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Abstract—We consider a point-to-point multiple-input-single-
output (MISO) system where a receiver harvests energy from a
transmitter. To achieve high-efficiency wireless power transfer
(WPT), the transmitter performs energy beamforming by using
an instantaneous channel state information (CSI). The CSI is
estimated at the receiver by training via a preamble and fed back
to the transmitter. In this paper, we address the key challenge
of balancing the time resource used for channel estimation and
WPT to maximize the harvested energy and also investigate the
allocation of energy resource used for WPT. First, we consider
the general scenario where the preamble length is allowed to
vary dynamically depending on channel conditions. The optimal
preamble length is obtained online by solving a dynamic program-
ming (DP) problem. The DP problem is proved to reduce to an
optimal stopping problem. The optimal policy is then shown to
depend only on the channel estimate power. Next, we consider the
scenario in which the preamble length is fixed by an offline op-
timization. Furthermore, we derive the optimal power allocation
schemes. For the dynamic-length-preamble scenario, the power
is allocated according to both the optimal preamble length and
the channel estimate power, while for the fixed-length-preamble
scenario, the power is allocated according to only the channel
estimate power. By numerical simulations, our results show that
with optimal power allocation, the energy harvested by using the
optimized fixed-length preamble is close to that harvested by using
a dynamic-length preamble, hence allowing a low-complexity yet
close-to-optimal WPT system to be implemented in practice.

Index Terms—Wireless power transfer, energy beamforming, re-
source allocation, dynamic channel estimation, dynamic program-
ming, power allocation.

I. INTRODUCTION

R ECENTLY, wireless power transfer (WPT) is gaining
more and more attention from both academia and in-

dustry. Although the traditional near-field inductive coupling
WPT and resonant coupling WPT have high efficiency, they
can only transfer power over a short distance [1]. Furthermore,
these WPT methods may have limited support for power mul-
ticast or mobility of the power receiver, hence restricting their
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application potential. In comparison, far-field WPT via radiated
electromagnetic (EM) waves can transfer power to multiple
static or moving receivers over a longer distance (typically
several to tens of metres), and thus enables various engineering
applications [2]. In particular, the far-field WPT is promising
to address energy and lifetime bottlenecks for power-limited
devices in wireless networks [3]–[5]. For example, in an energy
harvesting sensor network, sensors can harvest energy from the
ambient or dedicated EM waves to power themselves for data
transmission by various schemes, such as wireless compressive
sensing proposed in [6].
Since EM waves decay quickly over distance, they have to

be concentrated into a narrow beam via multiple antennas to
achieve efficient power transfer. This is referred to as energy
beamforming [7], which was first considered for simultaneous
wireless information and power transfer (SWIPT) in multiuser
downlink in [7]. Assuming perfect channel state information
(CSI) at the transmitter, [8] investigated the joint optimization of
transmit power control, information and power transfer sched-
uling; [9] studied resource allocation algorithms for SWIPT in
broadband wireless systems.
With the assumption of perfect CSI, the uplink wireless

information transfer (WIT) powered by downlink WPT was
considered in [10], [11]. A harvest-then-transmit protocol was
proposed in [10], where all users first harvest the wireless
energy in the downlink and then send independent information
in the uplink by time-division-multiple-access (TDMA). The
sum throughput was maximized by jointly optimizing the
time allocation for the downlink WPT and uplink WIT. [11]
proposed a wireless-powered communication network with
a full-duplex access point (AP) and multiple users. The AP
implements full-duplex operation through two antennas: one
for broadcasting wireless energy to users in the downlink and
one for simultaneously receiving uplink information from users
via TDMA. Under an energy causality constraint, the authors
investigated the problems of maximizing the sum throughput
and minimizing the total time required for each user sending
given amount of data back to the AP.
The knowledge of CSI is an essential prerequisite for both

energy beamforming and information decoding. For instance,
[8] showed that the rate-energy tradeoff in SWIPT systems
degrades as the CSI accuracy decreases. Typically, the receiver
needs to perform channel estimation and feed back CSI to
the transmitter before power transfer. In practice, perfect
CSI at the transmitter is not available due to various factors
such as time-varying channel, inaccurate channel estimation,
quantization error and feedback error. When the channel un-
certainty is considered as deterministic and norm bounded,
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robust beamforming design was studied in [12] for a mul-
tiple-input-single-output (MISO) system with SWIPT, in [13]
for a two-way relay system with SWIPT, and in [14] for secure
communication in a multiuser SWIPT system. In [12], the
harvested energy was maximized for the worst-channel real-
ization, while guaranteeing that the information rate is above
a threshold for all possible channel realizations. However,
the actual worst case may occur with a very low probability.
Hence, this worst-case approach may be overly conservative
and therefore, leads to unnecessary performance degradation.
When the CSI errors are instead considered as Gaussian random
variables, the energy beamforming was studied in [15] for a
SWIPT multicast system, and in [16] for a single-user MISO
system. [15] proposed a stochastic beamforming scheme to
achieve more balanced outage-constrained achievable rates
among multiple information receivers. [16] derived the optimal
time duration which maximizes an upper-bound rate of uplink
WIT powered by downlink WPT. Recently, the energy beam-
forming with one-bit feedback was also studied in [17] for
multiuser multiple-input-multiple-output (MIMO) WPT sys-
tems. It proposed a channel learning approach, which requires
each user to send back one bit to the transmitter to indicate
the change of the harvested energy between the present and
previous feedback intervals.
Energy beamforming based on more accurate CSI contributes

