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Eddy Current Pulsed Thermography (ECPT) has received extensive attention due to its high sensitive of
detectability on surface and subsurface cracks. However, it remains as a difficult challenge in unsuper-
vised detection as to identify defects without knowing any prior knowledge. This paper presents a
spatial-time-state features fusion algorithm to obtain fully profile of the defects by directional scanning.
The proposed method is intended to conduct features extraction by using independent component anal-
ysis (ICA) and automatic features selection embedding genetic algorithm. Finally, the optimal feature of
each step is fused to obtain defects reconstruction by applying common orthogonal basis extraction
(COBE) method. Experiments have been conducted to validate the study and verify the efficacy of the
proposed method on blind defect detection.

� 2018 Elsevier B.V. All rights reserved.
1. Introduction

Non-destructive testing (NDT) refers to a wide group of analysis
techniques used in industry to evaluate the properties of a mate-
rial, component or system without causing damage [1,2]. Conven-
tional NDT methods include X-ray detection, ultrasonic testing,
magnetic particle testing and eddy current testing [3]. Stress con-
centration and superficial cracks inevitable exist in mechanical
parts during the manufacturing and in service process. This leads
to considerable hazards in industrial activities. Therefore, the
detection of cracks is important [4].

Magnetic Particle Testing (MT) [5] is effective for the detection
of surface and near-surface discontinuities while it has a compli-
cated detecting procedure. The surface of the sample requires pre-
treatment and the detection time is relatively long. Moreover, MT
produces pollution. Penetrant Testing (PT) [6] is sensitive to open
surface cracks. Unfortunately, the surface coating significantly
affects the detection rate that leads to ineffective inspection for
fatigue cracks. Alternatively, the electromagnetic method has been
widely used for the inspection of surface/subsurface flaws. Alter-
nating Current Field Measurement (ACFM) has been proven to be
effective in detecting surface breaking geometrical defects in any
direction under simulation [7].

In recent years, with the rapid development of thermal imaging
equipment, infrared thermography (IT) based NDT has been used
for composite defect detection and cracks identification among
others. It has several promising advantages [8,9] such as rapid
inspection over a large region, non-contact and high sensitivity.

Eddy Current Pulsed Thermography (ECPT) is a multi-physics
coupling method. The combination of eddy currents heating and
thermal diffusion is beneficial for detecting turbulence in conduc-
tive materials by analyzing the thermal patterns [10]. Eddy current
pulsed thermography combines the advantages of pulsed eddy cur-
rent (transient analysis and eddy current interpretation) and mer-
its of thermography (fast and high resolution), which has been
widely used for damage detection in metallic alloy [11]. Recently,
ECPT has been used in many defects detection applications such
as crack detection of carbon fiber reinforced plastic materials, com-
pressor blades, and fatigue cracks [12,13]. In addition, the relevant
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signal processing methods have been proposed in ECPT. He et. al.
used time to peak feature for wall thinning and inner defects char-
acterization [14]. However, the transient response features always
suffer from noise. In order to enhance the contrast between the
defects and the noise, patterns-based processing methods have
been proposed. These include Principal Component Analysis
(PCA), Independent Component Analysis (ICA) and sparse decom-
position. PCA was used to extract an orthogonal thermography fea-
tures by compressing the initial video sequences instead of
analyzing each image [15]. Bai et. al. [16] proposed ICA to highlight
the anomalous patterns of ECPT for crack identification in metallic
specimen. Nedeljko Cvejic et. al. [15] presented a novel region-
based multimodal image fusion algorithm in the ICA domain. Gao
et. al. reported blind source separation algorithm on ECPT for auto-
matic crack detection and identification [17].

