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Wearable Audio Monitoring: Content-Based
Processing Methodology and Implementation

Bin Gao, Member, IEEE, and Wai Lok Woo, Senior Member, IEEE

Abstract—Developing audio processing tools for extracting
social-audio features are just as important as conscious content
for determining human behavior. Psychologists speculate these
features may have evolved as a way to establish hierarchy and
group cohesion because they function as a subconscious discussion
about relationships, resources, risks, and rewards. In this paper,
we present the design, implementation, and deployment of a wear-
able computing platform capable of automatically extracting and
analyzing social-audio signals. Unlike conventional research that
concentrates on data which have been recorded under constrained
conditions, our data were recorded in completely natural and un-
predictable situations. In particular, we benchmarked a set of inte-
grated algorithms (sound speech detection and classification, sound
level meter calculation, voice and nonvoice segmentation, speaker
segmentation, and prediction) to obtain speech and environmental
sound social-audio signals using an in-house built wearable device.
In addition, we derive a novel method that incorporates the recently
published audio feature extraction technique based on power nor-
malized cepstral coefficient and gap statistics for speaker segmen-
tation and prediction. The performance of the proposed integrated
platform is robust to natural and unpredictable situations. Exper-
iments show that the method has successfully segmented natural
speech with 89.6% accuracy.

Index Terms—Audio detection and classification, social signal
analysis, speaker segmentation, wearable device.

I. INTRODUCTION

OCIAL signal processing (SSP) [1], [2] is a hot research

field, where intelligent devices sense and understand hu-
man social behavior. SSP has already attracted researchers in
areas such as psychology, ambient intelligence, and healthcare.
Standard methods to measure and evaluate SSP have issues.
Monitoring humans is very expensive, is limited to a small
number of people per observer, and may have interobserver re-
liability concerns. Using cameras is also expensive and the range
of measurement is limited. Surveys suffer from subjectivity and
memory effects. Thus, portable computing system-based intel-
ligent devices capable of automatically capturing social signals
in a persuasive manner offer an alternative.
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The idea of integrating wearable computing (WC) with the
analysis of human social signals to generate more natural, flexi-
ble computing technology was introduced in [2]. This allows the
SSP to be automated. In addition, the automatic discovery and
characterization of human communication and social interac-
tion would allow us to gather interaction data from large groups
of people. Specially, the audio signal plays an import role in
studying WC and can support automatic assessment of human
social behavior. It can support multimodal tools and enhance
researcher productivity.

Several WC projects have considered the use of speech and
audio in the interface. Ubiquitous Talker [3] is a camera-enabled
system that provides information related to recognized physical
objects using a display and synthesized voice. A prototype-
augmented audio tour guide [4] presented digital audio record-
ings indexed by the spatial location of visitors in a museum.
SpeechWear [5] enabled users to perform data entry and re-
trieval using speech recognition and synthesis.

Human speech plays a significant role in social signal learn-
ing [3]. However, speech research in modeling conversations
generally considers limited situation such as in meeting room
scenarios [4], [5] or with acted speech [6], which is known to
poorly reflect natural emotion [7]. The datasets that do capture
real emotion [8]-[10] are generally limited to a handful of ob-
servations of each subject and cannot be used to compare one
person’s speech across different situations over time. Most are
also recorded in relatively unnatural settings (such as in the case
of television shows or interviews) that are not representative of
everyday human communication.

There is a little research in naturalistic settings. In [10], this
study only recorded short-time frames of a single participant
in isolation. Some prior work has difficulties in disambiguating
speakers. In particular, the speech signals from specific indi-
viduals are likely to be significantly attenuated relative to the
ambient noise [11].

Thus, existing techniques for automatically learning social
audio signals are limited and fall short of the success enjoyed
in the other areas of SSP. In this paper, a novel system for
extracting social-audio signals is proposed. The contributions
are summarized as follows.

1) Developing a fully automatic, computationally efficient
method of extracting and analyzing social-audio features
from a target person using the wearable acoustic monitor
(WAM) device.

2) Analyzing and assessing the performance of the novel
development of speech and sound detection and classi-
fication algorithms based on block audio features. Seven
well-established audio features were integrated to improve
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Fig. 1. Proposed social-audio signal extraction architecture.
the robustness of the detection system and to address any Stage 3: Individual speaker segmentation, clustering,

ambiguity in any single feature set.

3) Developing a novel speaker segmentation method based
on a power normalized cepstral coefficient (PNCC) [12].
This novel method is highly desirable since it enables
the noise speech signal to be segmented with signifi-
cantly higher accuracy, when contrasted with other tra-
dition features such as linear prediction cepstral co-
efficients (LPCC), mel-frequency cepstral coefficients
(MFCC) [13], which only work well with clean speech
signals. In addition, a gap statistic method [14] is incor-
porated as part of the overall system to predict the number
of unknown speakers within the conversational data.

The paper is organized as follows. Section II introduces the
proposed social audio signal extraction (SASE) architecture.
In Section III, the “new speaker segmentation algorithm” as
well as the “speaker number prediction technique” is derived.
Experimental results and a series of performance comparison
with alternative methods are presented in Section I'V. Section V
concludes the paper.

II. PROPOSED SOCIAL-AUDIO SIGNAL
EXTRACTION ARCHITECTURE

We design the WAM to continuously collect audio signals in
completely natural and unpredictable situations. The proposed
SASE architecture can be divided into three stages.