to higher efficiency of power transfer. The receiver, however
incurs significant time (overhead) to obtain the accurate CSI.
Longer time duration for channel estimation leads to more accu-
rate CSI available at the transmitter, but also shortens the WPT
duration, which may lead to less harvested energy. To maximize
the harvested energy, there is thus a design freedom, namely
the time spent for estimating the channel. Moreover, to improve
the overall system energy efficiency, the amount of energy used
for WPT should be optimized, for example, less energy is used
for severely-fading channels. Nevertheless, to the best of our
knowledge, there does not exist any work that takes into account
the preamble overhead and energy allocation for WPT via en-
ergy beamforming.
We consider a frame-based MISO system in which the trans-

mitter performs energy beamforming using imperfect CSI fed
back from the receiver. The frame is divided into four phases
as shown in Fig. 1: the channel estimation (CE) phase, the feed-
back phase, the wireless power transfer (WPT) phase, as well as
the general energy utilization (EU) phase. In this paper, we focus
on efficient wireless power transfer; and the particular use of the
harvested energy, such as for uplink WIT or sensing [10], [16],
[18] is not considered in this work. The feedback is assumed to
be error-free and take negligible time, and is thus ignored in the
analysis. The time duration for the EU phase is fixed. Unlike
previous work on robust beamforming in [12]–[14], we maxi-
mize the harvested energy by balancing the time durations be-
tween the CE phase and the WPT phase, as well as allocating
transmit power for the WPT phase.
To maximize the harvested energy, we consider two

scenarios, where we employ dynamic-length preamble or
fixed-length preamble. Given a channel estimate, we first
derive the optimal energy beamformer, which applies to both
scenarios. Then, we adjust the time duration for the CE phase.

Fig. 1. Frame Structure.

For the first scenario, the preamble length is allowed to vary
dynamically depending on channel conditions. The optimal
online preamble length is obtained by solving a dynamic pro-
gramming (DP) problem. The DP problem is proved to reduce
to an optimal stopping problem. The optimal policy is then
shown to depend only on the channel estimate power. That is,
if the channel estimate power is less than a time-dependent
threshold, the receiver continues to perform CE, otherwise the
receiver stops CE and requests wireless power. For the second
scenario in which the preamble length is fixed for all frames, we
optimize the preamble length offline. Moreover, we adjust the
power allocated for WPT in each frame, for both scenarios. For
the scenario of dynamic-length preamble, the power for WPT is
allocated according to both the optimal preamble length and the
channel estimate power; while for the scenario of fixed-length
preamble, the power for WPT is allocated according to only the
channel estimate power. Numerical results are finally given to
validate our analysis.
The paper is organized as follows. In Section II, we describe

the system model, and give the problem formulations. We study
the optimal energy beamformer in Section III. In Section IV, we
allow the preamble length to vary with frames, and use dynamic
programming to find the optimal preamble length. In Section V,
we fix the preamble length for all frames, and derive the op-
timal preamble length offline. Section VI derives the optimal
power allocation schemes. Section VII gives the numerical re-
sults. Section VIII concludes this paper.

II. SYSTEM MODEL

We consider a frame-based wireless power transfer system,
consisting of a wireless power (WP) transmitter with an-
tennas, a single-antenna receiver that is also known as a WP
receiver, a downlink channel for wireless power transfer from
the WP transmitter to the WP receiver, as well as a feedback
channel to send CSI (and data) from the WP receiver to the WP
transmitter. Hence, the WP transmitter and WP receiver also
serve as the information receiver and information transmitter,
respectively. We assume that the WPT system operates with a
frequency-division-duplexing protocol.
As in Fig. 1, each frame consists of four phases. To focus on

efficient WPT, the time duration for the fourth EU phase is fixed
and not considered in this paper. We assume the time duration
for the CE, feedback and WPT phases in one frame is fixed as
symbol periods, which is normalized to be one second for

convenience. In the first CE phase, the WP transmitter sends
preambles, and the WP receiver performs channel estimation in
an interval of symbol periods. In the second phase, the WP re-
ceiver feeds the CSI back to theWP transmitter within symbol
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periods. In the third WPT phase, the WP transmitter delivers
power via beamforming. TheWP receiver harvests energy from
the radio-frequency (RF) signals.
We assume there is a lossless link for CSI feedback1. For

simplicity, we assume the feedback time . The down-
link MISO channel is assumed to undergo quasi-static flat
Rayleigh fading in each frame, i.e., , where

is the all-zero column vector, and denotes the
channel covariance matrix. We assume that is a full-rank ma-
trix and has equal diagonal elements. The channel is referred as
uncorrelated if , where is the path loss, and
is the identity matrix. The channel may vary independently

from frame to frame.

A. Wireless Energy Beamforming

We assume the time duration for CE and WPT can be di-
vided into time slots, each of which consists of successive
symbol periods2, i.e., . The preambles that consist of

time slots are used to obtain the channel estimate, de-
noted as . In this paper, both and are discrete variables,
while is a constant integer. In the WPT phase, the received
baseband signal in the -th symbol period is written as

(1)

where is the transmitted signal vector, and
is the additive white Gaussian noise. For conve-

nience of analysis, is assumed to be the noise power nor-
malized to the variance of channel coefficients. The channel
coefficients are accordingly considered to have unit variance
in the following analysis. Given channel estimate , we de-
note the beamforming vector as . Then, we have

, where is a scalar that depends on the allow-
able transmit power. The subscript is ignored in the sequel.
Due to the law of energy conservation with efficiency , the

harvested RF-band energy3 in one baseband symbol period, de-
noted by , at the WP receiver is assumed to be proportional
to that of the received baseband signal, i.e.,

(2)

We assumed in (2) that the energy due to the ambient noise
cannot be harvested. For convenience, we also assume
in this paper.