In order to increase the effective detection area and enhance the
accuracy of detectability, the fusion methods are suitable candi-
dates in NDT applications. Canonical Correlation Analysis(CCA) is
proposed for information fusion. The purpose of CCA is to identify
and quantify the relationship between two sets of variables. The
focus is on the correlation between a linear combination of one
set of variables and a linear combination of the other set of vari-
ables. It can be used for feature fusion. Pan et. al. applied CCA for
information fusion, which laid the mathematical foundation. In
addition, CCA was used in pattern recognition, which implements
the feature-level fusion [18]. However, CCA mainly solves the
problem of correlation between two multivariate random vectors
whereas it cannot solve the problem of fusion between multiple
data. Zhou et. al. [19] proposed a new framework for common
and individual feature extraction (CIFE) which identifies and sepa-
rates the common and individual features from the multiblock
data. Gao L et. al. [20] proposed a novel approach for multi-
feature information fusion based on the Discriminative Multiple
Canonical Correlation Analysis (DMCCA), which can extract more
discriminative characteristics for pattern recognition. Rasha Ibra-
him et. al. [21] presented a pixel-level image fusion technique
based on integrating the sparse representation with robust princi-
ple component analysis algorithm (RPCA) to promote relevant
information, eliminate noise and preserve edges.

At the present stage, although signal processing technology has
made progress in ECPT analysis, it has encountered many practical
issues. Current detection methods are mostly established where
the location of cracks is assumed known a priori. In real applica-
tions, the position of defects is almost unknown. Thus, it becomes
necessary to be able to detect cracks by directional scanning.

In this paper, a feature-level fusion method is proposed and
applied to state the effect of ECPT on the treatment of surface
cracks for metal material. Unlike the above general model, the pro-
posed method allows automated reconstruction of the defect
region as well as suppression of the interference background so
that the defects can be detected without knowing prior knowledge.
In addition, the proposed model can significantly improve the
defect detection precision and this will be demonstrated on artifi-
cial and natural steel cracks. The remainder of this paper is orga-
nized as follows: Firstly, the introduction of ECPT system and the
proposed method are presented in Section 2. The results and dis-
cussions are presented in Section 3. Finally, conclusions and fur-
ther work are outlined in Section 4.
2. Methodology

2.1. Introduction of state ECPT system

Fig. 1 shows the diagram of state ECPT NDT&E system.
According to the law of electromagnetic induction, when
alternation current is driven into induction coil, the conductor near
the coil generates an induced eddy current. When eddy current
encounter a defect, the vortex will be forced to bypass the defect
and results in eddy density increasing or decreasing in part of
regional. Thus, the heat generated by the conductor will appear
unevenly distributed, and the distribution of the surface tempera-
ture is recorded by infrared camera [22].

Using the Joule’s law to couple the eddy current field and the
temperature field [23], the heating power (internal heat source
density or intensity) generated by the induced eddy current in
the specimen is denoted byQ , namely

Q ¼ 1
r
jJej2 ¼ 1

r
jrEj2 where r ¼ r0

1þ aðT � T0Þ ð1Þ

In general, by taking account of heat diffusion and Joule heating,
the heat conduction equation of a specimen can be expressed as:

@T
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¼ k
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þ @2T
@z2

 !
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qCp

qðx; y; z; tÞ ð2Þ

where T ¼ Tðx; y; z; tÞ is the temperature distribution, k is the ther-
mal conductivity of the material (W/m K), which is dependent on
temperature. q is the density (kg/m3), Cp is specific heat (J/kg K).
qðx; y; z; tÞ is the internal heat generation function per unit volume,
which is the result of the eddy current excitation. From the above
analysis, it becomes clear that the variation of temperature spatially
and its transient response recorded from the IR camera directly
reveals the intrinsic properties variation of the conductive material.
Through the analysis of thermal image, it becomes clear that the
variation of temperature spatially and its transient response
recorded from the IR camera directly reveals the intrinsic properties
variation of the conductive material.

The pulse generator transmits signals to IR camera and induc-
tion heater simultaneously. The induction heater generates an
electromagnetic and thermal field on the conductive specimen.
With the continuous movement of the inductor, the IR camera will
record the video of each state termed as Vn 2 RNx�Ny�Jn , where Nx,
Ny denote the length and the width of each image frame in the
thermal video, respectively. Jnn 2 f1;2; . . . ;Ng denotes the total
number of frame for each state.

2.2. Strategy

The specific procedure of the proposed fusion strategy
(as shown in Fig. 2) consists of: firstly, thermal video sequences
under different states are obtained by directional scanning.
Secondly, features extraction using ICA and genetic algorithm
embedded for automatically selecting the defect related ICA com-
ponents for each state. Finally, COBE is conducted for the fusion
procedure. The following sections will present the proposed
method. It should be noted that all the parameters set in this work
have been validated by Monte Carlo based experiment approach
where the process is repeated over 10 realizations.

