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Ensemble Joint Sparse Low-Rank Matrix
Decomposition for Thermography
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Abstract—Composite is widely used in the aircraft in-
dustry and it is essential for manufacturers to monitor its
health and quality. The most commonly found defects of
composite are debonds and delamination. Different inner
defects with complex irregular shape are difficult to diag-
nosed by using conventional thermal imaging methods. In
this article, an ensemble joint sparse low-rank matrix de-
composition algorithm is proposed by applying the optical
pulse thermography (OPT) diagnosis system. The proposed
algorithm jointly models the low-rank and sparse pattern by
using concatenated feature space. In particular, the weak
defects information can be separated from strong noise
and the resolution contrast of the defects has significantly
been improved. Ensemble iterative sparse modeling are
conducted to further enhance the weak information as well
as reducing the computational cost. In order to show the
robustness and efficacy of the model, experiments are con-
ducted to detect the inner debond on multiple carbon fiber
reinforced polymer composites. A comparative analysis is
presented with general OPT algorithms. Notwithstanding
above, the proposed model has been evaluated on syn-
thetic data and compared with other low-rank and sparse
matrix decomposition algorithms.

Index Terms—Carbon fiber reinforced polymer (CFRP)
composites, concatenated matrix factorization, eigende-
composition, low-rank sparse decomposition, optical ther-
mography, weak signal detection.

I. INTRODUCTION

THE USAGE of carbon fiber reinforced polymer (CFRP) in
the aerospace and aircraft industry is increasing, largely
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owing to its unique characteristics as lightweight, stiffness,
and resistance to corrosion. For quality assurance to monitor
the health and quality of the composite becomes ever more
important [1]. The composites are manufactured by sandwiching
different layers. For good quality, the layers should have strong
bonding. However, due to the manufacturing limitations and
installation procedure, defects become inevitable. The most
commonly found defects in the composites are debonds and
delaminations [2]. These defects occur on the inner part of the
composite and are not easily detected. Therefore, nondestructive
testing (NDT) and structural health monitoring are necessary.

Poudel et al. [3] used the NDT technique for defect detection
and analysis of composite repairs. Meola et al. [4] reviewed the
importance of NDT-based methods for defect analysis in the
composites. The NDT techniques usually use different external
sources for defect analysis. Based on this principle, the NDT can
be categorized as eddy current based NDT [5], ultrasonic-based
NDT [6], acoustic emission-based NDT [7], and microwave-
based NDT [8]. Nowadays, the popular NDT method for com-
posite defect detection is the optical pulse thermography (OPT)
[9]–[12]. It is a fast and wide-area inspection technique and more
detailed review of OPT system can be found in [13] and [14].

Maierhofer et al. [2] discussed two modes of OPT, i.e., reflec-
tion and transmission modes. A more detailed description of the
type and usage of the excitation sources for the OPT can be found
in [15] and [16]. The OPT uses an excitation source to induce
temperature variation in the composite. If defects exist, irregular
patterns occur and are captured by the infrared camera. These
thermal frames in raw form contain a large degree of noise while
the information on defects is not clear. To improve the contrast
of defects and remove noise, the image and video processing
algorithms are utilized [17]–[21].