B. Problem Formulation

The WP receiver aims to harvest energy as much as possible
in the WPT phase. Intuitively, longer preambles can increase
the accuracy of channel estimation, and thus increase the effi-
ciency of power transfer, but at the cost of reduced time left for
the WPT phase. We also note that the power of the received
signal depends on the fading condition in one frame. Hence, to

1In practice, the cyclic-redundancy-check scheme with retransmission can be
used to ensure an error-free feedback.
2For simplicity, we assume the number of successive symbol periods is ,

although it is not necessary in practice.
3Note that (2) is the harvested energy for the scenario in which the path loss

is normalized to one and the time duration of symbol periods is normalized
to be one second.

maximize the harvested energy, we first consider two scenarios
with constant preamble power, where we optimize the preamble
length dynamically for each frame or optimize a fixed preamble
length offline. Then we optimize the transmit power for WPT in
each frame, via the power allocation.
1) WPT With Dynamic-Length Preamble: We consider the

scenario where the preamble length is allowed to vary dynami-
cally, i.e., the receiver can decide to perform CE or request WP
at any time slot based on its current channel estimate. We de-
note the beginning of the -th time slot as time instant ,
where . At time instant , the receiver
decides to perform CE or request WP in the first slot. If it de-
cides to request WP at , the transmitter performs WPT in
the first slot without beamforming. Otherwise, the transmitter
sends preambles in the first slot, and the receiver obtains the
channel estimate at the end of the first slot. For the subse-
quent time instant , if the receiver decides to request WP, it
feeds back the channel estimate to the transmitter. Then the
transmitter performs WPT using optimal beamformer
in the next slot. If the receiver decides to continue CE at instant
, the transmitter sends preambles in the -th time slot.
The optimal beamformer will be found in Section III.
In Section IV, we first formulate a dynamic programming

(DP) problem to maximize the harvested energy assuming that
constant transmit power is used for WPT. We define therein the
control space , decision variable and the system state .
We define a policy as a sequence of functions which
maps each system state into a decision at time instant

. The set of all possible policies is denoted as
. Let be the energy harvested in slot with state
and decision . To maximize the expected harvested energy

in all slots, we thus have the following optimization problem

(3)

The expectation is performed over all random variables, specif-
ically the channel and the channel estimates which be-
come available only after the decision of CE or WP is made.
The optimal policy for is obtained in Section IV-C.
In particular, we assume an explicit feedback protocol in

which the receiver feeds back the decision on whether to
continue sending preambles or to stop sending preambles. Al-
though the explicit feedback protocol is difficult to implement
in practice, it allows us to investigate the best possible perfor-
mance under a general setting. We shall see later in Section IV
that it is in fact optimal to feed back once to stop preamble
transmission, resulting into an efficient implicit feedback pro-
tocol, see Remark 1.
Then, we derive the optimal power allocation in

Section VI-A1, which allocates transmit power for WPT
according to both optimal preamble length adapted by using
the optimal policy , and the channel estimate power.
2) WPT With Fixed-Length Preamble: To reduce implemen-

tation complexity, we consider the scenario in which the pre-
amble length is fixed as time slots in all frames, but can be
optimized offline. Then, the WPT phase in each frame consists
of symbol periods, where .
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In Section V, we first maximize the harvested energy as-
suming that constant transmit power is used for WPT, by
optimizing both the preamble length and the beamforming
vector . Specifically, we have the following optimization
problem

(4a)

(4b)

where is the -norm. We will find the optimal solution
(as a function of ) and in Sections III, and V, respec-

tively. Then, we derive the optimal power allocation scheme
in Section VI-B, which allocates transmit power for WPT ac-
cording to only the channel estimate power.

III. OPTIMAL ENERGY BEAMFORMING

In this section, we obtain the optimal beamforming vector
, which shall be used to find the solutions to problem

in Sections IV, V, respectively.

A. Partial or Full Feedback

In practice, it is difficult for the transmitter to obtain full CSI
due to the limited feedback capacity. This motivates us to in-
vestigate the impact of different amount of feedback on energy
beamforming and thus the harvested energy. We let the receiver
selectively feed back only largest channel coeffi-
cients to the transmitter, so as to reduce the feedback amount. If

, it reduces to the conventional full CSI feedback. Let
denote the channel coefficient with the -th largest channel gain.
The receiver quantizes the vector
and the corresponding index set to denote
the selected antennas, and feeds back the coded digital bits to
the transmitter. An additional bits are required for
the feedback of the index set . The parameter is defined
as a metric, namely the feedback dimension, to quantify the
cost/amount of feedback. The transmitter uses only antennas
with index in to perform energy beamforming.

B. Optimal Energy Beamforming

The energy beamforming is performed by using imperfect
CSI at the transmitter. We first obtain the distribution of the
channel conditioned on a general unbiased channel estimate
. We consider the -dimensional feedback of CSI. Define the
estimation error . Let and

be the -dimensional counterparts of channel
covariance matrix and the error covariance matrix , re-
spectively. From (16) in [19], we have the following lemma.
Lemma 1: Let . Assume ,

the error vector , and and are jointly
Gaussian distributed. Given , the vector follows a complex
Gaussian distribution, i.e.,

(5)

where , and
.