2.3. ICA for feature extraction

ICA [24] has the capability to automatically extract valuable
spatial and time patterns according to the whole transient
response behavior. Here, the number of features separated by ICA
is set as M.

In order to facilitate the calculation of ICA, three-dimensional
tensor will be converted into a two-dimensional matrix. Single
frame of the thermal video Vn 2 RNx�Ny�Jn is sorted by vectorizing
each frame, namely YnðtÞ 2 RD�Jn , where D ¼ Nx � Ny. YnðtÞ can be
considered as a mixing observation. XnmðtÞ is considered as thermal



Fig. 1. State ECPT schematic diagram.

Fig. 2. Proposed fusion strategy.
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pattern in which the regions of features are with different spatial
and time distribution, namely independent components. The term
m stands for the feature serial number separated by ICA
ðm ¼ 1;2; . . . ;MÞ and wmthe mixing parameter. YnðtÞ can be con-
sidered as a linear instantaneous mixing model given by

YnðtÞ ¼
XM
m¼1

wmXmnðtÞ n ¼ 1;2; . . . ;N ð3Þ
where X0
mnðtÞ ¼ ½vecðX1nðtÞÞ; vecðX2nðtÞÞ; . . . ; vecðXMnðtÞÞ�T and

ðvecðXmnðtÞÞm ¼ f1;2; . . . ;Mg. The ICA learning algorithm is equiva-
lent to searching for the linear transformation that make the com-
ponents as statistically independent as possible, as well as
maximizing the marginal densities of the transformed coordinates
for the given training data. This can be performed by using fixed
point iteration algorithm to estimate X0

ICA ¼ W�1
ICAY

0, the specific
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steps of approach for thermal pattern separation by using ICA can
be found in [25] and [26].
2.4. GA for features selection

Genetic Algorithm is firstly proposed by Holland which has
been used to trace the procedure of evolution of stochastic global
parallel search [27]. It has the advantages of strong robustness
and global optimization performance. Because in each step most
of the features separated by ICA contain fewer defect information,
it is necessary to find out the feature which contains the most
defect information. Here the genetic algorithm is used for features
extraction.

In inductive thermography, if defect exists, the distribution of
eddy current (EC) or the process of thermal diffusion will be dis-
turbed. Therefore, in the heating stage, different areas have differ-
ent heat generation rates which subsequently lead to temperature
spatial variation. Hot spots are mainly distributed around the crack
tips. Follow this mechanism, the strategy is to select the mean of
top H (e.g. H = 100) highest temperature points as the representa-
tive of relevant defect regions. Specially, the defects caused of tem-
perature rising region are relatively small, the background
temperature can be considered to be the average of the tempera-
ture of the entire fused image. Thus, in order to enhance the con-
trast between defective and non-defective areas, the appropriate
fitness function for thermal features selection should be generated
and this can be calculated as follow:

max f ¼
avg

XH

i¼1
Ti

� �
avg

XS

i¼1
Ti

� � ð4Þ

where T represents the vector of the fused image in descending
order intensity. S represents the number of elements of the entire
fused image.

The significance of the cost function lies in the ability to extract
features better, especially for single cracked video. We assume that
H is the number of pixels in the crack, and H is set to 100. In this
way, it can guarantee that the crack information is continuously
enhanced through the multi-step fusion when there is a crack
(usually a crack contains more than 100 pixels). When a pixel in
the same position fuses at different steps, the larger the pixel value
in the feature is, the larger is the pixel value in the fusion image. If
a feature does not contain the top H largest pixel information
points, it will choose the feature which contains fewest thermal

information feature to make avgðPS
i¼1TiÞ as small as possible.

The result is that genetic algorithm continues to find features that
enhance the information of a crack.

Table 1 and Fig. 3 give the specific parameters and flowchart of
genetic algorithm, respectively. In the first stage of the proposed
method, all individuals of the population were initialized. The fea-
ture number extracted from each step was randomly selected by
binary encoding and subject to gene coding. In the second stage,
Table 1
GA parameters used for features selection.

