensing-graphs GCN model (ESG-GCN) to assess the patient’s
depression levels. The basic framework of the learning model
is shown in Fig. 5. One of the key components for a day’s
emotions is how to learn the relationship and the change
of emotions. By now, we have established emotion-sensing-
graphs to describe the relationship among emotions. Therefore,
the structures among emotional nodes and the features of
emotional nodes can be analyzed by spectral graph convolution
[30]. Spectral graph convolution decomposes the graph signal
x ∈ RN in the spectral domain and then applies a spectral
filter gθ on the spectral component to define convolution

gθ x ≈

K∑
k=0

θ ′

k Tk
(
Lsym

)
x (13)

where x ∈ RN is the signal on graph, gθ is a spectral filter,
⊙ represents the convolution operation, Tk is the Chebyshev
polynomials, θ ′

k is Chebyshev coefficients, and Lsym is the
symmetric Laplacian.

Given an emotion-sensing-graph G, we can calculate its
adjacency matrix A and degree matrix D ∈ RN×N . Kipf and
Welling [31] improved the above formula and limited K to 1,
which simplifies to

gθ x ≈ θ
(
I + Lsym

)
x = θ Lx (14)

where I represents an identity matrix. In order to enhance the
numerical stability of model training, L is normalized

H (l+1)
= δ

(
D−

1/2L D−
1/2 H (l)W (l)

)
(15)

where H (l)
∈RN×F is the matrix of activation in the lth

layer, H (0) is the node input features, and δ is an activation
function. In this study, we select the rectified linear unit
(ReLU) function. In order to fully mine the information of
emotion-sensing-graphs, multilayer GCN networks have been
applied to build learning models. The training model consists
of three GCN layers

fi = Âi ReLU
(

Â(i−1) H (i−1)W (0)
i

)
W (1)

i , i = 1, 2, 3 (16)

where Â = D−
1/2L D−

1/2 is a symmetric adjacency matrix,
W (0)

i is the weight matrix from the input layer to the hidden

Fig. 6. Experimental process for hospitalized patients with depression.

layer, and W (1)
i is the weight matrix from the hidden layer to

the output layer. Through the three-layer GCN models, the key
information of emotion-sensing-graph has been learned. How-
ever, in order to obtain more information related to depression,
we apply the max-pooling operation on the updated emotion-
sensing-graphs learned from each layer of ESG-GCN model
and then concatenate the pooled features. Finally, the fully
connected layer is employed to identify the depression
levels.

The quality of a model is usually evaluated by precision,
recall rate, and F1-score where the calculation formulas are
defined as follows:

Precision =
TP

TP + FP
(17)

Recall =
TP

TP + FN
(18)

F1 − score = 2
Recall × Precision
Recall + Precision

(19)

where TP is true positive, FP is false positive, and FN is false
negative.

D. Study
1) Subjects: In this study, we have recruited 57 hospitalized

patients with depression, with an average age of 16.4 ±

3.29 years, from the Fourth People’s Hospital of Chengdu
in China. In addition, 21 healthy individuals with an average
age of 19.8 ± 1.89 years have been selected from a local
university to serve as a control group. Patients are diagnosed
by an experienced psychiatrist according to DSM-V criteria.
All subjects have provided informed consent and signed the
agreement.

2) Support Assessment: Multiple questionnaires are used to
evaluate the severity of depressive symptoms in both patients
with depression and healthy controls. The HAMD rating scale
[32] is utilized to assess the severity of depressive symptoms
in patients. The patient health questionnaire (PHQ) [33] serves
as a straightforward and effective means of screening for
depression. It consists of a total of nine items and participants
selected the answer that best reflected their feelings in the
past two weeks. The beck depression inventory (BDI) ques-
tionnaire [34] is employed to determine whether participants
are depressed and the severity of their depression. Finally, the
Center for Epidemiological Studies Depression (CES-D) Scale
[35] is specifically designed to assess the frequency of current
depressive symptoms, with an emphasis on depressive mood or
affect. The use of multiple questionnaires enables a more com-
prehensive assessment of depressive symptoms in the study.

Authorized licensed use limited to: University of Electronic Science and Tech of China. Downloaded on February 02,2024 at 01:39:03 UTC from IEEE Xplore.  Restrictions apply. 