From Lemma 1, the conditional correlation matrix is

(6)

Denote the singular value decomposition (SVD) of by
, where
, and . We further have

Lemma 2.
Lemma 2: Assume ,

and and are jointly Gaussian. Given , the optimal beam-
forming vector that maximizes the normalized harvested energy,
is given by

(7)

Proof: The harvested energy in one symbol period in (2)
can be rewritten as

(8)

where is from the fact that conditioned on the channel esti-
mate , the beamformer is fixed and treated as a
constant. Clearly, the is maximized when the beamformer is
the largest eigenmode of .
Using the optimal beamformer in (7), the normalized har-

vested energy is the mean of the largest eigenvalue of
the matrix in (6). The total harvested energy in all re-
maining slots is thus given by

(9)

We have assumed the channel estimate is unbiased, which can
be obtained by the widely-used least-square (LS) channel esti-
mator [20]4. We keep the transmit power for preambles a con-
stant, which implies the effective receive signal-to-noise ratio
(SNR) for CE is only proportional to the preamble length that
is to be optimized. We next derive the optimal beamformer.

C. Optimal Beamformer for LS Channel Estimation

We first describe the optimal design of preambles. We set the
length of preambles as , where . When
the total power for sending preambles is fixed as , it is shown
in [22] that the LS estimation performance can be optimized by
using the preamble matrix as

(10)

where , for . From [20], we obtain
the LS estimate as follows

(11)

4It turns out that the optimal beamformer in Lemma 2 also applies to other
channel estimators such as an linear minimum mean-square-error estimator
(LMMSE, see Section III-D in [21])
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where the length- noise vector . Clearly,
the estimation error is distributed as , where

and .
1) Correlated Channel: From Lemma 1, we state

that given , the channel vector is distributed as
. The condi-

tional correlation matrix yields

(12)

From (7), the optimal beamforming vector is the largest eigen-
mode of in (12).

2) Uncorrelated Channel: From Lemma 1, given , the

channel is distributed as . The con-
ditional correlation matrix is thus rewritten as

(13)

Note that is the sum of a scaled identity matrix and
a rank-one matrix. The eigenvectors can be constructed as fol-
lows: take the normalized as the right eigenvector corre-
sponding to the maximal eigenvalue, and construct other mutu-
ally orthogonal eigenvectors byGram-Schmidt algorithm. From
Lemma 2, the optimal beamformer is

(14)

Associated to the optimal beamformer in (14), the largest eigen-
value of the matrix is

(15)

It is noted that the largest eigenvalue in (15) gives the expected
harvested energy in one symbol period with the channel esti-
mate .

IV. WPT WITH DYNAMIC-LENGTH PREAMBLE

In this section, we consider the scenario where the preamble
length is allowed to vary dynamically depending on the current
channel estimate. To maximize the expected harvested energy,
we first formulate a dynamic programming (DP) problem [23],
which will be shown to reduce to an optimal stopping problem,
and thus can be simplified considerably. Using the optimal DP
policy, we shall derive the optimal power allocation scheme in
Section VI-A.
We assume uncorrelated flat Rayleigh fading channels that

are static in each frame but vary independently among frames.
The extension of the model to more general case of Markovian
channels is more tedious but conceptually straightforward, see
e.g., [24]. Let denote the channel estimate available at time
instant (i.e., the beginning of the -th time slot). As-
suming no priori channel knowledge is available, we initialize
the channel estimate as the mean of , i.e., . We assume
that the receiver adopts an LS channel estimator and performs

full (i.e., -dimensional) feedback5. The optimal beamformer
in (14) for is thus used in this section. We employ the
preamble matrix in (10). For , it is useful
to rewrite the LS channel estimate in (11) as the following re-
cursive equation

(16)

A. Statistical Properties of Channel Estimates

Before formulating the problem and obtaining the solutions,
we first obtain some useful statistical properties. Lemma 3 quan-
tifies the statistical relationship of two adjacent channel esti-
mates, while Lemma 4 shows that the most recent channel esti-
mate provides sufficient statistics for estimating the channel.
Lemma 3: Given , the next channel estimate is dis-

tributed as , where

Proof: Let . From Lemma 1 for , we

have that . From (16) and the

independence between and the noise vector , we obtain
the result after algebraic manipulations.
We take the channel estimate power as a random variable ,

i.e., . From Lemma 3, conditioned on , the
random variable follows the noncentral Chi-Square dis-
tribution with the degree of freedom and the noncentrality
parameter

Moreover, the conditional probability density function (pdf) of
is thus given by [25]

(17)

where is the -th order modified Bessel function
of the first kind. The conditional mean is

(18)

Lemma 4: Given a sequence of LS channel estimates
, the distribution of channel vector condi-

tioned on all channel estimates is simplified as

(19)

which is the Gaussian distribution ,

where .
Proof: See proof in Appendix A.

5With full feedback, the amount of feedback is still acceptable. This is because
in the optimal DP scheme, the receiver needs to feed back only once in each
frame, which will be shown in Theorem 1.
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Lemma 4 suggests that the accuracy of channel estimation
can not be increased by using all available channel estimates,
compared to using only the most recent channel estimate. This
observation will be used to show the structure of the optimal DP
policy (see Theorem 1, later).

