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Abstract—Indoor localization is becoming critical to empower
Internet of Things for various applications, such as asset track-
ing, geolocation, and smart cities. Wi-Fi-based indoor localization
using received signal strength (RSS) has drawn much atten-
tion over the past decade because it does not require extra
infrastructure and specialized hardware. It is well known that
the localization accuracy using RSS is rather susceptible to the
changing environment. Localization by fusing multiple finger-
print functions of RSS is a promising strategy to overcome the
above drawback. However, the existing fusion techniques cannot
make full use of the intrinsic complementarity among multi-
ple fingerprint functions. It also fails to exploit the knowledge
obtained in the offline phase and thus shows low accuracy in the
complex environment. This paper proposes a knowledge aided
adaptive localization (KAAL) approach by using a global fusion
profile (GFP) to mitigate the above shortcomings. First, we pro-
pose a GFP construction algorithm by minimizing position errors
over all fingerprint functions with weight constraints in the offline
phase. Based on the knowledge from GFP and the trained mul-
tiple fingerprint models, we then derive two KAAL algorithms,
namely, multiple function averaging and optimal function selec-
tion, to achieve highly accurate localization results. Experimental
results demonstrate that our proposed localization approach is
superior to the existing methods both in simulated and real
environments.

Index Terms—Global fusion profile (GFP), indoor localization,
knowledge aided adaptive localization (KAAL), received signal
strength (RSS), Wi-Fi.

I. INTRODUCTION

NDOOR positioning has received great attention recently
because position information is essential for providing
location-based services [1]-[3], which enable intelligent ser-
vices in various fields in the context of Internet of Things
(IoT) [4]-[6]. Although space-based satellite navigation sys-
tems, such as GPS offer high outdoor localization accuracy,
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the poor connectivity between satellites and end-devices ren-
der them ineffective indoor, thus triggering further research on
indoor localization [7], [8].

Received signal strength (RSS)-based Wi-Fi indoor local-
ization has become one of the most attractive solutions owing
to the wide deployment and availability of Wi-Fi infras-
tructures [9]-[12]. These Wi-Fi infrastructures can readily
provision RSS without any hardware modification. However,
the RSS-based localization system is not accurate and robust
because the RSS of Wi-Fi is known to be vulnerable to
an unpredictable changing environment [5]. Recently, chan-
nel state information (CSI) [13] was proposed to improve
the accuracy of Wi-Fi localization, which requires the spe-
cific hardware, i.e., Intel 5300 Wi-Fi network interface card to
extract the CSI, and thus is not applicable for most of exsiting
commodity Wi-Fi infrastructures [14], [15].

To improve the accuracy and robustness of the RSS-based
Wi-Fi localization system, several advanced techniques were
proposed, such as fingerprint calibration [16], fingerprint trans-
formation [2], and machine learning [6], among which the
machine learning can improve the accuracy and robustness
of the RSS-based localization significantly [2], as it localizes
targets by constructing the relationship between RSS measure-
ments and the locations of targets [17]. However, most of the
existing machine learning localization methods are based on
some single fingerprint functions, which do not exploit the
superiority of machine learning methods [6].

Recently, information fusion has attracted more attention
in indoor localization [18]. By fusing some single fingerprint
functions (including machine learning methods and the con-
ventional localization methods, such as least squares (LSs),
and weighted LS), one can exploit the complementarity among
fingerprint functions and improve the localization accuracy
significantly. The existing fusion methods can be categorized
as two groups: one is based on a grid dependent fusion pro-
file (GDFP), such as dynamic fingerprint combining (DFC)
and its variants [17], [19]-[21], and the other is based on
a grid independent fusion profile (GIFP), such as minimum
mean square error (MMSE) based location estimation [22]. In
a nutshell, the former constructs different fusion profiles at
different grids, while the latter trains one fusion profile (FP)
for all grids. Therefore, GDFP belongs to adaptive localization
framework and is superior to GIFP in a complex environment.
In general, the existing fusion techniques cannot make full use
of the intrinsic complementarity among multiple fingerprint
functions when constructing the FP; furthermore, the weights
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selection strategies of the existing fusion techniques just uses
an RSS direct matching, which fails to exploit the knowledge
obtained in the offline phase. The wrong weights selection by
the direct RSS matching will lead to a large location error in
a complex environment.