YANG et al.: USING WEARABLE AND STRUCTURED EMOTION-SENSING-GRAPHS 3643

TABLE II
DESCRIPTIVE ANALYSIS (MEAN ± SD)

3) Study Setup: Subjects in this study include hospitalized
patients with depression and healthy controls. Detailed study
procedures and equipment usage are explained to them, and all
procedures are conducted by professional psychologists. Prior
to the study, subjects are given a preliminary interview by the
researchers to obtain an initial evaluation. The experiments
are approved by the Ethical Committee of the University of
Electronic Science and Technology of China. The experimen-
tal steps of hospitalized patients with depression are shown in
Fig. 6. At the beginning of the study, each subject comes to
a quiet room, and a professional guides them the test details
and demonstrates how to wear the wristband. Next, the subject
wears the wristband and remains silent for 2 min in order
to collect baseline data. During hospitalization, patients with
depression wear the wristbands for three or more days to
record data. Since there is little change in the status of healthy
controls, we only need to collect data two or three times. For
the healthy controls, some variables are controlled such as
no extensive activity and no excessive strenuous exercise for
the healthy subjects on the day of collection. These factors
ensure to some extent that data are collected from patients with
depression and healthy control groups in a basically consistent
environment. In addition, their emotional states throughout the
day are recorded for the healthy controls. On each individual
day, the subjects correctly wear the wristband from 8:00 A.M.
to 10:00 P.M. and complete an activity log table. The inter-
val between two sessions is about a week. Correspondingly,
a series of questionnaires are filled out to record changes in
subjects’ psychological state. At each measurement, subjects
are asked to complete questionnaires, including PHQ, BDI,
and CES-D.

III. EVALUATION AND ANALYSIS

A. Descriptive Analysis
The description of age, average inpatient days, and clinical

characteristics is shown in Table II. For Time 1, all the
57 subjects are assessed. For Times 2 and 3, 24 and 19 patients,
respectively, have completed the questionnaire during hospi-
talization. For Time 4, due to the impact of COVID-19, only
39 patients are assessed. In addition, 21 healthy subjects have
participated in our control trials. Paired sample t-tests show
significant differences between before and after the course of
treatment during hospitalization on the scores of PHQ (t = 6.4,
p < 0.001), BDI (t = 4.9, p < 0.001), and CES-D (t = 5.9,
p < 0.001). It can be seen from Table I that after a course

Fig. 7. Audio short-time energy for hospital admission and discharge of
patients with depression.

Fig. 8. “ang_shape_skew” for hospital admission and discharge of
patients with depression.

of treatment, the PHQ scores of patients with depression
decrease, which also indicates that the depressive symptoms
of patients are improved to a certain extent.

B. Emotional Recognition Analysis
1) Comparison of One-Day Data for Patients With Depres-

sion: In Figs. 7 and 8, the features of audio short-time energy
and “ang_shape_skew” for the hospital admission and dis-
charge of patients with depression are compared. In order
to clearly investigate the changes of multimodal features,
five patients whose PHQ scores do not improve after a
course of treatment are not shown in the figure. Due to
small technical error, the audio data of two patients are
not captured, so only the audio features of 32 patients with
depression are analyzed. We can clearly see from Fig. 6 that
audio short-time energy (p = 0.005) at hospital discharge for
depressed patients is generally high, and its proportion reaches
81%. The audio short-time energy represents the energy of
the audio signal, and it can easily distinguish whether the
patients have sound signals. In addition, we can conclude that
the “ang_shape_skew” (p = 0.0002) for hospital discharge
of patients is almost reduced and its proportion reaches 82%.
The feature represents the shape statistical features of PSD
for angular velocity. This might indicate that patients with
depression are more emotionally stable and calm after a
course of treatment. Therefore, the features of audio short-time
energy and “ang_shape_skew” have significant changes with
the remission of depressive symptoms. This also shows that
multimodal wearable sensing devices we developed are effec-
tive in tracking and monitoring the changes of depression
symptoms.

2) Analysis of Emotional Changes for Patients With Depres-
sion: In Fig. 9, the mean of “ang_shape_skew” feature for all
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Fig. 9. Comparisons of “ang_shape_skew” for hospital admission and
discharge of patients with depression and healthy controls.