B. Problem Formulation

We formulate the optimization problem to maximize the total
expected harvested energy, assuming that the transmitter uses
constant transmit power for WPT. We first make the necessary
definitions.
1) Decision (or Control) Variable: We denote the decision

variable as . The decision space consists of only two el-
ements and , that corresponds to stopping CE (i.e., requesting
WP) or continuing CE, respectively. We initialize .
2) System State: We define the system state as consisting

of (i) which denotes the number of slots used so far for CE,
and (ii) the most recently available channel estimate. Given
and current state , the next state is

(20)

The initial state is with . We
denote the space of all possible state as . From Lemma 4, this
system state is sufficient to obtain the statistics of even if all
priori channel estimates were made available.
3) Policy: Define a policy as a sequence of functions

where is a function that maps the state into the
decision variable in the next time slot, i.e., . We
denote the set of all possible policies as .
4) Reward: Given state and decision , we

denote as the reward, given by the expected har-
vested energy in slot . If , we have from (15) with

that

(21)

and if , then .
5) Dynamic Program and Optimal Policy: To maximize the

total harvested energy, we thus have the optimization problem
given in (3). The optimal policy is given by the func-

tions , i.e., the decision given state , that satisfy
the Bellman’s equation [23]:

(22)

for . Here, is known as the value func-
tion which represents the harvested energy for the last
time slots, conditioned on the current system state . Typically,
the solution is obtained by backward recursion, by first solving
for for slot , then for . The

maximum expected harvested energy with policy is given by
.

C. Optimal Policy

Theorem 1 states that the Bellman’s equation (22) can be re-
duced to an optimal stopping problem, for which a decision is
changed at most from to once and fixed henceforth.
Theorem 1: Any decision sequence of the optimal policy

has the structure

(23)

where . That is, the optimal policy initially
performs only CE for the first slots, then performs only WPT
for the remaining slots.

Proof: See proof in Appendix B.
Remark 1 (Optimality of an Implicit Feedback Protocol):

Theorem 1 implies that the WP receiver only needs to feed
back once, after it decides to request WP. Hence, an implicit
feedback protocol in which the WP receiver feeds back only to
stop preamble transmissions, is sufficient and can be used in
practical implementation6. If there is no feedback received, the
WP transmitter will assume that the decision at the WP receiver
is to continue CE, and thus send preambles continuously.
Theorem 1 allows us to simplify the DP problem and obtain

a solution that can be implemented with low complexity. Be-
fore we obtain the structure of the optimal policy in Theorem 2,
we first state the expected harvested energy under different sce-
narios. Henceforth, we assume the optimal policy is employed.
Given state , if the receiver decides to request WP, i.e.,

, then the expected harvested energy in the remaining
slots is obtained from (9) and (15) as

(24)

where , and .
If the decision is instead , then the expected harvested
energy in the last time slots, under all possible decisions
made for subsequent slots, is

(25)

For the special case in which the receiver decides to continue
CE at time instant and stop CE at
time instant , then from the conditional mean in (18), the
expected harvested energy conditioned on is obtained after
some algebraic manipulation as

(26)

6The WP transmitter will send slightly more preambles, due to the feedback
delay induced by the channel and processing at the receiver and transmitter.
However, the resulting performance degradation is small if the delay is small,
compared to the frame length.
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where
, and .

Now, we state the optimal policy in Theorem 2.
Theorem 2: The optimal policy to Problem depends

only on the channel estimate power, i.e.,

(27)

where the sets (intervals)

and are the solutions to
with respect to the variable .

Proof: From Theorem 1, to obtain the optimal policy for
the original DP problem, if , then ; if ,
it suffices to compare if or results in a larger output of
the value function. Hence, from (21), the value function simpli-
fies as

(28)

for , in a backwardmanner. Specifically,
assuming , if , then the receiver
requests WP with , otherwise the receiver continues CE
with . Hence, to obtain the optimal decision, we have to
solve the equation

(29)

to compare the two terms in (28). From (24), the first term
is a monotonically increasing linear function of only

the channel estimate power . Moreover, the second term
, given in (25), is also a function of only .

This claim is checked by induction based on backward re-
cursion as follows. At time instant , we have

. From (26), the term
is a linear function of . It follows

from (28) that is a piecewise linear function of
. From (25) and the conditional distribution in Lemma

3, we thus obtain that is a function of .
By mathematical induction with decreasing slot index, we have
that is a function of .
Hence, the decision policy depends only on .

Denote the solution(s) to (29) with respect to by
, assuming . The

desired result is obtained.
In general, the state value is of -dimension, and the

complexity of obtaining the optimal policy and implementing it
can be very high. Moreover, the memory required to store the
policy too large. From Theorem 2, however, the optimal policy
can be implemented for each slot by only comparing the channel
estimate power to a scalar value, thus saving complexity in com-
putation and storage of policy. The thresholds can be pre-com-
puted and stored in a lookup table. During online implementa-
tion, the receiver refers to the table to make the decision.

D. Optimal Thresholds

In this section, we derive the optimal thresholds in
Theorem 2 in a backward manner, by solving (29) for

, assuming . At time instant , we
have . Thus, it is optimal
to set . This is because it is always optimal for the
receiver to stop CE at time instant , since
holds with probability one for fading channels.
For , we have .