In this paper, we propose a knowledge aided adaptive local-
ization (KAAL) approach by using a global FP (GFP) to
overcome the above drawbacks. In the offline phase, we first
construct a GFP by minimizing the global position errors over
all fingerprint functions. Unlike the existing FP construction
strategy, which optimizes the weight for each fingerprint func-
tion sequentially, our proposed GFP is the optimal solution in
the whole fingerprint function space, i.e., we jointly optimize
all fingerprint functions with weights normalization constraint
by using some offline training data. As compared with the
existing FP, GFP can fully excavate the intrinsic complemen-
tarity among fingerprint functions, and thus yields a more
accurate location estimate.

Based on the knowledge from the multiple functions trained
in the offline phase, we further propose two knowledge aided
weights selection algorithms for the online phase, namely,
multiple functions averaging (MFA), and optimal function
selection (OFS), instead of the RSS matching. MFA chooses
the weights according to the average of the outputs of multiple
fingerprint functions, while OFS tries to obtain weights based
on the output of the best fingerprint function. The knowledge
aided weights selection strategies can better exploit the knowl-
edge of multiple functions and GFP to increase the success
probability of weights selection and thus improve the fusion
localization accuracy, which is more attractive in a complex
indoor environment.

Below are the main contributions of this paper.

1) We propose a GFP construction algorithm by minimiz-

ing global position error over all fingerprint functions.
Our proposed GFP can fully excavate the intrinsic
complementarity between each fingerprint function as
compared with the existing FP. The computational com-
plexity is also reduced significantly as compared with
the FP construction strategy.

2) We propose a KAAL framework to fully exploit the
knowledge about fingerprint functions and GFP obtained
in the offline phase. As compared with the RSS direct
matching, the knowledge from multiple fingerprint func-
tions make MFA and OFS more robust against some
changing environments.

3) We implement our proposed localization in both a
real office environment and a simulation environment.
Experimental results show that the KAAL framework
outperforms the existing fusion methods in localization
accuracy. The more complex the indoor environment
is, the more superior our proposed approach will be.
Hence, KAAL is very suitable for complex indoor
environments.

The remaining paper is organized as follows. Section II
introduces the proposed localization framework. Our proposed
GFP construction algorithm and two KAAL algorithms, MFA
and OFS, are detailed in Section III. Additionally, algorithm
complexity and accuracy are also analyzed in Section III.

IEEE INTERNET OF THINGS JOURNAL, VOL. 5, NO. 2, APRIL 2018

Section IV describes the experimental setup and presents
extensive results in both simulated and real office environ-
ments for performance evaluation. Finally, conclusions are
drawn in Section V.

II. PROPOSED LOCALIZATION FRAMEWORK

Suppose that a location area can be divided into K grid
points, each numbered by a label, and the area is cov-
ered by L Wi-Fi APs. Assume that we can construct two
databases D and D’ from the fingerprints collected at all
grid points. Among them, D = [D1 D, -~-DK] € RLxMxK
is used for training multiple fingerprint functions with M
being the number of corresponding training samples, while
D' = [D| D) Dy] e RE*N*K s collected for GFP con-
struction with N being the number of corresponding training
samples. At the kth grid point, the submatrices Dy and D), are

r,%(l) r,é(z) r,%(M)
() r(2) re (M)
= k: k: k: (1)
k() Q) rk(M)
and
nM+1) [ (M+2) rp(N + M)
S M+ M +2) ri(N + M)
D, = : : : 2)
M+ kM +2) k(N + M)

respectively, where r,l((n) is the RSS value collected at the nth
time index, at the kth grid point, and from the /th AP.

Our proposed KAAL framework consists of an online phase
and an offline phase, as depicted in Fig. 1. In the offline phase,
we need to first obatin a knowledge database, which includes
two modules: 1) building the models, i.e., obtaining the mul-
tiple fingerprint functions trained by the offline training data
D and 2) constructing the GFP with D’. Each model f;,(D)
is trained from the hth fingerprint function f; and it maps
from an RSS vector to a corresponding label (i.e., grid posi-
tion/location). GFP € RX>*H is constructed by minimizing the
global position errors in the whole fingerprint function space,
which can be expressed as

Wil w2 WIH
w21 w2 o WoH

GFP = | . ) _ . 3)
WK1 WK2 WKH

where H is the number of fingerprint functions. The kth row
in GFP denotes the weights of multiple fingerprint functions
at the kth grid point, i.e., the FP of the kth grid point.