Stage I: Block detection of sound and speech and classifica-
tion of both environmental and speech sounds.

Stage 2: Voiced and nonvoiced speech segmentation and
sound level meter calculation.

unknown number of speaker prediction, and social signal
calculation.

These stages are explained below, and the proposed architec-
ture is shown in Fig. 1.

A. Implementation of Stage 1

1) Sound and Speech Detection: Sound detection [15] is a
useful preprocessing tool which periodically explores the thresh-
old detector output to judge the presence of a strong audio signal.
We analyze blocks of audio data from the WAM recorder (i.e.,
one block of data consisted of 30 s of microphone data). If a
strong audio signal is detected (the energy of the signal beyond
threshold) more than 50 out of 1000 times within a 0.5-s pe-
riod, the sound detection stage assumed the presence of a strong
audio signal, and thus preserved the whole block of data.

Simultaneously, the proposed platform starts the speech de-
tection process to detect the presence of voice. In the speech
detection process, a large number of signal features are em-
ployed to discriminate between different environmental sounds
and speech. Once the sound signal has been detected within the
block data, the block signals are then broken into short-term,
nonoverlapping windows (frames) of 50 ms. For each frame,
six features [16]—[18] are calculated, namely, zero-crossing rate,
energy-entropy, spectral flux, short-time energy, spectral roll off,
and spectral centroid. An additional feature, low-energy frame
rate, has also been incorporated (calculated by every window
of 64 frames). For each of the first six feature sequences within
a block, a simple statistic is calculated (the standard deviation
divided by the mean value). This step leads to six single statistic
values. These seven values are the final feature values that char-
acterize the input audio signal. In the proposed speech detection
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process, all features are combined to classify the speech and
environmental sound to improve the robustness of the classifica-
tion system and address any ambiguities in any single feature set.

2) Sound and Speech Classification: In order to obtain a set
of baseline measurements for the above features for “typical”
speech and environment sound, a set of training data is used.
Each of the seven feature calculations is performed on all train-
ing data samples, to obtain a set of values that can be considered
typical of speech and environmental sound signals. In our train-
ing phase, the training speech data consisted of five types of
speech: two sets of single male speech, two sets of single fe-
male speech, one set of male and male conversation, one set
of male and female conversation, and one set of female and
female conversation. Each set of training data for the speech
sets were 5 min long. The training datasets for environmen-
tal sounds consisted of walking sounds, mouse click sounds,
keyboard typing sounds, scratching sounds in the pocket, water
sounds in the bathroom, noise from the underground train, street
noise, hoover sounds, music, sound from kitchen, sound from
within church. All together, the ambient sound dataset contained
approximately 100 min of environmental sound.

Once a set of baseline feature measurements is established, a
system is needed to classify test data as having features more like
speech or other sounds. We tested several classifying algorithms
before choosing the most suitable classifier. These results will
be discussed in Session IV. Based on the results, a k-nearest
neighbor (KNN) algorithm [19] is chosen for simplicity and
efficiency. Also, the range covered by each of the seven features
is normalized to a unit norm in order to weight each feature
equally in the distance calculations. This ensures that larger-
valued features will not dominate over smaller ones.

B. Implementation of Stage 2

In order to measure the sound level of ambient environment,
for blocks containing nonspeech signals, an A-weighted sound
level meter [20] is designed. The fast Fourier transform (FFT)
algorithm is used to estimate the frequency spectrum of a win-
dowed set of samples. The frequency spectrum is then weighted
using a closed-form expression for the A-weighting filter, and
the average signal energy is then estimated in the frequency
domain using the Parseval relation.

Human speech can be divided into voiced speech and non-
voiced speech. Voiced speech [21] is defined as speech gen-
erated from the vibrations of the vocal chords; it includes all
vowel sounds and some consonant sounds. In contrast to the
nonspeech signal blocks, if a speech block is detected, the first
stage then activates the voice and nonvoiced speech segmenta-
tion system. The role of this stage is to pick high-quality speech
frames from the block speech signal and to discard low-quality
speech frames as well as frames of silence, which occur nat-
urally from brief pauses (i.e., any period of silence less than
0.2 sec. was considered a pause) in human speech.

1) Features and Segmentation: We use three features [22]
for the voice and nonvoiced segmentation conducted on the
blocks of speech data, namely, 1) noninitial maximum of the
normalized noisy autocorrelation, 2) number of autocorrelation

peaks, and 3) normalized spectral entropy. These are computed
on a per-frame basis. In the parameters setting, we work with a
frame size of 32 ms and an overlap of 16 ms between frames.
Once all features have been calculated, we then use a two-level
hidden Markov model (HMM) [36] to segment the speech block
data into voiced and nonvoiced segments.

C. Implementation of Stage 3

The idea of speaker segmentation can be considered as a par-
tition of speech signal into subsets and a judgment whether one
person is present or belong to others [23]. To achieve this, a
common way is to search for a change point that represents
that a possible change of speaker may have occurred. Once all
change points have been found, the speaker clustering algo-
rithm can classify the subsets based on who is now speaking.
Generally, the statistical language modeling methods such as
MEFECC for speech feature calculation has greatly improved the
performance of speaker recognition systems in ‘clean’ envi-
ronments [12]. Nevertheless, the accuracy still degrades sig-
nificantly in noisy environments especially in cases when the
audio data are recorded in completely natural and unpredictable
situations.