The (29) for thus reduces to
. Observe that both the left-hand side (LHS)

and right-hand side (RHS) are both monotonically increasing
linear functions of . Hence, the decision policy at this
time instant depends on a single threshold. If

, the threshold is

(30)

where the notation ; and , other-
wise. For the subsequent slots , we
can obtain the thresholds by a numerical search as follows. By
substituting (28) into (25), we note that the RHS of (29) is ex-
pressed in a recursive form

(31)

Hence, it is difficult to obtain a closed-form solution of the
threshold that solves (29). Thus, we let the quantity

take discrete values in the set ,
and search for the closest values(s) in the set that solves (29).
In general, there may be multiple solutions to (29), denoted

as , since the LHS is a monotoni-
cally increasing linear function of , and the RHS is a func-
tion of , which may not be a monotonic function. To get
more insights, we give a numerical example on the thresholds.
Example 1: Let and the noise power
dBm, see the detailed parameter setting in Section VII. The

thresholds are numerically computed and shown in Fig. 2. We
numerically find that the threshold at each time index is al-
ways unique, which can further simplify the decision process
in practice. It is observed that the threshold monotonically de-
creases as the time index increases. This observation is consis-
tent with the intuition that if a channel estimate is good enough
to be acceptable at time for WP to be performed, it should also
be acceptable at time when there will be one more slot
available for the channel estimate to be improved.

V. WPT WITH FIXED-LENGTH PREAMBLE

In this section, we consider the scenario wherein the preamble
length is fixed in all frames. We first derive the optimal pre-
amble length. This corresponds to the case of offline adapta-
tion, in contrast to online adaptation in Section IV where the
preamble length is varied over frames. Based on the optimized
fixed-length preamble, we shall derive the optimal power alloca-
tion scheme in Section VI-B. We assume uncorrelated channel.
We aslo assume that the receiver adopts an LS channel estimator



3572 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 62, NO. 14, JULY 15, 2014

Fig. 2. Threshold over slot index .

and performs -dimensional feedback. See analogous results for
correlated channel, and for an LMMSE estimator in [21].
Using the optimal beamformer in (14), from (9) and (15), the

total harvested energy is rewritten as

(32)

Before giving the result, we define a quantity that depends on
only the number of transmit antennas and the feedback di-
mension as

(33)

It can be shown that increases as either or increases.
In the case of full feedback, i.e., the receiver feeds back to the
transmitter, we have . In independent Rayleigh-
fadingMISO channels, by using the optimal beamformer in (14)
at the transmitter, we have the following theorem.
Theorem 3: Let and be defined as before.

When the channel is estimated by an LS estimator, the optimal
length of preambles for channel estimation is unique and is
given by

(34)

where the notations and are the floor operation and the
ceiling operation, respectively, the quantity

and the function

(35)

Moreover, the corresponding maximal harvested energy
.

Proof: See proof in Appendix C.
Remark 2 (Effect of Feedback Dimension ): Theorem 3 im-

plies that larger feedback dimension leads to more harvested
energy, which is as expected. This is because given , the con-
stant increases as increases, which can be easily shown.
Moreover, we observe that the optimal preamble length also
increases as increases. That is, longer training time is required
to obtain accurate -dimensional CSI and thus high-efficiency
WPT, when more feedback is allowed.
Remark 3 (Effect of Channel Variation on the Harvested En-

ergy): So far, we assume the channel is constant in one frame. In
practice, however, the channel may change, due to the feedback
delay induced by the channel, and processing at the receiver and
transmitter. Here, we investigate the effect of channel variation
on the harvested energy.
For simplicity, we adopt -dimensional feedback and an LS

estimator. Let and be
the channel in the CE phase and the WPT phase, respectively.
We assume that the temporally correlated channels follow a
first-order Gauss-Markov distribution according to

(36)

where the constant is a temporal correlation coeffi-
cient, and is an innovation process. Then, we
have the following lemma.
Lemma 5: Assuming the Gauss-Markov channel-varying

model in (36), the optimal beamformer is . The
harvested energy in the WPT phase is given by

(37)

Proof: Recall that . From (36), we have

(38)

We take the sum of the second and third term in (38) as noise.
Following similar steps in Section III-B and the proof for The-
orem 3, we obtain Lemma 5.
Specially, when the channels are constant in one frame, i.e.,

, the harvested energy reduces to the result in (35) for
. Moreover, we can obtain the optimal training

length for time-varying channels, by using the same proof
scheme as Theorem 3.

VI. OPTIMAL POWER ALLOCATION

Based on the derived optimal preamble length, in this section,
we derive the optimal power allocation schemes for the sce-
nario of dynamic-length preamble and fixed-length preamble,
respectively.
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A. Dynamic-Length-Preamble Based Power Allocation

By using dynamic-length preamble, the preamble length
is typically shorter if the channel condition in one frame is
good, and longer if the channel condition is bad. Intuitively, we
can maximize the harvested energy by adjusting the transmit
power for WPT, according to different channel conditions. In
this section, we derive the optimal power allocation scheme,
assuming the use of the optimal policy for adapting the
preamble length, although our subsequent results does not
depend on the actual policy used.
As in Section IV-A, we take the channel estimate power in

time slot as a random variable denoted by , i.e.,
. Under policy , the preamble length, denoted

by time slots for convenience, is also random. When the re-
ceiver stops the channel estimation procedure at the end of the
-th slot, we denote the corresponding channel estimate power
by , i.e., .
First, we derive the joint pdf of and , denoted

by , upon using the optimal policy . For
convenience, we omit the notation in the sequel. We
denote the joint pdf of and by

. The joint pdf is given
by the following recursive relation

(39)

(40)

for , where is the Gamma function.
Here, is the same as (39) with the argument replaced by

, and is in (17), and (a) is from Lemma 4
and the fact .
1) Optimal Length-and-Channel-Power Aware Power Al-

location: In this section, we consider the scenario in which
the power is allocated according to both the optimal preamble
length and the channel estimate power . We refer to this
scheme as length-and-channel-power aware power allocation
(LCPA). With unit transmit power, the harvested energy is from
(24)

(41)

We use to denote the transmit power for WPT in the
frame with optimal preamble length and channel estimate
power . We assume that can be dynam-
ically allocated, subject to the per-frame transmission power
constraint and the average transmission power constraint

over frames. To maximize the total expected harvested energy,
we have the following optimization problem

(42a)

(42b)

(42c)

for . In (42b), the transmit power
is utilized for WPT only in the last slots.