Fig. 10. Changes of positive emotions for hospital admission and
discharge of patients with depression.

patients before and after a course of treatment and healthy
controls is compared. As can be seen from the figure, when
patients are first hospitalized, the mean of “ang_shape_skew”
feature is higher. After a course of treatment, the mean of
“ang_shape_skew” features for patients presents a decrease.
Moreover, we can also clearly find that the average value of
“ang_shape_skew” is at a lower level in healthy controls. Thus,
from the statistical significance, we can conclude that the mean
of “ang_shape_skew” is lower when positive emotions are
the main counterpart, while the mean of “ang_shape_skew” is
higher when patients’ negative emotions increase. In Fig. 10,
the 10-min data are defined as an emotional unit and we have
analyzed the emotional changes of patients with depression
throughout the day before and after a course of treatment.
As shown in the figure, the proportion of positive emotions
throughout the day shows an upward trend and the proportion
of patients reaches 82%. This also indicates that the negative
emotions of patients with depression gradually decrease with
the relief of depressive symptoms.

C. Analysis of Emotion-Sensing-Graphs
In Fig. 11, emotion-sensing-graphs of hospital admission

and discharge for patients with depression and health controls
are compared. As can be seen in Fig. 10, the same emotions
are more closely linked to each other. Concurrently, we can
find that the numbers of positive emotion nodes for patients
with depression after a course of treatment and healthy con-
trols have increased in the emotion-sensing-graphs. The results
also show that negative emotions for patients with depression
occupy more time in a day before a course of treatment. This
may be associated with patients with depression being in a
poor mood or often in a quiet state. Table III also indicates that
the average degree (t = −2.41 and p = 0.023) and proportion
(t = −2.82 and p = 0.009) of positive emotion nodes for
patients with depression before and after a course of treatment
have increased significantly. Moreover, the healthy controls

Fig. 11. Emotion-sensing-graphs. (a) Hospital admission for patients
with depression. (b) Hospital discharge for patients with depression.
(c) Healthy control. (Red nodes represent negative emotions; green
nodes represent positive emotions.)

TABLE III
POSITIVE EMOTION CHANGES FOR EMOTION-SENSING-GRAPHS

(MEAN ± SD)

Fig. 12. Framework of depression levels assessment for ESG-GCN
model.

have a higher degree of connectedness of positive emotion
nodes and positive emotion nodes are the main component in
the emotion-sensing-graphs. Therefore, the emotion-sensing-
graphs can, to some extent, reflect the levels of depressive
symptoms in patients with the relief of depressive symptoms.

D. Evaluation of Depression Symptoms
1) Evaluation Model of Emotion-Sensing-Graphs: The

framework of an emotion-sensing-graph learning model is
shown in Fig. 12. We average the extracted features for
each emotional unit, such as 10, 20, and 30 min, to obtain
features that represent the overall trend emotional state of
each emotional unit. Then, eight audio features, 43 activity
features, and eight heart rate features are spliced to obtain
a high-dimensional vector of 59 features. However, these
features have considerable redundancy and are unsuitable for
use in machine learning models. In addition, the mental state
is often manifested by a variety of social signals such as
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TABLE IV
DIVIDE PHQ LEVELS

audio, activity, and physiology, and it is therefore interesting
to fuse multimodal features for analysis. We apply a PCA
model to obtain ten fusion features. Generally, a person’s
emotional state is directly related to their mental health. Most
severely depressed patients are in a chronically negative mood.
Therefore, according to Mikels’ emotion wheel, we have
constructed three types of emotion-sensing-graphs based on
emotional states and the relationship between them. During
model construction, emotional state labels are integrated into
the emotional node attributes of emotion-sensing-graphs and
the emotional node dimension of the emotion-sensing-graphs
is 11. The GCN model learns both emotional nodes’ infor-
mation and connections among emotional nodes. Thus, the
three-layer GCN model is developed to learn three types of
emotion-sensing-graphs to identify and evaluate the depression
symptom levels in patients.

2) Evaluation of Depression Severity: Subjects filled out
the PHQ questionnaire during this study, and we can judge
the levels of depression based on their scores. During a
course of treatment, the classification of depression levels
can often be ambiguous, particularly when patients experience
significant deviations between moderately severe and severe
depression or when subjective judgments made by patients
with depression are imprecise. Furthermore, we focus on the
changes in symptoms of patients with depression, namely,
the improvement of depression during the treatment process.
Considering the advice provided by psychiatrists and the
inherent challenges of swiftly transitioning from MDD to a
state of no depression, we propose a simplified classification
approach. Depression levels are categorized into two classes:
Scores of 0–14 represent no depression or mild depression,
15–27 as clinical MDD. In Table IV, we divide depression
levels into these two classes.