In this study, we deployed a more sophisticated audio feature,
PNCC as our data are recorded in unpredictable situations. The
overall speaker segmentation system consisted of several steps:
1) calculate speech PNCC features, as well as pitch informa-
tion [25], to improve robustness and segmentation efficiency;
2) employ a change point detection algorithm [23] to find the
possible speaker change point given in the feature space; and
3) classify WAM speaker (i.e., the wearer of the WAM de-
vice) and other unknown speakers, based on a Gaussian mixture
model (GMM) classifier [24], and predict the number of un-
known speakers based on the gap statistic method. All details of
the proposed segmentation system are described in Section III.
Once the above three stages have been implemented, the sound
level meter and the classified speaker information can be further
analyzed so that they could possibly serve as predictive social-
audio signals. Two well-known social signals, namely, activity
and emphasis [26], could be computed from the captured audio
to infer the social events.

1) Activity: Activity is defined as the fraction of time a per-
son is speaking. The percentage of speaking time is known to be
correlated with interest level [27] and extraversion [28]. In the
domain of negotiation, the authors in [29] found a trend whereby
extraversion correlated positively with individual outcomes in
an integrative bargaining task, similar to the one used in the
present study. In our case, we are targeting the social signal of
the fraction of speaking time which could be directly calculated
by using the segmented WAM speech frames. In addition, we
are also able to predict the number of different places that the
WAM speaker engaged in conversational activity according to
the sound level meter. In general, the sound level can be divided
into three phases based on Monte Carlo realizations. The results
are tabulated in Table I.

The results in Table I are calculated by averaging the out-
comes of chunk data (each chunk consists of 3-min audio data).
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Fig. 2. Computation of PNCC. “Y” is the spectrum of STFT of voiced frame
speech.

2) Emphasis: Emphasis is measured by variations in speech
prosody—specifically, variation in pitch and volume. Prosody
refers to speech features that are longer than one phonetic
segment and are perceived as stress, intonation, or thythm [31].
To measure emphasis, we began by extracting the speaking en-
ergy and the fundamental format for voiced segments within
the speech block data. We then calculate the standard devia-
tion of the energy and frequency measures, each scaled by their
respective means.

III. SPEAKER SEGMENTATION

A. PNCC Features

The most widely used audio feature extraction algorithms
are MFCC and LPCC [13]. Even though many speech recogni-
tion systems [32] have obtained satisfactory performance based
on the above two features, they are dependent on clean test
environments. Recognition accuracy significantly degrades if
the test environment is different from the training environment.
These environmental differences might be due to additive noise,
channel distortion, and acoustical differences between different
speakers. The recently proposed audio feature PNCC has been
developed to enhance the environmental robustness of speech
recognition systems. The major innovations of this feature can
be summarized as follows.

1) The use of a well-motivated power function that replaces
the log function, and the use of a novel approach to the
blind removal of background excitation based on medium
duration power estimation. This normalization makes use
of the ratio of the arithmetic mean to the geometric mean,
which has proved to be a useful measure in determining
the extent to which speech is corrupted by noise.

2) PNCC uses frequency weighting based on the gamma-
tone filter shape [33] rather than the triangular frequency
weighting or the trapezoidal frequency weighting associ-
ated with the MFCC and LPCC computation.

3) The Power-Bias Subtraction algorithm has proved to be a
useful and easily computed way to characterize the data,
and the power flooring technique can reduce spectral dis-
tortion between training and test sets for these regions [12].

The structure of the PNCC feature is shown in Fig. 2. A
preemphasis filter of the form H (z) = 1 — 0.97z"! is applied

first. The short-time Fourier transform (STFT) analysis is per-
formed using Hamming windows of duration 2 s, with 10 ms
for the time step for a sampling frequency of 16 kHz (where
broader windows and longer time steps to smooth out the data),
40 gammatone channels. After passing through the gammatone
channel, the power is normalized using peak power (i.e., the
95% of short-time power).

B. Change Detection Algorithm

The change detection algorithm can be summarized as fol-
lows. Once the block of the PNCC feature set is generated, the
algorithm detects whether the points ahead are different from
those we have already seen. If this is true, the current point is
considered as a possible change of the speaker. Otherwise, the
algorithm keeps going ahead. In order to quantify the differ-
ence between two points, the Kullback—Liebler divergence has
been used achieve a distance measure [34]. Given two vector
sequences F* and F?, the symmetric Kullback—Liebler distance
(KLd) between the two is

a Pa
KLd (F*,F) = [ pa(o) - m(@log . )
We assume p, ~ N (u,,X,) and py ~ N (wy, X)) are T-
variate Gaussian distribution which can be expressed as

Mexp{—; (x—uwtx! (x—u)} 2)

[Tt}

where “u” is a mean vector, “X”’ is a covariance matrix and
superscript ““I'”” denotes transpose. Thus, (1) can be expressed
as

p(z)=

KLA (P, F) = 3T (%0~ B5) (2~ 51)] + 377

X {(Egl — 3 (U —up) (ua — ub)T}
3)

where “I'r” denotes trace operation. F'* represents the sequence
of feature vectors extracted from the analysis window of size
2 samples that begins at the given point, and F” denotes the
feature vectors extracted from the analysis window that follows
directly after the first, as the same size samples. If the distance
between either of these is above a certain threshold, the current
point is considered to be a change point. In our experiments,
two thresholds, € 4 and ep are employed. The first is calculated
as the mean of a window around the given point, multiplied by
a constant, i.e.,