In the online phase, to fully leverage the knowledge database
trained in the offline phase, we derive two KAAL algorithms,
namely, MFA and OFS, to improve the accuracy of weights
selection. After having obtained the weights to be fused, the
location estimate p = [, §]7 of a user at an unknow location
p =[x, y]” with the RSS 7 is

H
p = wiy (7 GFP)g (i(F. D)) @

h=1
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Fig. 1. Overview of the proposed KAAL framework.

where wy, (7, GFP) is the selected weight from GFP by using
MFA or OFS when the testing RSS sample 7 is given. k is
the estimated grid point index. g(-) : R! — R? maps a label
to a 2-D coordinate. In summary, the key problems of accu-
rate localization are: 1) how to construct a robust GFP when
several fingerprint functions are given and 2) how to choose
the optimum weight or set of weights for fusion from the
constructed GFP for the online testing sample 7, i.e., how to
calculate k in (4). We will discuss these two key problems in
the next section.

ITII. PROPOSED ALGORITHM
A. Knowledge Database Construction

1) Models and Fingerprint Functions: As mentioned
above, the models f(D) (h = 1,2, ..., H) are trained from
multiple fingerprint functions fj by using D. Hence, we need
to choose some fingerprint functions for training in the offline
phase. Given an online testing sample, some of the fingerprint
functions may have large localization errors, while others have
small localization errors. Hence, a fingerprint function with
higher accuracy may still exploit the complementarity of others
to yield an enhanced location estimate. In other words, a fin-
gerprint function with poor performance still can contribute to
the final location estimate for some certain testing samples. In
this paper, we test the fusion performance by using four typical
fingerprint functions: 1) neural network (NN) [23]; 2) K-NN
(KNN) [24]; 3) extreme learning machine (ELM) [25]; and
4) random forests (RFs) [26]. For the consideration of the
limited space, we will not discuss each fingerprint function
in detail. However, how to choose a set of fingerprint func-
tions to yield a more accurate localization result is the key
problem of ensemble learning. In summary, we should try our
best to select the fingerprint functions with good diversities
and low average generalization errors [27] for a high accurate
localization.

2) Global Fingerprint Profile Construction: At the kth grid
point, we can obtain the predictions by using the trained
models of multiple fingerprint functions and D’ as

Zn = fu(D} D) ®)

where Zj, is an N x 1 vector with the ith entry being the pre-
diction fj(rr(i),D), (M + 1 < i < M + N) given by the hth
model f;,(D) when inputting the offline sample ry C D/, i.e.,

zn(i) = fin(ric(), D). (6)
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For the ith sample r(i), the predictions of models can be
written as

20) = [21). 20, - ... 2u ()] 7

FP was first proposed in [17] and it is a weight matrix trained
by using D’. FP evaluates the performances of fingerprint func-
tions by assigning different weights. As mentioned earlier, FP
includes GIFP and GDFP. The former uses a unique weight
vector to fuse a localization result at all grid points, while
the latter adopts different weights to fuse a location estimate.
As compared with GIFP, GDFP shows good adaptivity and
is more accurate in complex environments. Using the GDFP
approach, DFC tries to determine the weight wyy, for the hth
fingerprint function at the kth grid point by minimizing the
average position errors over N RSS samples as

N+M
Wi = argmin — Y e(ri(i) win) ®)
O=win=1 % a1y

where e(ri(i)|wgn) is the localization error for the ith RSS
sample at the kth grid point with the weight wy, that is,

e(ri(@)win) = [win x g(fu(re(D). D)) —pyi |, )]

where ||| is the £2-norm and p;, = [xx, yil” is the known
location of the kth grid point.