Define . Here, is the efficiency
of power transfer in the frame with optimal length and channel
estimate power , which will be used as a criterion for ad-
justing the transmit power for WPT among frames. The op-
timal solution can be obtained by a greedy procedure as stated
in Theorem 4.
Theorem 4: The optimal power allocation for Problem

is to allocate as much energy (up to ) to the frame with highest
over all and all , then to the frame with the second

highest , and so on, until the average energy constraint
is satisfied.
Proof: Define , and

. Problem is rewritten as

(43a)

(43b)

(43c)

for .
The transformed problem is a linear programming (LP)

problem. For convenience of exposure, the channel estimate
power is assumed to take discrete values. We use to
denote the decreasing sorted vector of , where

is the vectorization operator. Let be the pair
of the channel estimate power and preamble length for the -th
element in . Thus, the optimal solution to the transferred LP
problem is obtained as follows: For the first consecutive
elements in , the power allocation is ; for the -th element
in , the power allocation is such that the constraint (43b) is
satisfied with equality; and for other remaining elements in ,
no power is allocated. Here, is chosen to be the maximally
possible. This is because for , the objective function is
increased the most, by setting the transmit power corresponding
to as the maximally possible, after which the transmit
power for is set as the maximally possible, and so on,
until the average power constraint is satisfied.
Remark 4 (Complexity of Power Allocation Scheme): Fol-

lowing the greedy procedure in Theorem 4, the allocated power
for each combination is pre-computed and stored in
a two-dimensional look-up table. In implementation, the WP
transmitter obtains the transmit power by referring to the
lookup table. Hence, the complexity during implementation is
relatively low.
2) Optimal Length-Aware Power Allocation: To further

reduce implementation complexity, we consider a simplified
power allocation scheme in which the power is allocated
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according to only the optimal preamble length , referred as
length-aware power allocation (LPA). Compared to the general
Problem , we herein restrict , independent
of the channel estimate power . As in the LCPA scheme, we
employ the optimal policy . Then, the probability that the
optimal preamble length is , is given by

(44)

With unit transmit power, the average harvested energy from
frames of preamble length is given by

(45)

Problem is thus simplified as

(46)

Let . Similar to Theorem 4, the solution to
Problem is given without proof as in Proposition 1.
Proposition 1: The optimal power allocation for Problem
is to allocate as much energy (up to ) to the frame

with highest over all , then to the frame with the second
highest , and so on, until the average energy constraint
is satisfied.

B. Fixed-Length-Preamble Based Power Allocation

In the fixed-length preamble scenario considered here, the op-
timal preamble length (i.e., time slots) is obtained in
Section V, and henceforth used for all frames. Here, we con-
sider the power allocation according to only the channel esti-
mate power , referred as channel-power-aware power alloca-
tion (CPA). For consistence, we use the same notations as the
LCPA scheme in Section VI-A1, with the only difference here
that the preamble length is fixed.
Let denote the transmit power for WPT in the frame

with channel estimate power . After obtaining via feed-
back, the transmitter performsWPTwith transmit power
in the current frame. With the same power constraint and
as in Problem , we have the following problem formulation

(47a)

(47b)

(47c)

We note that given , the harvested energy in (41)
is a monotonically increasing function of the channel estimate
power . Similar to Theorem 4, the solution to Problem
is given below without proof.
Theorem 5: The optimal power allocation for Problem

is to allocate as much energy (up to ) to the frame with highest
channel estimate power over all , then to the frame with the
second highest , and so on, until the average energy constraint
is satisfied.

Fig. 3. Harvested energy in uncorrelated channel.

VII. NUMERICAL RESULTS

In this section, we present numerical results to validate our
results. We set the number of transmit antennas . We
assume the time duration for the CE and WPT phases in each
frame is 100 s, which consists of symbol periods
(equivalently, time slots). The carrier frequency is
5 GHz, and the bandwidth is 100 KHz. We set the power
spectrum density of noise as dBm/Hz, which implies the
noise power dBm. We take the path loss model as