The generally used image pattern analysis technique for defect
detection by an OPT system is the principal component analy-
sis (PCA) [22]–[24]. It is based on low-rank estimation using
singular value decomposition (SVD). In [25], an independent
component analysis algorithm is proposed to further enhance
the thermal contrast. In [26], a thermal signal reconstruction
(TSR) algorithm is proposed. It works on polynomial fitting
in the logarithmic domain. In [27] and [28], a pulse phase
thermography (PPT) algorithm is proposed for defect detection
by analyzing the information on the defects in the frequency
domain. Yuanlin et al. [29] proposed a novel polynomial fitting
coefficient algorithm. It is based on the mixture of fitting time
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derivative and the coefficient algorithm. Yousefi et al. [30] pro-
posed a candid covariance-free incremental principal component
thermography algorithm. The algorithm is an extension to the
PCA by decreasing its computational load and increasing the
performance. López et al. [31] evaluated the performance of the
TSR algorithm against the partial least square thermography
(PLST) technique. The comparison is carried out for CFRP
composite debond detection. Junyan et al. [32] proposed a hybrid
algorithm based on the simulation annealing and Nelder–Mead
simplex search. Zhang et al. [33] proposed an algorithm for
feature embedding. The algorithm utilizes the concatenated fea-
ture space to perform the low-rank sparse matrix approximation.
Ishikawa et al. [34] proposed an extension to the PPT algorithm.
They use phase difference between the defect and nondefect
regions at the high frequencies for defect quantification. The
research works in [35] and [36] proposed a novel sparse principal
component thermography (SPCT) algorithm based on the PCA
[22] for defect detection in CFRP composites using optical
thermography. The algorithm [35] is quite simple and robust
for flat-shaped CFRP specimens. However, it is not validated
for complex and irregular shape CFRP specimens as well as the
varying depths. From the aspect of low-rank matrix factorization
(LRMF), the algorithm [35] is a two-term decomposition algo-
rithm. However, the proposed algorithm optimizes the low-rank
and sparse data jointly in a concatenated feature space in a
tridecomposition framework. The proposed algorithm is tested
for different specimens with different shapes as well as varying
depth for a CFRP specimen. In addition, the proposed algorithm
is validated on synthetic data with comparison of other low-rank
sparse matrix decomposition algorithms. In [37], it presented
and compared three different matrix factorization algorithms
for defect detection using thermal NDT. The three algorithms
include PCA, nonnegative matrix factorization, and archetypal
analysis. All methods are tested on thermographic NDT data
and analysis is presented. Yousefi et al. [38] further tested more
algorithms on the thermal NDT data. Moreover, wider applica-
tions of the thermal NDT are described such as arts, archeology,
and civil structures. The matrix decomposition algorithms are
evaluated for these applications and results are analyzed. Feng
et al. [39] proposed a hybrid algorithm based on the TSR
and region growing technique for the task of debond detection
in the CFRP composites. Peng et al. [40] proposed a multi-
layer architecture utilizing the ensemble variation based tensor
factorization (EVBTF). The algorithm is tested for debond
detection in CFRP composites. Ahmed et al. [41] proposed
a sparse-mixture-of-Gaussian (S-MOG) algorithm for debond
detection in CFRP composites. The algorithm utilizes the mul-
tilayer structure to mine the features for thermographic image
enhancement.

The proposed algorithm falls into the category of
tridecomposition-based algorithms. Zhou et al. [42] proposed
a three-term decomposition model called stable principal com-
ponent pursuit. In this model, the noise term is modeled to
be independent identically distributed. The model is solved
iteratively by solving the sparse term with a difference equa-
tion and the low-rank term is estimated by using the least
square method. Aravkin et al. [43] proposed variation of the

stable principal component pursuit method. In this model, it
decomposes the matrix into the two parts as they are solved
sequentially by projected and accelerated gradient methods.
Oreifej et al. [44] proposed a novel model for the background
and foreground segmentation problem in video sequences. They
solve the three-term decomposition model in an iterative man-
ner in the framework of the augmented Lagrangian multiplier
method. Zhang et al. [45] proposed a tridecomposition model
in the framework of low-rank matrix recovery and completion.
It decomposes the observed data into the clean data, sparse
data, and noise data. It is tested in a variety of face images and
surveillance videos in the framework of image denoising. These
algorithms utilize a single feature space for the optimization
of the tridecomposition model containing the observed raw
data using the augmented Lagrangian multiplier method. The
proposed method utilizes the concatenated feature space for the
low-rank matrix decomposition using the residual and sparse
data along with the observed raw data. The low-rank information
from the concatenated feature space is able to extract the weak
target defect information as the defects information lies in the
low rank as well as sparse space. In addition, the proposed
method solves the tridecomposition model by developing an
expectation–maximization (EM) framework for the ensemble
joint sparse low-rank matrix decomposition (EJSLRMD).

As the defects depth increases, the detection performance
decay. For the composite specimen with an irregular shape,
the general OPT algorithms give poor performance [41]. The
algorithm given in [41] has good reasonable results, whereas
its computational cost is quite high due to the multilayer sparse
modeling structure. To alleviate this problem, we propose an
EJSLRMD algorithm. The proposed algorithm models the low-
rank and sparse data jointly in a concatenated feature space.
Since the defects information mostly presents in the sparse and
low-rank space, it is possible to mine the low-rank feature in
a concatenated feature space with the raw data before sparse
modeling. To reduce the computational cost, we chose the most
significant eigenfeatures for the sparse modeling. The proposed
algorithm is able to detect weaker and deeper defects. In order to
show its efficacy, the algorithm is conducted for debond defects
detection in a different structure of CFRP composites. The visual
analysis along with F-score [40] comparison is presented with
generally used OPTNDT algorithms. In addition, the proposed
algorithm is validated on the synthetic data with different noise
configurations.