In this study, considering the synchronization and integrity
of audio, activity, and heart rate data, we have, respectively,
obtained 153 emotion-sensing-graphs with emotional units
of 10, 20, and 30 min for 57 patients with depression and
21 healthy controls. Therefore, a total of 459 emotion-sensing-
graphs are used to establish the model. We then develop the
ESG-GCN model to identify the changes in the symptoms of
patients with depression. The training model consists of three-
GCN layers, where the feature dimension of input variable for
the first GCN layer is 11, the dimension of middle layer is
32, and the dimension of the third GCN layer is determined
as 20. In addition, the learning rate is 2e−4 and the number
of iterations is 1400. To avoid overfitting and improve the
performance of the training model, tenfold cross validation is
adopted. The dataset is randomly divided into ten parts, with
nine parts of them taking turns as training data and one part
as testing data for experimentation. Therefore, the training and
testing datasets, respectively, are 413 and 46 emotion-sensing-
graphs at each experiment. The performance of models for
each experiment is presented in Table V. It can be seen that

Fig. 13. Confusion matrix for classification of depression levels.

except for two experiments, the precision, recall, F1-scores,
and accuracy of ESG-GCN model on the test set exceed 0.8 for
each other experiment. Furthermore, the standard deviation
of the tenfold cross validation is 0.05. The performance
indicators of the model do not fluctuate significantly in each
experiment. This indicates that the model has a certain degree
of effectiveness and stability.

In Fig. 13, the confusion matrix of the emotion-sensing-
graphs learning model is drawn. It can be seen from the
classification results that the learning model can effectively
identify the changes in symptoms of patients with depression.
Concurrently, we can conclude that there is a corresponding
relationship between depression and the multimodal data of
audio, activity, and heart rate. Hence, this shows that we can
use multisensing wearable wristbands to objectively assess the
depression levels of patients.

In order to build a reliable prediction model of depres-
sion severity, six machine learning models, which are
XGBoost RandomForest, DecisionTree, LogisticRegression,
KNeighbors, and Naive Bayes (Gaussian), are trained. The
performance parameters of six models can be seen in Table VI.

From Table VI, we can find that the precision (0.83 ±

0.05), recall rate (0.82 ± 0.05), F1-scores (0.82 ± 0.05), and
validation accuracy (0.83 ± 0.05) of ESG-GCN model are
the best, and the stability of the learning model is also more
prominent. However, the precision and accuracy of XGBoost,
RandomForest, DecisionTree, Naive Bayes (Gaussian), and
LogisticRegression models are about 0.6. The KNeighbors
model is not suitable for the depression data in this study.
Therefore, emotion-sensing-graphs containing the changes
of nodes (emotions) and the mutual influence relationships
among nodes (emotions) are helpful to improve the model
performances for depression data collected naturally over a
long period of time. Simultaneously, these results also show
that the ESG-GCN model is effective to track the change of
depression levels.

In Table VII, the five emotion-sensing-graph schemes are
applied to the ESG-GCN model to compare the performances.
As seen from the table, the performances of the models
built with emotion-sensing-graphs for 10, 20, or 30 min as
emotional units are not outstanding. In addition, the tabular
results show that the fusion training of three types of emotion-
sensing-graphs can significantly improve the performance of
the model. Concurrently, we can also find that the precision
(0.83 ± 0.05), recall rate (0.82 ± 0.05), F1-scores (0.82 ±

0.05), and validation accuracy (0.83 ± 0.05) of the model
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TABLE V
PERFORMANCE OF THE ESG-GCN MODEL FOR TENFOLD CROSS VALIDATION

TABLE VI
PERFORMANCE OF DIFFERENT MODELS

TABLE VII
PERFORMANCE OF MODELS FOR DIFFERENT

EMOTION-SENSING-GRAPHS

established by three types of emotion-sensing-graph with
emotional guidance are the highest. Therefore, the results
show that emotion-sensing-graphs with emotional guidance
play an important role in the monitoring of change in patients’
condition during hospitalization. This also indicates the effec-
tiveness of detecting changes in depressive symptoms from the
perspective of emotional status.