, where the path loss exponent is 3, and m
is the distance between the WP transmitter and WP receiver. A
30 dB path loss is assumed at a reference distance of 1 m. We
employ LS channel estimation given in this paper, as well as
LMMSE channel estimation, see details in [21].
First, we simulate the harvested energy using the scheme

based on the fixed-length preamble in Section V, but without the
adaptive power allocation in Section VI-B. We fix the transmit
power as Watt.
We start from an uncorrelated MISO channel. Fig. 3 plots

the harvested energy for different dimension of CSI feedback.
With perfect CSI at the transmitter, the maximum ratio transmit
(MRT) beamforming scheme harvests most energy, which pro-
vides an upper bound for all schemes that use fixed-length pre-
amble. The -maker curve is plotted according to (35) in The-
orem 3 for different preamble length . From (34) in Theorem
3, the optimal preamble length is s, and the maximum
harvested energy is 2.8 J. The simulation results ( -maker
curve) coincide with the analytical results. Moreover, the har-
vested energy is reduced as the dimension of CSI feedback
decreases. Also, we observe that the LS based WPT achieves
the same performance as the LMMSE-based WPT scheme as
expected, since the channel is uncorrelated.
Next, we assume a correlated MISO channel, with channel

correlation matrix that has the structure:
, where and are the indices of the entries [20]. We

set the correlation parameter . The harvested energy is
plotted in Fig. 4. We observe that the LMMSE-based scheme
transfers more energy than the LS-based WPT in general, due
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Fig. 4. Harvested energy in correlated channel.

to the fact that an LMMSE estimator achieves more accurate
channel estimation than an LS estimator.
Second, as shown in Fig. 5, we compare the length-and-

channel-power aware power allocation (LCPA) scheme in
Section VI-A1, to the length-aware power allocation scheme
(LPA) in Section VI-A2, as well as the scheme based on the
optimized fixed-length preamble with channel-power-aware
power allocation (CPA) in Section VI-B. We take the harvested
energy by using the optimized fixed-length preamble without
power allocation (FwoPA), as a benchmark. The schemes with
power allocation are shown to achieve significant increase in
harvested energy, compared to the FwoPA scheme. Moreover,
the CPA scheme and the LCPA scheme harvest almost the
same amount of energy. This is because in the CPA scheme,
the optimal preamble length is obtained after averaging all
possible channel realizations, and the dynamical nature of the
channels is fully exploited by the CPA scheme. We also find
it encouraging to observe that the energy harvested by using
the low-complexity LPA scheme is close to that harvested by
using the optimal LCPA scheme or the CPA scheme, although
the dynamical nature of the channels is only partially exploited
by the LPA scheme.

VIII. CONCLUSION

The paper studies a MISO system where the transmitter de-
livers power to the receiver via energy beamforming, and the
harvested energy is used by the receiver to do work. To max-
imize the harvested energy, we first derive the optimal energy
beamformer. Then, we perform dynamic optimization for the
preamble length, and also obtain the optimal offline (fixed) pre-
amble length to reduce the complexity. Moreover, we derive the
optimal power allocation schemes for wireless power transfer
with dynamic-length preamble and fixed-length preamble, re-
spectively. As future extension of this paper, we have consid-
ered the uplink data transmission powered by downlink WPT
in a multiuser massive MIMO system that consists of a hybrid
data-and-energy access point with a large number of antennas
and multiple single-antenna users [26].

Fig. 5. Comparison of FwoPA, LCPA, LPA and CPA.

APPENDIX A
PROOF FOR LEMMA 4

Proof: For some antenna index, let be the
channel coefficient, and the channel estimate in time slot and

, respectively. From Bayes’ formula and Lemma 3, it is
straightforward to show that

(48)

From Lemma 1, we obtain that conditioned on , the
has the same distribution as in (48). Thus, we have

. We further obtain by math-
ematical induction that ,
for . The independence between elements
completes this proof.

APPENDIX B
PROOF FOR THEOREM 1

Proof: We first consider the Policies 1 and 2, as follows.
Policy 1 has a decision sub-sequence over slots

. The corresponding states are and ,
where because from (20) the state value remains the
same when . Policy 2 is exactly the same policy as Policy
1, except that given state in slot , Policy 2 performs CE fol-
lowed byWP regardless of the state in slot . Thus, the deci-
sion subsequence becomes . We aim to show that Policy
2 has strictly higher expected harvested energy than Policy 1.
Both policies are statistically equivalent in slot and on-
wards because both have used the same number of slots for CE;
hence the expected harvested energy in slot onwards are
the same. It thus suffices to compare the expected harvested en-
ergy of Policy 1 in slot , denoted by , and that of Policy
2 in slot , denoted by . For Policy 1, from (21),
the expected harvested energy is

(49)
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For Policy 2, the channel estimate in the next slot
is introduced. Hence, the expectation for the harvested en-

ergy is taken over the conditional distribution
as follows

(50)

where (a) comes from Lemma 4, (b) follows (15), and (c) is
from the conditional mean in (18). We conclude that Policy 1
is strictly worse than Policy 2, since

.
The same argument extends to the case in which there are

more than one slot with decision in between the two slots with
decision . Theorem 1 must then hold; otherwise, there exists
a decision subsequence with a structure that was shown to be
suboptimal.

APPENDIX C
PROOF OF THEOREM 3

Proof: From (9) and (15), using the optimal beamformer
in (7), the total harvested energy is

Denote . Elements of are in-

dependent Chi-Square random variables, since ’s are indepen-
dent zero-mean complex Gaussian random variables with vari-
ance . Let denote the random variable corresponding
to the -th largest observation of the original random vari-
ables. Denote . From order statistics,
we have

Denote . We have that is no less
than 2. Moreover, , since is the vari-
ance of a ( degrees of freedom) Chi-Square random variable.
Then we have

(51)

Moreover, it is standard to show (51) is quasi-concave func-
tion of . Setting the first-order derivative of to be zero,

the is maximized at the unique positive solution which is
given as follows

(52)

Define . Let .
Since the preamble length should be multiples of the number

of transmit antennas , we obtain the optimal preamble length
as , if ; and

otherwise. Thus, the maximum harvested energy
.
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