1
~a-—> F 4
4T 99N, )

where “F” represents the feature vector and summation symbol
represent sum across all the elements in F, “N;” is the size of
the window in one direction, and “«” is a constant used to tune
the recall of the threshold. The experiments section will detail
the performance of this variable. However, in order to be taken
as a true change point, the given value must also be greater than
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€p, which is calculated by

ep =0p + 85— Y F (5)

where “or” is the standard deviation over the windowed area,
“Ny” is the size of the window, and “(3” is another constant. The
first threshold ensures that the given value is greater than the
surrounding area, calculated over a small window. The second
threshold is calculated over a larger window, and ensures that
the change takes into account the general trend of the data’s
changes. Current values for « and /3 are 1.4 and 1, respectively.
The window sizes N; and N, are currently set to 3 and 4 s,
respectively. These setting are based on the Monte Carlo exper-
iment of 100 independent realizations and better segmentation
results are obtained from these settings.

C. Clustering

After the segmentation process, we assume that each of the
recovered segments represents a potential speaker; therefore,
we create models for each speaker. Traditionally, speaker ver-
ification models are created using GMMs [36]. GMMs are a
hybrid between parametric and nonparametric statistical meth-
ods, which have been used with considerable success in areas
where there is little information available for model creation
and one cannot assume a fixed distribution generating the data.
The EM method is used here for training purposes. In speech
verification, the average number of mixtures considered to be
sufficient to model a speaker ranges from 32 to 256 [15], [35].
We train the GMM for WAM speaker models and use a univer-
sal background GMM to represent all unknown speakers [24].
The features that were used for training included the PNCC
mentioned in the previous paragraph, along with the fundamen-
tal frequency (pitch). For every potential speaker, the WAM
speaker and unknown speakers were identified, as the one talk-
ing during the segment is the one whose speaker model gives
the highest sum of log likelihood across the segment.

D. Predicting Number of Unknown Speakers

Given the ambiguity in the “unknown speaker” clustered seg-
ments, we need to predict how many unknown speakers are
involved in the conversation. In our case, the standard k-means
algorithm [36] and the gap-statistic technique are used to achieve
this purpose. The issue of cluster validation is an open problem
in the area. One method of estimating the number of clusters is to
plot the within-cluster sum of squares graph for each number of
possible clusters (i.e., from 1 to the total number of segments).
The idea here is that the sum of squares can only decrease as the
number of clusters increases; after a certain point, the sum of
squares should decrease more slowly than for previous clusters.
This point is called the “elbow,” and is determined to be the
optimal number of clusters. The overall steps of the prediction
method are summarized as follows.

1) Given all GMM models for each separate segment of the

unknown speaker PNCC feature, use k-means algorithm
for clustering. Varying the total number of clusters k =
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Fig. 3. Example of gap statistic prediction.

1,..., K and calculating the within-dispersion measures
Wirk=1,..., K.

2) Generate D number of references sets using the uni-
form prescription, and cluster each one giving within-
dispersion measures W;,, d=1,...,.D, k=1,..., K.
The gap statistic are estimated as

1
Gap (k) = 75 > log (Wyy) —log (Wi) . (6)
d

3) Letl = 5>, log (W},) and the standard deviation can
be expressed as

1 2
sdy = | 5 > {log (W) — 1} (7)
d

and my, = sdj+/(1 4 1/D) to account for the modeling
error in [. Finally, the estimated number of clusters can be

obtained:

k = argmin [Gap(k) > Gap(k + 1) —mi41].  (8)
k

For the reference sets, the simplest choice is to generate each
reference feature uniformly over the range of the observed val-
ues for that feature. The specific calculations of W, and W},
are referred to in [30]. Fig. 3 shows an example of using the
gap statistic method to predict an optimal number of clusters. In
Fig. 3, we have generated three normally distributed datasets,
where green, blue, red dots represent the different means. Each
dataset is a 100 x 2 matrix from a normal distribution with
mean u;(5,5), mean uy(—1,—1), and u3(2,2), respectively.
All datasets have unique standard deviation with o(1,1). The
data (top panel) fall in three distinct clusters. We are attempting
to predict the number of clusters given in these datasets. The
middle panel shows step one of the gap statistic method which
calculates the within-dispersion measures Wy k=1,..., K
(here, the number of clusters vary from k£ = 2, ..., 8). The bot-
tom panel shows step two of the gap statistic method, whereby
the gap value (with 1 standard error bars) can be calculated by
using (6). The final predicted number of clusters can be obtained
by using (6) where the optimized number of clusters is k=3.
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IV. EVALUATION AND ANALYSIS

A. Prototype of the Wearable Acoustic Monitor

To prototype the WAM, a custom four-layer printed circuit
board (PCB) has been developed. The PCB measured 50 x
50 mm and featured a PIC32MX695F512 H 32 bit microcon-
troller from Microchip Inc.

The prototype also featured a MEMS microphone (WM 1720
from Wolfson Microelectronics) which is interfaced to a voice
band audio CODEC chip (AIC111 from Texas Instruments).
The CODEC chip is also interfaced to an auxiliary microphone
which was used for experimenting with microphones of differ-
ent frequency responses and also optimizing the microphone
position in the final design. Audio can be sampled from the mi-
crophone in mono up to 40 kHz in 16 bit resolution; however,
we find 8 kHz and 16 kHz to be the most appropriate compro-
mise between low power and performance. Once the samples
are gathered from the microphone, they are written to a high-
capacity secure digital (SDHC) card of up to 32-GB capacity.