Coding type Binary coding

Population Size 30
Selection type 2-tournament selection
Crossover type Single-point crossover
Mutation type Uniform
Crossover probability 0.6
Mutation probability 0.01
Maximum number of iterations 10
each individual was decoded and carried out by applying COBE
fusion model and its fitness function was computed. In the third
stage, it will conduct tournament selection, single-point crossover
and mutation operations to generate new offspring population. In
the fourth stage, the procedure repeats the second and third stages
until the function converges. Finally, COBE fused image will be
generated by the proposed embedded genetic algorithm.

2.5. COBE for features fusion

In the detection of directional scanning of each state, although
the heat abnormality will be concentrated in the defect while noise
is being generated. The noise is greatly influenced by the coil and
the test environment. Thus, features fusion should not only sup-
press the noise but also reconstruct the full profile of the defects.
In this paper, common orthogonal basis extraction (COBE) method
is used for the features fusion. COBE can extract common basis that
characteristic is shared by all blocks of data. Comparing with the
traditional features fusion algorithm such as principal component
Fig. 3. Flowchart of the proposed embedded genetic algorithm.
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analysis (PCA), canonical correlation analysis(CCA) [28], COBE
offers several potential advantages.

1. COBE can identify real common subspace even if the common
components are relatively weak.

2. The time complexity of COBE algorithm is relatively low as it is
convenient to carry on the iteration of genetic algorithm.

3. PCA focuses on the ‘‘decentralized” information of the variables,
while CCA is based on the identification and quantification of
the statistical relevance of the two sets of variables, which is
the promotion of the correlation from two random variables
to two sets of variables. COBE extracts only components for
which the correlation is higher than a specified threshold.

The detailed description of COBE on the proposed structure is
specified as follows.

Consider a set of ICA components of ECPT for all states
y ¼ fYn 2 RD�Jn : n 2 Sg; S ¼ f1;2; . . . ;Ng obtained by directional
Table 2
The description of different samples.

Sample Indication Dimension Defect informat

Sample(a)316#
stainless steel Top view

Main view

120 � 60 � 6
(mm)

2 types of crack
1.2(mm)) notch

Sample(b)316#
stainless steel

Top View

130 �
130�10
(mm)

5 45�-angle man

Sample(c)45#
steel

Top View

130 � 130 �
10 (mm)

Different angle c
size are all 8 � 0

Sample(d)316#
stainless steel

Top View

200 � 100 �
18 (mm)

A long natural c

Sample(e)railway Dozens of natural fatigue
cracks

115 � 7 �
180(mm)

Many natural cr
scanning. A matrix decomposition problem is involved whereby
for each matrix Yn 2 y, we seek:

min kYn � AnB
T
nk2F ;n 2 N ð5Þ

where the Rn columns of An 2 RD�Rn represent the latent variables in
Yn, and Bn 2 RJn�Rn denotes the corresponding coefficient matrix.
The matrix product AnB

T
n provides a compact/compressed or low-

rank representation of Yn .

Let An ¼ A eAn

h i
; n 2 N where A 2 RD�1, eA 2 RD�ðRn�1Þ, we

assume the common component vector A contains the common

components shared by all the matrices, while the submatrix eA con-
tains the individual information. The decomposition of the matrix
can be approximated as follows:

Yn � AnB
T
n ¼ A eAn

h i BT
neBT
n

" #
¼ ABT

n þ eAn
eBT
n ð6Þ
ion Picture

s with different depth (8 � 0.5 � 0.5, 8 � 0.5 �
es are manufactured

-made cracks (8 � 0.1 � 1(mm))

racks (0�, 15�, 30�, 45�, 60�, 75�, 90�), the cracks
.1 � 1(mm)

rack

acks



Fig. 4. Experiment setup.
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where Bn and eBn are the partitions of the coefficients Bn that corre-

sponding to A and eAn. Let Yn ¼ UnHn, Un is extracted by Yn through
ICA. Un is an orthogonal vector, UT

nUn ¼ Iand Zn ¼ HnB
Ty
n , ð�Þyrepre-

sents the Moore-Penrose matrix pseudoinverse.
Thus, the common components can be estimated by solving:

minZn ;A

XN
n¼1

jjUnZn � Ajj2F ; s:t: ATA ¼ I ð7Þ

mina;Zn f ¼
X
n

kUnZn � ak2; s:t: aTa ¼ 1 ð8Þ

Among them, Un is known as the ICA component, the common
components of the interested acan be obtained by continuous iter-
ation. Finally, reshape ato get the fusion image of multi-step ther-
mal video data.