After having obtained all weights of multiple fingerprint
functions sequentially, the normalized operator is given by

H
dhm=1, k=1,....K (10)
h=1

Note that the weights searching strategy using (8)—(10) is just
the optimization for each fingerprint function over all N RSS
samples. It cannot fully excavate the intrinsic complementarity
among fingerprint functions. Therefore, the FP of DFC is not a
global optimum solution. To mitigate the above shortcoming,
we construct GFP by minimizing the global position errors

over all fingerprint functions as follows.
Let the GFP wjy at the kth grid point being w; =

[Wk1, Wia, - - . wier]T, which can be obtained by
N+M
Wi = argmin  — Z e (ri(i)|wy)
Wi N .
i=M+1

st wil=1

h=1,2,...,H (1)

where 1 is an H x 1 all one vector. The localization error
e (ri(i)|wy) for the ith RSS vector with global weights wy at
the kth grid point is

win = 0,

¢ re@)wi) = [wlg@@) —pi, (12)

where z(i) is given by (6) and (7). After having obtained wy,
the GFP matrix is given by

A A 1T
W=[Ww Wy ... wg]. (13)
Our proposed GFP can be obtained by solving the optimization
problem depicted in (11) and (12), which is a joint opti-

mization of multiple fingerprint functions. It can excavate the
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Algorithm 1 GFP Construction

Algorithm 2 MFA

Input: 1) The number of grid points K; 2) The number of
fingerprint functions H; 3) The offline training fingerprints
D; 4) The offline testing fingerprints D’
Output: The GFP maxtrix W.
1: for h={1,2,--- ,H} do
2 ‘ Train the model f, (D) by using D
3: end for
4: for k ={1,2,--- ,K} do
5: fori=M+1,M+2,--- ,M+ N} do
6: Compute z(i) by using Eqgs. (6) and (7)
7 Compute ¢ (ri.(i)|wy) by using Eq. (12)
8 end for
9: Compute Wy by using Eq. (11)
10: end for
11: W= [ﬁ’l Wy .-
12: return W

wr]

complementary of multiple fingerprint functions. As compared
with the FP constructed from DFC, GFP can offer more knowl-
edge for KAAL. We summarize the procedure of constructing
GFP in Algorithm 1.

B. Knowledge Aided Adaptive Localization

Given the knowledge database, another key problem for
accurate fusion localization is how to choose the optimum
weights for fusion given a testing sample 7; in the online phase,
i.e., how to estimate a suitable grid index k for 7? The existing
k estimation method is the RSS direct matching between the
testing sample 7 and the training fingerprints D, that is,

~

k = argmin |[F — D(k, 3)|2. (14)
k

Apparently, this strategy is not intelligent because it could
be affected by the fluctuation of the RSS in complex indoor
environments. To fully leverage the knowledge from the offline
phase, we propose the following two KAAL algorithms.

1) Multiple Functions Average: Multiple functions average
algorithm obtains the fusion result by averaging the location
estimates of multiple models. As compared with the direct
RSS matching method, it can exploit the merits of multiple
models in the knowledge database. The weights selection is
based on the following grid index estimate:

ki = fu(F, D). (15)
The KAAL result based on MFA is given by
| Ao H
ﬁ:ggaq%ﬁwam» (16)

MFA uses the knowledge of all models. It can yield more
accurate estimate when all fingerprint functions show good
performances. However, it may show poor performance if one
of the fingerprint function models degenerates seriously.

Input: 1) The number of fingerprint functions H; 2) The
trained models f;,(D); 3) The online testing sample 7

Output: The final location estimate p

1: for j={1,2,--- ,H} do

2 \ Compute the matched grid point ]ch by using Eq. (15)

3: end for

4: Compute the final location estimate p by using Eq. (16)

5: return p

Algorithm 3 OFS
Input: 1) The number of fingerprint functions H; 2) The
trained models f,(D), (h=1,2,---,H); 3) The offline
testing fingerprint database D’; 4) The online testing
sample 7
Output: The final location estimate p
1: for k={1,2,---,K} do
2: fori={M+1,M+2,--- ,M+ N} do
‘ Compute z(i) by using Egs. (6) and (7)
end for
end for
Estimate by using Eq. (17)
Compute the matched grid point k by using Eq. (18)
Compute p by using Eq. (19)
return p

R A

2) Optimal Function Selection: This matching strategy first
finds the optimal model by using offline testing fingerprints D’,
that is,

A K N+M
h = argmhinz | Z |eGn®) — P, a7
k=1 i=M+1

where z;(i) is given by (6). Equation (17) can yield the index
estimate of the optimal model.