E. Discussion
In recent years, research on depression recognition based

on audio signals has received widespread attention. By ana-
lyzing various audio features, the emotional and mental health
status of individuals can be objectively evaluated, providing
a new approach for early identification and intervention of
depression. Some studies have found that the speech of
patients with depression often exhibits characteristics of low
energy, lack of expressiveness, and negative emotions. In this
study, we have found that the short-term energy of audio
is an upward trend after a course of treatment. This is
also consistent with the findings of some previous studies.
For example, earlier studies have also found a correlation
between levels of depression and changes in audio features,
such as reduced pitch range, loudness, and energy dynamics
[36]. In our research, we have also found that the activity

features of “ang_shape_skew” show a significant downward
trend with the remission of depressive symptoms. It may also
be related to the reduction of abnormal mood for patients
with depression after a course of treatment. For example,
some research has shown that adolescents with depression
had significant fluctuations in behavioral expression, such as
emotional irritability, irritability, impulsivity, and disobedience
to teachers and parents [37], [38], [39]. Therefore, features
of audio and activity may become important indicators for
analyzing and observing changes in depressive symptoms and
this also indicates that we can track the treatment process of
patients with depression by monitoring changes in audio and
activity data collected by wearable wristbands.

In this study, we construct individual’s emotion-sensing-
graphs based on emotions. From the results, it can be seen
that there are significant differences in emotion-sensing-graphs
not only among patients before and after a course of treatment
but also between the healthy control groups and patients. This
also indicates that emotions can serve as important reference
indicators for distinguishing depression and for tracking the
changes in symptoms of patients with depression before and
after a course of treatment. Usually, an individual’s psycholog-
ical states are easily detected based on their emotional states
in real life. For example, long-term negative emotions, such as
sadness, pain, inferiority, and worldliness, are largely related
to psychological disorders such as depression. Furthermore,
it is well known that depression is a common emotional
disorder mental illness, and clinically, prolonged low mood
and unhappiness in real life can be observed. In addition, it can
be seen from the model training results that the recognition
model of changes in depressive symptoms constructed by
emotion-sensing-graphs with emotional guidance and emo-
tional label integration has a better performance compared
to several machine learning models in this article. Compared
to machine learning that only relies on feature attributes,
emotion-sensing-graphs that contain changes of emotional
state, emotional nodes at different time periods, and rela-
tionships among emotional nodes have more comprehensive
depression information, which may play an important role in
improving the performance of the model. Therefore, analyzing
and identifying depression in the form of graph structure based
on prior knowledge of psychology and emotional models may
be a new approach for wearable technology to assist in the
diagnosis and treatment of depression.

F. Conclusion
In this study, we have developed a wearable sensing wrist-

band to dynamically monitor and track the treatment process
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of patients with depression. The wearable sensing wristbands
integrate audio, accelerometer and gyroscope, and heart rate
sensors. Using this system, we have conducted a comparative
experiment between hospitalized patients with depression and
healthy controls and developed feature extraction and com-
parative analysis on the multimodal data. We find that there
is a significant increase in audio short-term energy, while
the activity feature of “ang_shape_skew” shows a decreasing
trend after a course of treatment. A person’s emotions are
directly related to their behavior and mental state. We define
subjects’ daily data as three emotional units and identify
whether each emotional unit’s emotional state is positive
or negative. Subsequently, in order to further explore the
evolution of emotions and the relationship between emotions,
emotion-sensing-graphs guided by Mikels’ emotion wheel are
established using the correlation among emotions. The results
show that the same emotions are more closely connected and
the average degree and proportion of positive emotion nodes
after a course of treatment have increased significantly in
emotion-sensing-graphs. To further identify change in each
patient’s condition, we have developed the ESG-GCN model.
The obtained results have indicated that the accuracy and sta-
bility of our designed model have good levels of performance
for the assessment of depression severity. It is also found that
the fusion training of three types of emotion-sensing-graphs
with emotion labels can further improve the performance
of the model. This also indicates that emotions play an
important role in the recognition of depressive symptoms.
In future research, detailed experiments will be performed
on recognition, assessment, and monitoring of depression to
improve the reliability of the proposed system.
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