The prototype also features an OLED display and an RGB
LED for communicating a state during development. To collect
naturalistic data for the algorithm development, a small, low
power, wearable device is necessary. At the design stage, any
component preventing us from collecting live data has been
excluded from the design.

Once the prototype PCB is evaluated, a second version of the
PCB is designed. This PCB was designed to be suitable for a
wrist worn enclosure which was deemed to be a mounting point
of high social acceptability for a wide range of people. The same
components that are chosen for the prototype PCB are placed
on this second PCB (with the exception of the auxiliary micro-
phone input) and a resizable silicate wrist band was designed to
house the electronics. A rechargeable lithium-polymer battery
is chosen for this circuit.

B. Experimental Setup

The proposed SASE system is tested on recorded audio sig-
nals. For the training phase of stage one and stage three, we
collect clean voice data from 30 speakers (15 male and 15 fe-
male). The age distribution of our participants is between 20 and
70 years. For each speaker, we have collected approximately
5 min. of “clean” speech.

The formats consisted of 8-kHz sampling rate, 16-bit mono
and 16-kHz sampling rate, 16-bit mono. In order to compare
the efficiency of using PNCC features with other well-known
audio features such as MFCC and LPCC, we use a training
set from the established English Language Speech Database
for Speaker Recognition (ELSDS) [37] database. This database
consists of 22 speakers: 10 female, and 12 male, with an age
span of 24 to 63 years. The training set consists of seven reading
paragraphs, which include 11 sentences and a set of 44 random
sentences. These paragraphs have been developed to ensure that
they capture all of the possible speech sounds (phonemes) that
are used within the English language (these include vowels,
consonants and diphthongs). Altogether there are 154 (7 x 22)
utterances in the training set. On average, the duration it takes

to read the training data was 78.6 s for male, 88.3 s for female,
83 s for all.

For the testing phase of stage I, 35 chunks (each chunk being
3 minutes long) of completely natural and unpredictable con-
versational interaction, between two people or more, or single
speech, and another 35 chunks of different ambient noise are em-
ployed. All test speech samples are collected either from noisy
environments or quiet environments and the WAM recording
device is positioned on the main speaker’s wrist (also referred
to as the WAM speaker).

Several well-established classifiers are compared in Stage 1
to obtain the best accuracy results. These classifiers [39] include
linear discriminant analysis (LDA), NaiveBayes classifier, Deci-
sion Tree (DT), K-nearest neighbor (KNN), and support vector
machine (SVM).

In the testing phase of Stage 2, the algorithms are evaluated
on: 1) natural and unpredictable recorded speech signals; and
2) clean speech which is corrupted by artificial noise. The arti-
ficial noise is chosen from the AURORA database [38].

In Stage 3 testing, two evaluation processes are considered:
1) testing and obtaining the suitable audio features using the
speech recognition system. In this experiment, the ELSDSR
database provided 44 (2 x 22) utterances. The duration for
reading of the test data, on average, is: 16.1 s (male); 19.6 s (fe-
male); 17.6 s (for all). 2) Testing the proposed speaker segmen-
tation on completely natural and unpredictable conversation.
In order to obtain ground truth results, the test speech chunks
needed to undergo human annotation. We implement this by us-
ing ELAN [40], software designed for the manual annotation of
audio and video data, and three separate annotators per audio, to
control for any inter-annotator reliability issues. For the evalua-
tion process, we consider a measured binary classification prob-
lem for evaluating the results. We define speech classification
as positive and non-speech classification as negative. The eval-
uation of each of the category combination involves computing
the resulting sensitivity, specificity, and accuracy as follows:

TN

SensitiVity = m

TP ir
m, SpeClﬁClty =
accuracy = TP+ TN )
TP + FN + TN + FP

where TP = true positive, FP = false positive, TN = true
negative, and FN = false negative.

C. Stage 1 Evaluation

Table II shows the comparison of our proposed speech and
sound classification method based on the sampling frequency
8 and 16 kHz, under various classifiers. The classification re-
sults for all classifier types based on the 8 kHz sampling fre-
quency gives an average accuracy of 89.72%, while a higher
performance is attained by the 16 kHz sampling frequency with
an average accuracy of 92.8%. This leads to an improvement of
2.28%. However, the best results for both sampling frequency
are obtained by using a KNN classifier with an accuracy of
92.8% and 94.3%, respectively.
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TABLE II
EVALUATION RESULTS OF STAGE 1 PROCESS

8 kHz sampling frequency
Methods Sensitivity | Specificity | Accuracy
LDA 90.1% 94.6% 92.3%
NaiveBayes 88.6% 92.3% 90.5%
DT 82.1% 83.1% 82.8%
KNN 92.8% 100% 96.4%
SVM 88.6% 95.5% 92%
16 kHz sampling frequency
Methods Sensitivity | Specificity | Accuracy
LDA 92.8% 94.5% 93.6%
NaiveBayes 90.2% 95.4% 92.8%
DT 90.1% 88.3% 89.2%
KNN 94.3% 100% 97.1%
SVM 92.8% 97.2% 95%
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Fig. 4. Segmentation results (clean speech).