In the online phase, assume that we can obtain a matching
grid point according to the prediction of the optimal model
when inputting the testing sample 7

k = f; (7. D).
Then, the optimum weights w; at the estimated grid point k

will be selected from the GFP matrix W, which yields the
final location estimate

b =2 wiug(fi7. D).

h=1

(18)

19)

OFS could choose the weights based on the output of the
optimal model; in other words, it selects the optimal weights
by resorting to the knowledge of the trained model. So, it
is smarter than MFA. We summarize the procedures of our
proposed two KAAL algorithms in Algorithms 2 and 3.

C. Performance Analysis

1) Complexity: The computational complexity of our pro-
posed KAAL framework is mainly composed of two parts:
1) GFP construction and 2) the online matching, i.e., MFA
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or OFS. In comparing with the sequentially weights comput-
ing strategy used in FP construction (see (8) and (10) for
reference), the weights obtained according to (11) in GFP
construction are done in parallel, thus reducing the compu-
tational complexity efficiently especially when the number of
fingerprint functions is large. As compared with the RSS direct
matching used by DFC, MFA is simpler by averaging the out-
puts of multiple models. OFS needs to estimate the optimum
model before localization, and thus slightly increases the com-
putational complexity. Fortunately, it is done in the offline
phase. Meanwhile, unlike MFA, OFS does not need to aver-
age the outputs of multiple models, and thus has the lowest
complexity in the online phase.

Fingerprint construction is also a time consuming task
for fingerprint-based localization approaches including DFC,
MMSE, and our methods. Fortunately, it is done in the
offline phase and has little impact on the complexity of
online localization. How to decrease the budern of fingerprint
construction without remarkable performance loss in localiza-
tion accuracy is a well-pursued topic in indoor localization
fields [12], [16], [28], and we can use some of these strategies
to tradeoff the burden of the fingerprint database construction
and localization accuracy [28].

2) Accuracy: As compared with DFC and MMSE, our pro-
posed GFP and KAAL can enhance accuracy well. First, the
weights constructed from GFP can fully excavate the intrin-
sic complementarity among multiple fingerprint functions. The
accuracy can be improved by fusing these weights. Second, our
two proposed MFA and OFS algorithms can further improve
the accuracy by decreasing the weight selection errors induced
by the RSS direct matching. The accuracy improvement will
be more remarkable as the number and performance dif-
ferences of fingerprint functions increase. Furthermore, the
superiority of our approach in localization accuracy will be
strengthened when the environment becomes more complex,
as shown in the subsequent experimental results.

IV. EXPERIMENTAL SETUP AND RESULTS

To evaluate the effectiveness of the proposed algorithm, we
have designed two experimental scenarios using simulation
data and real data, respectively. We compare the performance
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of our methods with two existing fusion methods and two
typical fingerprint-based methods.
1) Two Fusion Methods:

a) DFC [17]: A representative approach of GDFP
which optimizes the weight for each fingerprint
function sequentially at different grid points.

b) MMSE [22]: A representative approach of GIFP
which trains one FP for all grid points.

2) Two Fingerprint-Based Methods:

a) Horus [11]: A classical probabilistic algorithm
that calculates the probability distribution of the
received RSS at each grid point in the offline phase.
In the online phase, Horus obtains the final location
using maximum likelihood estimate.

b) Modellet [12]: A virtual fingerprints aided
fingerprint-based method in which virtual
fingerprints are generated by applying the local
log-distance path loss model trained from some
limited real fingerprints. In the online phase,
Modellet uses a location inference algorithm,
such as KNN, to yield a location estimate. In our
experiments, the distances between two adjacent
grid points for generating virtual fingerprints are
set to 2 and 3 m in simulation and real scenarios,
respectively.
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A. Simulation Experiment

In the first experiment, we construct the Wi-Fi fingerprints
by using the RSS model [29]. Four APs are placed at the
four corners of a room of size 140 m?> with positions z; =
[0mO0ml”, 2o = [0m, 14 ml”, z3 = [14m0m|’, zu =
[14 m, 14 m]7, respectively. There are 144 grid points and the
distance between two adjacent grid points is 1 m. Four finger-
print functions including RF, BP NN, KNN, and ELM are
considered. The root mean square error (RMSE) is defined as

J

RMSE = ; Z[(fcn — )"+ (3n - Y)z]

n=1

(20)

where [X,, &n]T represents the nth location estimate, and
[x,y]” is the true location of the source. J is the number of
experiment trials.