The rest of this article is organized as follows. Section II de-
scribes the proposed algorithm Section III gives the experimental
setup and information about the CFRP specimen. Section IV
elaborates on the results and discussions. Finally, Section V
concludes this article.

II. PROPOSED METHODOLOGY

A. Proposed Algorithm

Given the data tensor containing the thermographic sequences
D ∈ Rm×n×k where (m,n) denote the spatial resolution of the
frame andk represents the number of the frame. First, we convert
it into a matrix form by representing each (m,n) spatial frame
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Fig. 1. Proposed model description.

as a vector for i frames. Second, this matrix can be modeled into
a multilayer structure [40], [41] of low-rank matrix L, sparse
matrix S, and noise matrix E as

D1 = L1 + S1 + E1. (1)

For the second layer decomposition, it can be expressed as

D2 = f1
(
D1

)
+ L2 + S2 + E2. (2)

In general, for the ith layer, the deep decomposition can be
written as

Di = f i−1
(
Di−1

)
+ Li + Si + Ei (3)

where f i(Di) is the activation used in the multilayer low-rank
sparse data modeling. This structure is portrayed in Fig. 1.

Fig. 1 shows the overall schematic block diagram of the pro-
posed model. It is divided into four core parts for better interpre-
tation. The orange blocks represent the input thermal sequences.
The blue blocks represent the concatenated feature space eigen-
decomposition. The green blocks represent the model for the
probabilistic robust matrix factorization algorithm. Finally, the
red block is the output. Given the input data and initializations
of the sparse matrices, the concatenated eigendecomposition is
performed as shown in the blue blocks on the top of Fig. 1. In the
next step, the sparse matrix decomposition is performed and its
probabilistic model is shown by the green block in Fig. 1. This
process of EJSLRMD is solved in an iterative manner where
the concatenated low-rank component is solved by eigendecom-
position and sparse component is solved by an EM approach
as shown in the middle blocks of Fig. 1. Finally, the overall
process is represented as a multilayer ensemble architecture of
the low-rank and sparse factorization as shown in the bottom
blocks of Fig. 1. The whole structure is applied to extract the
weak defect information on CFRP composites by using optical
thermography.

The previous study does not involve or leverage the sparse
factors for the spatial resolution of the thermal data. Sparseness
refers to a representational scheme where only a few units (out of
a large population) are effectively used to represent typical data
vectors. In effect, this implies most units taking values close to
zero while only few take significantly nonzero values. The sparse
factors enforce the solution to consider only the significant
region where the defect may lie within the surrounding back-
ground. Data with sparse outliers are partially contaminated by
noise of overwhelming magnitude, sheer low-rank assumption
cannot fully capture its complex structure. Therefore, (1) can be
considered as combination of sparse patterns (e.g., hot spots) and
nonsparse patterns. Thus, to extract the defect information from
the thermographic data, we propose the following optimization
problem [44], [45]:

min
L,S

{∥∥Li
∥∥
∗ + Λ

∥∥Si
∥∥
2
+
∥∥Di − Li − Si

∥∥2
F

}
(4)

where Λ is the regularizing parameters for S, ‖.‖2 represents the
l2 norm, ‖.‖∗ represents the nuclear norm for low-rank term L,
and ‖.‖F represents the Frobenius norm. Using the regularizing
framework, we relax the above problem using convex proxies.
In addition, for any nonsingular matrix, S = AS−1SBT holds.
The problem (4) can be reformulated as follows:

min
L,A,B

{∥∥Li
∥∥
∗ + Λa

∥∥Ai
∥∥2
2
+ Λb

∥∥Bi
∥∥2
2

+
∥∥∥Di − Li − (

ABT
)i∥∥∥2

F

}
(5)

where Λa and Λb are the regularizing parameters for
A and B, respectively. The problem of (5) is solved in two
steps. In the first step, we solve forL,which is the low-rank term.
In the second step, we solve for S = ABi, which represents
the sparse term. The steps are elaborated in graphical form as
shown in Fig. 1. For the low-rank term, given the data matrix
D and initial matrices A and B, we propose a concatenated
eigendecomposition for the low-rank term