The overall algorithm flow of the proposed method is shown
below:

Input: y ¼ fYn 2 RD�Jn : n 2 Sg; S ¼ f1;2; . . . ;Ng thermal
videos obtained by IR camera, all state videos, e correlation
coefficient threshold

Initialization: ICAnmm ¼ f1;2; . . . ;Mg is the ICA
decomposition of Yn

Output: Fusion image with the highest fitness value a
Initialize population P
for i = 1 to max_iteration
compute the fitness value{
while (f<e)
ai ¼

P
nICAnmZn=k

P
nICAnmZnkF;n 2 N;m 2 M

Zn ¼ ½ICAnm�Tai
end (stop condition)

f ¼ avg
PH

i¼1
Ti

� �
avgð
PS

i¼1
TiÞ

, The T vector is obtained by arranging the

value of ai in descending order
}
select parents pj; j ¼ f1;2; . . . ; jPjg from P by fitness value
offspring = crossover (p1; p2)
mutation(offspring)
replace P with offspring
return ai

end (stop condition)
3. Result and discussion

3.1. Sample preparation and experiments setup

In order to validate the robustness of the proposed method, a
large number of experimental tests were conducted. The experi-
ments contain a variety of test samples including ferromagnetic
material (45# steel) samples with artificial cracks, non-
ferromagnetic material (316# stainless steel) samples with artifi-
cial cracks, ferromagnetic material (steel rails) samples with natu-
ral cracks and non-ferromagnetic material (316# stainless steel)
samples with natural cracks. Table 2 gives a comprehensive
description of the samples [29,30]. These samples are all metal
specimens containing cracks.

The experimental set-up is shown in Fig. 4. An Easyheat 224
from Cheltenham Induction Heating is used for coil excitation.
The Easyheat has a maximum excitation power of 2.4 Kw, a maxi-
mum current of 400 Arms and an excitation frequency range of 150–
400 kHz (380 Arms and 256 kHz are used in this study). Water
cooling of the coil is implemented to construct direct heating of
the coil [31]. The IR camera, A655SC is a Stirling un-cooled camera
with InSb detectors of 640 � 480 array, and the camera has a sen-
sitivity if �50 mK. In the experiment, only one edge of the rectan-
gular coil is used to stimulate eddy current to the underneath
sample, and placed in the middle of the crack. In this study, the
frame rate of 100 Hz is chosen, and 200 ms videos are recorded
in the experiments.

Since these samples are all metal specimens, they have a rela-
tively large conductivity. According to skin depth calculation
formula

d ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
plrf

p ð9Þ

where f is the frequency of excitation signal, r is the electrical con-
ductivity (S/m), and l is the magnetic permeability (H/m). For metal
materials with great conductivity and permeability, the skin depth
is very small on the order of micrometers and the heating style is
surface heating. For volume heating, ECPT also has a good effect
on the composite materials with smaller conductivity [32].

All experiments are set with proper steps to minimize the influ-
ence. In addition, as ECPT has the characteristic of local volume
induction heat that leads to the penetration of the subsurface on
the sample by ways of eddy current penetration. Therefore, the
reflection/shadow effect is limited. All these guarantee the effec-
tiveness of the experimental data.

3.2. B. Results analysis

3.2.1. Multi-step fusion versus single-step detection
In this section, the significance of multi-step fusion method is

required to be verified. The main significance of the multi-step
fusion over single-step detection can be drawn as follows
(1) detection area of the single-step detection is limited,
(2) single-step detection cannot reconstruct the whole profile of
defect and (3) failed detection without knowing prior knowledge
of the crack position. Take sample (d) as an example.

In Fig. 5, the coil has moved in step-by-step. The infrared cam-
era records the thermal video sequence in each step. Different
components by ICA would be separated from the thermal video
sequence. Here, the number of steps and the total number of fea-
tures are both set as 4. Therefore 16 single-features can be
obtained by ICA.