First, we show the RMSEs of these algorithms in Fig. 2.
It is found that the RMSE of DFC is 2.84 m, close to
that of ELM, because DFC cannot fully exploit the intrinsic
complementarity among fingerprint functions. This drawback
aggravates when different fingerprint functions have different
performances. Note that MMSE is better than DFC in this case.
However, the performance of MMSE degrades seriously when
the indoor environment becomes complex, as shall be shown
latter. The RMSE of Modellet is 3.11 m, performing worse
than any fusion method, because Modellet severely depends
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on the quality of generated virtual fingerprints. Generally, the
localization performance of virtual fingerprints is worse than
that of real measurements because the trained parameters are
not accurate in a complex environment. Horus achieves RMSE
of 2.81 m, which is slightly better the optimal fingerprint func-
tion but worse than our methods. Our proposed GFP+OFS and
GFP+MFA lead to 2.55 and 2.6 m localization errors, respec-
tively, which demonstrate the effectiveness of the proposed
KAAL strategy.

As shown in Fig. 3, GFP4OFS outperforms the other
methods, reducing the RMSE by 1.7%, 4.1%, 10.2%, 9.2%,
17.8%, 16.3%, 28.4%, 20.5%, and 11.4%, as compared with
GFP+MFA, MMSE, DFC, Horus, Modellet, RF, BP, KNN,
and ELM, respectively. The probability of DFC in acquiring
RMSE of less than 2 m is 34%, while GFP+OFS is up to
42%. This improvement comes from the joint utilization of
GFP and OFS, as compared with DFC, which uses FP and
the direct RSS matching.

To reveal the merits of KAAL, we detail the influence
of GFP, MFA, and OFS on RMSEs. Fig. 4 shows that
the performance improvements achieved by different com-
binations, including DFC (i.e., the RSS direct matching),
DFC+MFA, DFC+OFS, GFP+RSS (i.e., the RSS direct match-
ing), GFP+MFA, and GFP+OFS. Note that the performance
differences among DFC+RSS, DFC+MFA, and DFC+OFS
are insignificant. As compared with DFC, the proposed GFP,
MFA, and OFS can improve the performance to some extent.
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TABLE I
DIFFERENT PATH LOSS FACTORS USED IN OUR SIMULATION

The number of subareas
Path loss factor

n=1 n=2 n=3 n=4
Y1 =2

Y1 =2
_ Y1 =2 v2 =3

¥ Y1 =2 Y2 =3
Y2 =3 V3 =4

va =4
Ya =5

To clarify the differences between our proposed GFP and
FP, we illustrate the weights assignments by GFP and FP in
Fig. 5. Owing to the limited space, we only list the weights
of ten grid points for comparison. In Fig. 5, the number in
each box is the weight of a single algorithm at each grid point
with deeper color representing a larger weight. Fig. 5(a) shows
that the weights assigned by DFC are close to each other at
all grid points. These weights cannot reflect the differences
between fingerprint functions. In Fig. 5(b), KNN and ELM
functions play a greater role in the fusion in most cases in
our constructed GFP, and hence, they are assigned some larger
weights. Although the other two functions have lower weights,
they still contribute to the final location estimate, as shown at
the fifth grid point. By comparing Fig. 5(a) with Fig. 5(b),
we can draw a conclusion that GFP can better exploit the
complementarity among multiple fingerprint functions.

Theoretically, the superiority of our KAAL framework
becomes more noticeable as the number of fingerprint func-
tions increases. That is the motivation why we develop the
KAAL framework. Fig. 6 illustrates the influence of the num-
ber of fingerprint functions on RMSEs. Here, we consider two
cases: 1) two fingerprint functions and 2) four fingerprint func-
tions. Our proposed GFP+OFS obtains 22.18% improvement
of RMSE of less than 3 m, as compared with DFC with two
fingerprint functions, as shown in Fig. 6.

Finally, we evaluate the adaptive abilities of these algo-
rithms to a changing environment. To elicit the numerical
analysis, we partition the indoor environment from one to four
subareas with different y. In Table I, » = 1 means that the path
loss constant y; = 2 in the RSS model, i.e., the indoor envi-
ronment does not change, and n = 2 means that we use two
different path loss factors y; = 2, y» = 3 to model the indoor
environment. The different y’s for n = 3 and n = 4 are also
listed in Table I. Fig. 7 depicts the RMSEs versus the number
of subareas. Note that the performance of MMSE degrades

Fig. 9.