D. Stage 2 Evaluation

In this stage, three features and two states of HMM are used
to segment voice and nonvoice frames. The three features are
the noninitial maximum of the normalized noisy autocorrela-
tion, number of autocorrelation peaks, and normalized spectral
entropy. All three have proven successful for robustly detecting
voiced speech under varying noise conditions. We obtain seg-
mentation results on two types of speech data: 1) clean speech
corrupted by different artificial noise; and 2) testing on com-
pletely natural and unpredictable speech.

1) Clean Speech Corrupted by Different Artificial Noise:
Figs. 4 and 5 show the test examples of segmenting clean and
noisy speech using the proposed features.

In Fig. 4, the top panel denotes the clean female speech; the
middle and bottom panel denote the annotation and algorithm
segmentation results. Upon comparing the algorithm segmen-
tation with ground truth annotation results, voice segmentation
has been well obtained, when using clean speech as the audio
sample.

Fig. 5 demonstrates an example of segmentation results when
clean speech is corrupted by strong noise, e.g., signal-to-noise
ratio (SNR = 0 dB white noise). Fig. 5 shows the segmentation
results given when working with a noisy speech signal. Despite
failing to detect a few voiced segments, the overall segmentation
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Fig. 5. Segmentation results (noisy speech).

results based on the performance of the algorithm are very ac-
curate when compare with the ground truth. In total, four types
of corrupting noise were tested: 1) white noise, 2) color noise,
3) street noise, and 4) restaurant noise. For each type of noise,
the level of SNRs is 0, 5, and 10 dB. In general, the results show
that the method employed with clean speech samples still can
segment voice and nonvoice segments when they are corrupted
with noise. Tables Il and IV show the segmentation results
based on sensitivity, specificity, and accuracy.

Tables III and IV show the segmentation results for 8 and
16 kHz sampling frequencies of recorded speech. For all types
of noise, the sensitivity, specificity, and accuracy increase coher-
ently when SNR increases. Overall, the results based on 16 kHz
sampling frequency are always better than those based on 8 kHz
sampling frequency with an average improvement of 2.5% ac-
curacy. In Table IV, the segmentation performance of speech
contaminated with color noise is found to be better than those
contaminated with other noise, with an average of 95.6% accu-
racy. A high segmentation performance has been observed, even
when the speech is corrupted with high power noise at SNR =
0 dB. The segmentation performance of speech contaminated
with other types of noise still maintain significantly high accu-
racy, with an average accuracy of 93.2% for white noise, 94.1%
for street noise and 93.2% for restaurant noise. The results of
Tables III and IV are average performance. In our experiments,
the noise is randomly selected from the AURORA database
[41] and the segmentation performance for each type of noise is
obtained in Tables III and IV by averaging over 20 realizations.

2) Natural and Unpredictable Speech: In this experiment,
all speech samples are collected either from noisy or quiet envi-
ronments and the WAM device was positioned on the wearer’s
wrist (WAM speaker). We test 35 speech chunks from various
conversational situations (e.g., 3 people sit in the home having a
discussion, with variable television volume in the background;
4 people have a conversation in a car; 2 people have a conver-
sation in a quiet room; 3 people have a conversation in a noisy
restaurant). Fig. 6 shows an example of the speech segmenta-
tion results from the conversation occurring with background
TV sound. We tested speech chunks for both 8 and 16 kHz
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TABLE III
EVALUATION OF SEGMENTATION RESULTS UNDER VARYING NOISE CONDITIONS (8 KHZ SAMPLING FREQUENCY)

Noise level (signal to noise ratio)
0dB 5dB 10dB

2z 2z B Z Z oy 2 £z z

Noise type 2 =t g B i £ & = £

G 5 3 G i5) 3 G 5 3

= @ 5] = Q 5] o Q 5]

A & < A & < A & <
White noise 82.3% 98.5% | 90.4% | 84.6% | 98.1% | 91.2% | 86.2% 100% 93.3%
Color noise 85.4% 97.2% | 91.6% | 90.7% | 98.2% | 94.3% | 92.4% 98.1% 95.5%
Street noise 81.2% 95.4% | 882% | 87.2% | 97.8% | 92.6% | 91.1% 98.3% 94.3%
Restaurant noise 71.7% 96.1% | 84.3% | 83.5% | 97.3% | 90.1% | 90.6% 98.7% 94.2%

TABLE IV

EVALUATION OF SEGMENTATION RESULTS UNDER VARYING NOISE CONDITIONS (16 KHZ SAMPLING FREQUENCY)

Noise level (signal to noise ratio)
0dB 5dB 10 dB
Noise type 2 = £ = & £ B = g
©n ) 19 ) 1) )

White noise 85.4% 100% 93.3% | 87.2% 100% 94.5% | 89.6% 100% 94.9%

Color noise 90.5% 98.1% 94.4% | 93.3% 98.2% 96.2% | 93.3% 98.2% 95.7%

Street noise 85.2% 99.3% 92.1% | 93.6% 98.6% 95.1% | 96.4% 98.1% 97.1%
Restaurant noise 73.7% 100% 87.6% | 93.1% 98.4% 95.7% | 96.3% 98.6% 97.1%
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Fig. 6. Segmentation results.
TABLE V
EVALUATION OF SEGMENTATION RESULTS FOR THE WAM SPEAKER
WAM test speech (8kHz sampling frequency)
Noiseless Noise
Sensitivity | Specificity | Accuracy | Sensitivity | Specificity | Accuracy
66.6% 71.7% 71.5% 58.9% 73.5% 66.8%
WAM test speech (16 kHz sampling frequency)
Noiseless Noise
Sensitivity | Specificity | Accuracy | Sensitivity | Specificity | Accuracy
71.6% 92.5% 84.7% 68.5% 90.7% 81.6%

sampling rates. The averaged results are shown in Table V for
the two cases of unpredictable speech in noiseless environment
and ambient noise environment.