Li =

⎡
⎢⎣

Di

Di − (
ABT

)i−1(
ABT

)i−1

⎤
⎥⎦ (6)

where i represents the layer number. For the problem of defect
detection in the CFRP composite structure by using optical
thermography, the thermal video sequences contain multiple
frames of the same specimen on different transient responses.
Based on the analysis in [41] and [40], the defect information
is mostly present in the sparse and low-rank components of the
decomposition. By concatenating the original data with residual
and sparse data for the eigendecomposition, it is able to extract
more information of the defects as compared to the simple
eigendecomposition without concatenation, which can be seen
in the results of PCA [22], as seen in Fig. 4. In particular, this
data go into the sparse decomposition algorithm given in [46],
which further removes the noise and modifies the sparse data
in an iterative manner. By using the concatenated feature space
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in a joint sparse and low-rank decomposition, it significantly
enhances the extraction of weak defect information.

By concatenating the sparse data, two benefits can be
achieved. First, we keep intact the original raw features in the
low-rank estimation. This enforces that the estimated low-rank
features do not significantly deviate from the original features.
Second, we use the sparse data and residual data for low-rank
estimation. It significantly embeds the sparse information into
the low-rank space, which subsequently allows the algorithm to
extract the target weak defect information from both low-rank
space and sparse space in a joint optimization framework by
using the concatenated feature space. We solve the problem of
(6) by using eigendecomposition technique as follows:

Li = UΓV T (7)

whereU and V are the left and right eigenmatrices, respectively,
andΓ is the diagonal matrix containing the eigenvalues. The first
six principal eigenvectors are chosen to represent the low-rank
terms. This setting is based on repeated experimental analysis
and it is observed that six eigenvectors can already contain the
most useful low-rank information, namely

Y i =
(
UΓV T

)
1 to 6

. (8)

For S = (ABT ), we solve the following optimization prob-
lem [46]:
(
ABT

)i
= arg min

A,B

×
{∥∥∥Y i − (

ABT
)i−1

∥∥∥2
F
+ Λa

∥∥Ai−1
∥∥2
2
+ Λb

∥∥Bi−1
∥∥2
2

}
.

(9)

It should be noted that the most expensive step is sparse mod-
eling. As only six principal eigenvectors are used to represent
the low-rank terms, the computational cost will be significantly
reduced. We solve the problem of (9) for each layer i by using
the probabilistic robust matrix factorization (PRMF) algorithm
given in [46]. The algorithm given in [46] utilizes the condi-
tional EM (CEM) algorithm given in [47] to update A and B
in an iterative manner. First, we decompose Y containing the
concatenation information as the following matrix factorization
problem [46]:

Y = ABT + E (10)

aij
∣∣Λa ∼ ℵ (

aij |0, Λ−1
a

)
(11)

bij
∣∣Λb ∼ ℵ (

bij |0, Λ−1
b

)
(12)

where E is the noise matrix, ai be the ith row of A, and bj be the
jth row ofB. Assuming noise follows the Laplacian distribution.
This implicates

p (E|Λ) =
(
Λ

2

)mn

exp {−Λ‖E‖1} . (13)

Let A and B be the parameters to be estimated.
Λ,Λa, and Λb are the hyperparameters. The MAP theory
and Bayes theorem gives

p ∝ p (Y |A,B,Λ) p (A |Λa ) p (B |Λb ) (14)

where

log p (A,B |Y,Λ,Λa,Λb )

= −Λ
∥∥Y −ABT

∥∥
1
− Λa ‖A‖22 − Λb ‖B‖22 + C (15)

where C is the constant term. The problem of (15) is the same
as minimizing the following problem:

min
A,B

∥∥Y −ABT
∥∥
1
+ Λa ‖A‖22 + Λb ‖B‖22 . (16)

To solve this problem, a leveled hierarchical form of a Lapla-
cian distribution is used. Let y be the Laplacian random variable,
its probability density function can be given as

p
(
y
∣∣a, l2 ) = l2

2
exp

(−l2 |y − a|) . (17)

The Laplacian distribution can be represented as mixture of
Gaussians (MoGs) as follows:

L
(
y
∣∣a, l2 ) =

∫ ∞

0

ℵ (y |a,m )Expon
(
m, l2

)
dm (18)

where Expon(m, l2) is the exponential distribution term. To
accommodate this, a matrix M = [mij ] ∈ Rm×n is used whose
each element follows exponential prior. This variable relates the
l1 term to the l2 term and hence we can have a closed-form
solution.