Interior environment and AP in our experimental study.

faster than other algorithms as the complexity of environment
increases because MMSE adopts GIFP for fusion. Although
DFC is an adaptive one, the FP and matching strategies of DFC
degenerate its performance. Thus, the RMSE of DFC increases
faster than our approach. The performance of Modellet also
degrades fast as the complexity of environment increases; this
is also due to the bad quality of generated virtual fingerprints.
Horus performs better than DFC in the case of n = 1, 2, 3 and
degenerates slowly as compared with MMSE. Comparatively,
our proposed KAAL framework is more robust to the com-
plexity of indoor environment. The more complex the indoor
environment is, the more superior our proposed approach will
be. Hence, our KAAL framework is more suitable for real
applications than the other two methods.

B. Real Environment Experiment

We conducted an experiment in a real office environment
located on the 21st floor of the innovation building on the
campus of University of Electronic Science and Technology of
China. The area is about 73 m x 20 m, i.e., 1460 m?2. It mainly
includes ten offices and one corridor. Nine AIROCOV 6260
APs are sparsely deployed, as shown in Fig. 8. AIROCOV
6260 uses special probe frame technology and is more suitable
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Fig. 11. RMSEs of different localization algorithms.

for IoT applications [30]. The AP and interior environment are
shown in Fig. 9.

Specifically, we first divide the whole area into many grid
points and the distance between two adjacent grid points is
0.8 m. We construct RSS fingerprints with an Android smart-
phone, and the RSS fingerprints construction, storage, and
localization algorithms are all run in a server to decide the
location of the smartphone. Hence, the energy consumption
in smartphone is little. At each grid point, we collect 20 and
10 RSS measurements for D and D', respectively. Then, we
construct GFP by using Algorithm 1. In the online phase, we
collect 1200 RSS testing samples at 80 different grid points on
different days. Based on GFP, we compute the final location
estimates by using Algorithms 2 and 3. The average RMSE is
calculated to evaluate the performance of localization.

Fig. 10 shows the histogram of average RMSEs of differ-
ent localization algorithms. Note that the average MMSE is
4.18 m, while DFC is 3.89 m. As mentioned above, MMSE
cannot give an accurate location estimate when the differ-
ences between the training data and the testing data increase.
Hence, MMSE is not suitable for the complex environment.
As compared with our proposed algorithm, DFC shows low
accuracy because it cannot adequately exploit the complemen-
tary of multiple fingerprint functions. The RMSE of Modellet
is 3.96 m, performing worse than any fusion method. Horus
achieves RMSE of 3.76 m, and is better than MMSE, DFC and
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other algorithms, thus demonstrating the effectiveness of prob-
abilistic methods. Our proposed GFP+4OFS and GFP+MFA
can achieve RMSEs of 3.33 and 3.59 m, respectively, which
are smaller than other fusion strategies.

Fig. 11 shows the CDFs of the average RMSEs of differ-
ent localization algorithms. Our proposed GFP+OFS outper-
forms the other methods in terms of the reduction of the
average localization error by 7.1%, 14.2%, 20.1%, 11.3%,
15.8%, 41.2%, 12.9%, 20.7%, and 30.9%, in comparing with
GFP+MFA, DFC, MMSE, Horus, Modellet, BP, RF, KNN,
and ELM, respectively. The probability of DFC in acquiring a
localization error of less than 2 m is 32%, and our proposed
GFP+OFS algorithm can go up to 48% under the same con-
dition. The proposed method performs better than any other
algorithms we tested.

V. CONCLUSION

In this paper, we have proposed a KAAL framework for
indoor Wi-Fi environment. To overcome the drawbacks of
existing fusion localization methods, we have first proposed
a GFP construction algorithm to fully exploit the complemen-
tarity among multiple fingerprint functions. GFP outperforms
the conventional FP both in localization accuracy and compu-
tational complexity. Then, based on the knowledge database of
GFP and the trained models, we have derived two KAAL algo-
rithms, namely, MFA and OFS, to overcome the drawback of
the RSS direct matching. These two algorithms can improve
the localization accuracy in a complex indoor environment
significantly. Our proposed localization approach has been
validated for both simulated and real indoor environments.
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