Table V shows the overall segmentation results given when
working with a natural speech signal. Speech signals recorded
from noiseless environment have been recovered successfully
for both sampling frequencies with an average of 85.4%
and 87.3%. The segmentation performance deteriorates when
speech signals are recorded from unpredictable noisy environ-
ment because more interference exists when segmenting every
voiced frame and there is higher probability of incurring an er-
ror. However, the segmentation results are still acceptable with
an average accuracy of 77.4% for 8 kHz and 82.2% for 16 kHz
sampling frequency. Comparing the results in the table, lower
sampling frequency results in poorer performance than a higher
sampled one. One reason could be that the seemingly lower
sampling frequency, i.e., 8 kHz might satisfy the speech signal.
However, some kinds of noise such as street noise or background
music with high-frequency properties will lead to aliasing when
the sampling frequency is low, which will impact the segmen-
tation results thus leading to less efficiency in the segmentation
of voiced frames.

E. Stage 3 Evaluation

1) Feature Selection Test: As described in Section III, ro-
bust features highly impact the accuracy of speaker segmen-
tation results, especially when clean speech is corrupted by
unpredictable noise. In this experiment, the speaker recognition
system was first employed to test the efficiency of the different
features when the speech sample is corrupted by different types
of noise. The training and testing speech samples are obtained
from the ELSDSR database.

Speaker recognition is the task of comparing an unknown
speaker with a set of known speakers in a database to find the
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best matching speaker. In this experiment, we consider the use of
stochastic models, where pattern matching is probabilistic and
results in a measure of the likelihood, or conditional probabil-
ity, of the observation occurring within a model. Here, a certain
type of distribution is fitted to the training data by searching
the parameters of the distribution that maximize some criterion.
Stochastic models provide more flexibility and better results.
They include GMM, HMM, and ANN, as well as linear classi-
fiers [36]. In our experiment, we chose to use GMM [15] with
32 components and 12 coefficients for every test results based
on different types of additive noise under various SNR levels.
For all types of features and noise, the recognition rate increased
coherently when SNR increased.

Overall, from Fig. 7, PNCC leads to the highest recognition
rate for all types of noise. For strong noisy environments (i.e.,
SNR between 0 and 15 dB), PNCC provides a superior average
of 50.3% accuracy for white noise, 20.2% accuracy for street
noise, and 16% accuracy for restaurant noise when compared
to MFCC features, and 40.4% accuracy for white noise, 27.1%
accuracy for street noise, and 32.3% accuracy for restaurant
noise when compared with LPCC features. For low-level noise
environments (i.e., SNR between 20 and 30 dB), PNCC provided
an average of 28.2% accuracy for white noise, 7.5% accuracy
for street noise and 0.4% accuracy for restaurant noise, when
compared with MFCC features, and 30.1% accuracy for white
noise, 7.6% accuracy for street noise and 0.8% accuracy for
restaurant noise, when compared with LPCC features.

2) Segmenting the Wearable Acoustic Monitor Speaker from
Natural and Unpredictable Conversation: In this test, we tar-
get the segmentation of the WAM speaker as well as predicting
the number of unknown speakers within the unpredictable con-
versation. We trained the GMM WAM speaker PNCC mod-
els individually and used a universal background GMM to
represent all unknown speakers. This can be implemented by
training the GMMs on different kinds of speakers. In our ex-
periment, we train 40 different people, ranging in age from 20
to 70 years, in order to generate our background GMM PNCC
models. For parameters settings, 180 s (3 min) is deemed a
good minimum amount of training data for the WAM speaker
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Fig. 8. Segmentation results (WAM speaker).

and 32 GMM components is chosen to balance accuracy and ef-
ficiency [15]. In addition, the fundamental frequency (pitch) of
each WAM speaker is found useful in discriminating, at the very
least, between male and female speakers, so, we have included
it as another feature in the model training.

Fig. 8 shows an example of the segmentation results. The top
panel shows the natural conversation, where the WAM speaker
talks with her female friend in the kitchen. Later, an additional
two females and two males join the conversation. We have an-
notated the ground truth of the WAM speaker, which can be
viewed in the middle two panels and then compared to the al-
gorithm’s ability to segment the WAM speaker (bottom panel),
which presented a successful result of 82.4% accuracy. In this
case, TP denotes that the WAM speaker is correctly identified
as the WAM speaker, FP denotes nonspeech segments and other
speakers who are incorrectly identified as the WAM speaker, TN
denotes nonspeech segments and other speakers who are cor-
rectly identified as nonspeech and other speakers, and finally,
FN denotes that the WAM speaker is incorrectly identified as
nonspeech or other speakers. Fig. 8 shows the results obtained
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TABLE VI
SOCIAL-AUDIO SIGNALS OF EACH SUBJECT
Total Percentage of Estimated Estimated
. conversation speaking time Sound level speaking first format
Subject .