The proposed method judges the pros and cons through the
effective pixels at the defect region. Effective pixels refer to pixels
belonging to both high temperature area and defective area. A pixel
is not only in high temperature area (this is based on the threshold
of the fusion image), but also in the defective area (this is based on
the prior information). For example, in Fig. 6, we determine that
the red box is defect area through prior information (the crack
position which has already been confirmed by using other NDT
techniques, e.G. magnetic particle). However, this region is still



Fig. 5. The features of Sample (d) extracted by ICA.
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too large that it cannot exactly represent the crack area. Indeed, the
crack area is marked with the white box, Thus, the specific
approach is to take a threshold in the red box area and the pixel
which is above the threshold is considered as an effective pixel.

The effective pixels for all features of Fig. 5 are calculated, and
Fig. 7(a) shows the feature which contains the most effective pixels
in Fig. 5 that represent the defect. Due to the limitations of the
excitation area by coil, one step detection cannot cover all speci-
men, and the occlusion of coil. The number of effective pixels is
only 71. In Fig. 7(b), it is obtained by the proposed fusion method
and the number of effective pixels is 154. The number of effective
Fig. 6. A feature extracted by ICA for sample (d).
pixels of the fusion image is twice as large as the best single-step
feature. It validates that fusion based strategy is better than the
single-step detection.
3.3. Comparison of different fusion strategy

3.3.1. Linear weighting method
The linear weighting method simply obtains the mean of all

thermal video sequences. Assuming that the fused g (g is the result
of vectorization of the linear weighted images), it can be obtained
by the following formula

g ¼ meanY

XN
n¼1

Yn

 !
=N ð10Þ

where meanY represents the mean of all rows of the matrix.
In comparison, the advantage of the linear weighting fusion

strategy is not relying on the feature extraction and therefore no
information will be loss from this fusion. However, because the
feature extraction is not carried out, it will cause excessive noise
and results worse detection rate.
3.3.2. Skewness method
The importance of features selection has been described earlier.

Here, the selection of features by skewness method also confirms
the feasibility.

Non-Gaussian refers to the symmetry of a random variable
probability distribution, which is called skewness. The symmetry
of the skew description is the relative mean, and whether the



Fig. 7. (a) Feature which contains the most effective pixels in Fig. 5, (b) fusion image by the proposed method.
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probability density distribution curve is symmetrical with respect
to the mean.

Through the experiment studies, it is found that the effect of
COBE method of image fusion can get a better result when the
selected ICA features who has the second largest skewness. Give
sample (a) as an example. The features extracted by ICA are
shown in Fig. 8. The skewness of Feature 1, Feature 2, Feature
3 and Feature 4 is 13.0696, 3.0209, 2.1517 and 0.0786, respec-
tively. It can be seen from the figure that the crack information
is mainly concentrated on Feature 2 of ICA and this directly
related to the second largest absolute value of skewness. Thus,
this characteristic can be used as automatic feature selection of
the fusion strategy.
Fig. 8. Sample features extract
In order to conduct proper validation, the signal-to-noise ratio
(SNR) will be used for comparison, namely:

SNR ¼ 10 lg
Xm
i¼1

Xn
j¼1

T2
cij=
Xm
i¼1

Xn
j¼1

T2
nij

 !
ð11Þ

where m represents the length of selected matrix, n represents the
width of selected matrix, Tc represents the source region, Tn repre-
sents the noise region.

The proposed algorithm will be compared with Linear weight-
ing and Skewness based fusion models. All of the experiments
are applied by 4-steps directional scanning and each step of the
thermal video extracts four features by using ICA.
ed by ICA using skewness.
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It can be seen from the Fig. 8, the linear weighting method is
influenced largely by the moving distance of each step. When the
coil is moving at a relatively small distance, no feature extraction
is performed. The pixel fusion is made, and the noise generated
by the coil is dense, which will directly affect the extraction of
defects. In comparison, it can be seen clearly that the benefits of
feature extraction by ICA enable us to separate the noise and crack
information about high accuracy.

For sample (a) and sample (d), they are both based on dealing
with a single crack (in order to verify the results of a single crack
treatment of natural and artificial cracks, only parts of sample(a)
are intercepted to compare the results). As is shown in Figs. 9
and 10, the red border represents the crack area and the white bor-
der represents the noise area (crack area is obtained by prior infor-
mation, in order to ensure that two areas have almost the same
noise, the noise area is selected nearest to the crack area), the same
in following figures. According to Fig. 6, it can be seen that the
extracted features by ICA basically do not contain the entire crack
information. After the fusion, the proposed method can completely
reconstruct defect profile. Table 3 gives the signal-to-noise ratio
between the crack and the background noise.

Table 3 shows the comparison of SNR values of various fusion
methods. The linear weighting method gives SNR results of
2.5931 dB and 7.4096 dB for sample (a) and sample (d). The value
Fig. 9. Fusion images are obtained b

Fig. 10. Fusion images are obtained b

Table 3
SNR of directional scanning ECPT system of sample (a) and sample (d).

Method Sample (a) Sam

Linear weighting 2.5931 7.40
Skewness 3.7533 6.58
Genetic algorithm 9.3919 18.0
of the skewness method is roughly the same as the linear weight-
ing method while genetic algorithm gives SNR result of 9.3919 dB
and 18.0033 dB. Its value is three times as big as the linear weight-
ing method and the skewness method. The result indicates that the
proposed method has a significant performance improvement.

For sample (b), as is shown in Fig. 11, this is the case where the
fusion algorithms deal with multiple cracks. Due to the large size of
this sample, the distance between each step is relatively remote.
Table 4 gives the signal-to-noise ratio between the crack and the
background noise.

Table 4 shows the fusion methods of multi-crack detection. The
linear weighting method gives a mean SNR results of 3.7985 dB,
the mean SNR values of the genetic algorithm and the skewness
method are roughly the same. The value is approximately twice
as big as the linear weighting. Linear weighting is greatly influ-
enced by noise. In position 5, genetic algorithm and skewness
method have a better effect. However, the SNR value of linear
weighting is less than 0 and the defect signal is weaker than the
noise signal in which this greatly makes the difficulty of locating
all the cracks. It can be seen that although the genetic algorithm
and the skewness method both select the features separated by
ICA, the defect information for different locations is significantly
different. In contrast to the skewness method, the overall noise
of genetic algorithm is smaller in the fused image.
y three methods for sample (a).

y three methods for sample (d).

ple (d) Compared with genetic algorithm

Sample (a) Sample (d)

96 6.7988 10.5937
58 5.6386 11.4175
033 0 0



Fig. 11. Fusion images are obtained by three methods for sample (b).

Table 4
SNR of directional scanning ECPT system of sample (b).

Method Cracks location of sample (b) Average Compared with genetic algorithm

Position 1 Position 2 Position 3 Position 4 Position 5

Linear weighting 6.8092 4.6544 6.1737 2.1607 �0.8054 3.7985 2.6504
Skewness 4.9220 8.0266 9.8409 6.9204 5.3988 7.0217 �0.5728
Genetic algorithm 8.6120 6.8466 1.9355 7.9329 6.9178 6.4489 0
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For sample (c), as is shown in Fig. 12, this is the case where the
fusion algorithms deal with different angle cracks. Since the size of
the angle between the crack and the coil will affect the thermal
pattern [33], Table 5 shows the SNR performance for the fusion
algorithms at different angles.

Table 5 shows the fusion methods for different angle cracks. The
average SNR values of the linear weighting method, the skewness
method and the genetic algorithm are 7.1340 dB, 2.5858 dB and
4.3908 dB, respectively. The effect of the genetic algorithm is better
than the skewness method and the linear weighting method works
the best. For multi-angle cracks, the fusion effect for the larger
angle crack and the smaller angle crack is better, whereas the effect
of middle angle cracks is poor. The result of the fusion image is dif-
ferent from the conventional result (when the angle between coil
and crack is in the range of 0–90�, the larger the angle is, the better
Fig. 12. Fusion images are obtained b

Table 5
SNR of directional scanning ECPT system of sample (c).

Method Multi-angle cracks of sample (c)

0� 15� 30� 45� 60�

Linear weighting 11.8307 4.7178 5.4947 3.9785 5.1782
Skewness 1.2097 2.5361 1.1423 0.8534 1.1429
Genetic algorithm 7.2994 5.2119 2.0168 1.8788 2.5222
the SNR effects are). There are many factors that affect the fusion
results, including selected features extracted by the ICA of each
step, the relative position of the coil and the defects, the relative
position of each defect and so on.