time ) meter energy frequency

(minutes) Actual | Estimate (std/mean) | (std/mean)
#1 22.30 55.1% 52.2% 76.3dB 1.86 0.36
#2 22.16 22.8% 21.4% 62.9dB 2.96 0.52
#3 15.07 32.2% 34.1% 70.5dB 1.90 0.49
#4 23.21 18.0% 20.0% 83.2dB 1.74 0.39
#5 15.13 51.4% 48.5% 74.2dB 1.36 0.34
#6 10.08 16.4% 14.7% 72.5dB 1.36 0.34
#7 10.15 19.5% 16.8% 72.1dB 3.92 0.36
#8 15.29 32.6% 34.1% 76.7dB 1.57 0.47
#9 15.11 30.8% 34.6% 72.9dB 2.00 0.49
#10 15.04 48.1% 44.9% 73.7dB 1.36 0.35

TABLE VII

GAP STATISTIC PREDICTION

Unpredictable test speech (8kHz sampling frequency)
Noiseless Noise
Correct % Correct %
75.2% 61.1%
Unpredictable test speech (16 kHz sampling frequency)
Noiseless Noise
Correct % Correct %
79.3% 67.1%

for sensitivity 79.5%, specificity 84.2% and accuracy 82.3%.
In addition, Table V shows the overall segmentation results
for all test speech chunks based on sensitivity, specificity, and
accuracy.

Table V shows the overall segmentation results given when
working with naturalistic test speech chunks. The WAM speaker
segments have been extracted successfully, when conversations
happen in a noiseless environment, for both sampling frequen-
cies, with an average of 71.5% and 84.4%. The segmentation
performance deteriorated when conversation was recorded from
within unpredictable, noisy environments. This is due to fact
that more interference exists in the change point detection algo-
rithm and model match calculation and hence results in a higher
probability of incurring an error. However, the segmentation
results are still acceptable, with an average accuracy of 66.5%
for 8 kHz and 81.3% for 16 kHz sampling frequency. Once
the WAM speaker has been segmented out of conversation, we
expected to be able to predict the number of other speakers
within the conversation. This prediction was achieved through
the use of gap statistic techniques and the results are tabulated
in Table VII.

Table VII summarizes the overall prediction results when
working with naturalistic speech chunks. It can be seen that the
obtained results have been very successful when conversation
occurs in the noiseless environment for both sampling frequen-
cies, with an average of 75.2% and 79.3%, respectively. The

prediction results are still acceptable with an average accuracy
of 61.1% for 8 kHz and 67.1% for 16 kHz sampling frequency.
Once all of the above stages have been implemented, the
social-audio signals can then be calculated. The sound level
meter is used to analyze the nonspeech sounds occurring in the
background, to measure the number of places that conversations
are happening. The social signals activity and emphasis can be
predicted by using the WAM speaker segmentation results.
Overall, we calculated the social signals for all WAM sub-
jects. Ten out of thirty results have been tabulated in Table VI.
These features can be applied to enable the performance of
automated social analysis of conversational data to infer the
relationship between speakers. Fig. 9 shows an example of cal-
culating the social signal of the WAM speaker based on the
proposed work. The top panel shows the conversation about
holiday discussion between the WAM speaker and other speak-
ers where the talk happens inside a house. The second panel
shows the WAM speaker segmentation results (89.3% sensi-
tivity, 88.5% specificity, and 89.6% accuracy compared with
annotated ground truth) based on the proposed algorithm. The
third panel estimates sound level meter for every 1 min block
conversation. It indicates that the environment of this conversa-
tion happens in a normal place due to the classification range
summarized in Table I of E;p5. The fourth panel estimates the
percentage of WAM speaking time. This indicates how activity
of the WAM speaker is within the conversation. This shows that
with percentage of WAM speaking time, we can readily infer
the activity level of the speaker. Fig. 9 shows that the WAM
speaker is more active in the first 3 min conversation, where his
percentage of speaking time is larger than 50%, and then slowly
decreases in the latter 2 min to approximately 40%. The activity
suddenly decreases to the bottom (10%) in the conversation be-
tween ¢ = 6 and 7 min. The WAM speaker starts to be active
again in the conversation at ¢ = 8 mins and decreases to 10%
of speaking time at ¢ = 13 mins and finally returns around 30%
in the last 2 min. In line with above, the bottom panel estimates
the emphasis of the WAM speaker during conversation based
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Fig. 9. Social signal prediction.

on the estimated scaled speaking energy and first format. The
first format of the WAM speaker does not change prominently
across the whole conversation except at t = 13 min and 14 min.
In addition, the emphasis of the WAM speaker in the first 5 min
retains a relatively stable level based on the scaled speaking
energy and starts to fluctuate between conversation from ¢ =
6 min and 15 min where the emphasis approaches the highest
level at the ¢ = 11 min.

V. CONCLUSION

In this paper, a novel platform for the analysis of longitudinal
and unpredictable social-audio signals has been proposed. The
proposed method enjoys at least three significant advantages.
First, an efficient architecture has been developed to enable con-
tinuous audio sensing and scalable four-stage methods to gather
social-audio signal. Second, an integrated system of speech and
sound detection and classification to reliably analyze longitudi-
nal audio signals has been introduced. This is used to capture the
changeable/unstable characteristics of the longitudinal and un-
predictable audio signals. Finally, the analysis of the audio data
captured by the wearable device has yielded significantly high
performance for social-audio signal learning using the proposed
SASE architecture.
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