The reason why the SNR for middle angle cracks is poorer than
the larger and smaller angle cracks is that the coil in the first step
and the second step is very close to 0�angle crack, it will result in
high SNR. In this crack, this can be seen from the linear weighting
method since the later is actually the average temperature as the
coil move. The reason for the different result between the skew-
ness method and other methods is the strategy of feature selection.
The process of skewness method is to find out the larger SNR fea-
ture for all the cracks in each step. However, the process of genetic
algorithm is to find more obvious cracks. Specifically, take sample
(c) as an example, after features extraction of the video of each step
y three methods for sample (c).

Average Compared with genetic algorithm

75� 90�

11.5624 7.1759 7.1340 �2.7432
7.9458 3.2706 2.5858 1.8050
9.2116 5.1173 4.3908 0



Fig. 13. All features extracted by ICA for sample (b).

Fig. 14. Corresponding to Feature 1 and Feature 3 in step 1 of Fig. 9.
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in Fig. 13, the skewness method selects the features in the videos
for each step as 3,1,1,3,1 respectively. However, the genetic algo-
rithm method selects the features in the videos for each step as
1,1,2,3,1 respectively. The difference lies in step 1 and step 3.
Because the main concern of genetic algorithm is the point of
strong information, it can be seen in Fig. 14 that feature 1 of step
1 has a very high crack information at 0�angle crack and 90�angle
crack whereas it is difficult to see any information at 15�angle
crack and 75�angle crack. The skewness algorithm takes a compro-
mise, we can see the flaw information at four angles, but it has



Fig. 15. Fusion images are obtained by three methods for sample (e).

Fig. 16. Pseudo color image of lena.

Fig. 17. Images from each pa
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poor SNR for feature 1 at 0�angle crack and 90�angle crack. This
explains why the SNR for middle angle cracks is poor than the lar-
ger and smaller angle cracks and why the skewness method is not
affected by the angle of cracks.

For sample (e), it can be seen in Fig. 15, this is the case where
the fusion algorithms deal with multiple natural cracks. Accidents
occur frequently because of natural cracks at the rails. Safety
inspection of tracks is critical and natural cracks can be visualized
clearly by using the proposed method whereas the linear weight-
ing method produces big ambiguities. Since the linear weighting
method does not carry out the process of feature extraction, this
inevitably results in more interference from the background and
noise. Because of these uncertainties, we call it ‘‘ambiguities”.
The heat transfer process is smooth on the conductor, and only
in the event of a defect or edge will produce heat accumulation.
It will render the defect area with a clear temperature difference
compared to the adjacent area. In Fig. 15, the curved, thin and
bright area is detected crack in the red box. The cracks which are
rt of proposed method.



Fig. 18. Fusion result by Genetic algorithm.
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got by genetic algorithm here are more obvious than the other
methods.

The method proposed in this paper not only applies to ECPT sys-
tem, it also has some achievements for other multi-step video
information enhancement. Take lena image for example in
Fig. 16, its size is 512 � 512. We get 30 copies of this image, each
image adds a different ratio of speckle noise, then divides them
into 3 parts. Each part has 10 images and adds a certain blocked
area, as shown in Fig. 17.

By minimizing the cost function of information entropy, the
fusion result is shown in Fig. 18.

In overall comparison, the method that inheriting the most
information is the linear weighting method. It also produces the
strongest noise. Both skewness method and the proposed method
select the features of ICA extraction and the overall effect of the
proposed method is obviously better than the skewness method.
This is confirmed especially in dealing with the case sample of a
single crack.

4. Conclusion and future work

In this paper, a spatial-time-state fusion method has been pro-
posed to deal with the problem of defect location without knowing
prior information. Both state ECPT system and algorithm have been
validated. Through ICA for multi-step features extraction, as well
as the hybrid of genetic algorithm and COBE, the defect image
can be completely reconstructed. Finally, the location of defects
is determined automatically by selection of the abnormal pattern
of the fused image. The SNR is introduced to verify the robustness
of the results. The proposed method has been tested on both man-
made and natural defects from industry. Future work will focus on
better features extraction methods which can completely separate
the defects and noise as far as possible, and defects detection of
objects under certain speed.
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