Let ai be the ith row of A and bj be the jth row of B. The
matrix factorization can be formulated as

yij |A,B,M ∼ ℵ (
yij

∣∣aTi bj ,mij

)
(19)

aij
∣∣Λa ∼ ℵ (

aij |0, Λ−1
a

)
(20)

bij
∣∣Λb ∼ ℵ (

bij |0, Λ−1
b

)
(21)

mij |Λ ∼ Expon (mij |Λ/2) . (22)

To estimate A and B, a CEM algorithm is used [47]. The EM
algorithm iterates between two steps, E-step and M-step. For the
E-step, the Q-function is solved. Given the initial estimates be
θ̂ = [Â, B̂], namely

Q
(
B
∣∣∣θ̂) = EM

[
log p

(
B
∣∣∣Â, Y,M ) ∣∣∣Y, θ̂ ] . (23)

Taking log on both sides and ignore the terms that do not relate
to Q.

log p
(
Y
∣∣∣B, Â,M

)
+ log p (B)

= −1

2

m∑
i

n∑
j

{
m−1

ij

(
y − âTi bj

)2}− Λb

n∑
j

bTj bj + C.

(24)

It can be seen that m−1
ij obeys an inverse Gamma distribution

E
[
m−1

ij |Y , Â, B̂
]
=

√
Λ

|uij |
Δ
=

〈
m−1

ij

〉
(25)

where uij = yij − (abT )ij . Next, in the M-step, the parameter
B is updated. This is done by maximizing the Q-function. To
achieve this, take the partial derivative of Q-function with respect
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TABLE I
PROPOSED EJSLRMD

to bj and set it to zero. The update rule can be set as

bj =
(
ÂTΩjÂ+ ΛbIu

)−1

ÂTΩjy.j (26)

where Ωj = diag(〈m−1
1j 〉, . . . , 〈m−1

mj〉) and y is the jth column
of Y . Following the same convention, the update formula for a
can be found as

ai =
(
BTΛiB̂ + ΛaIu

)−1

B̂TΛiyi (27)

where Λi = diag(〈m−1
i1 〉, · · · , 〈m−1

in 〉) and yi. is the ith row of
Y . As the data Y consist of only six principle eigenvectors,
the CEM algorithm based on the experimental analysis updates
A and B in only two iterations.

The stopping condition for the proposed EJSLRMD is set as
follows:

∑
i

(
ui
ij − ui−1

ij

)
ui−1
ij

<∈. (28)

The term ∈ represents the tolerance level, which has been
selected to be 10−6 based on the independent Monte Carlo test.
The complete step-by-step description is tabulated in Table I.

III. EXPERIMENTAL SETUP

A. Experiment Set-Up and Specimen Details

In an experimental evaluation, Fig. 2 shows the OPT system
with the reflection mode configuration [48]. Halogen lamps are
used as the source of excitation with the power of 2 kW. At the
back hand, an optical excitation source ITECH-IT6726G is used,
which is a ZY −B type source. It comes with an adjustable dc
power mechanism, which can go up to 3 kW. The distance
between the specimen under test and excitation source is set
around 80 cm. The A655sc infrared camera is used to capture
the time-series temperature variations of the specimen. The
resolution of the camera is 640× 480. The thermal sensitivity
of the camera is 0.05 ◦C. In our experiments, we have utilized
the sampling frequency of 50 Hz.

Fig. 2. OPT system.

Fig. 3. Block diagram of the OPT system.

OPT technology utilizes an external heating source and an
infrared camera. The specimen is excited using external sources
and the temperature variations are captured. These temperature
variations are represented as the time series of the thermographic
images. The pulse generator is used to control the frequency
of excitation and a computer is used to store the results. The
configuration of the reflection mode is used with the halogen
lamps as the source of heating. The halogen lamps and the
infrared camera are placed facing the same direction of the
specimen as the reflection mode as shown in the schematic block
diagram of OPT in Fig. 3.

Five different CFRP composite specimens are prepared for the
experimental validation of the proposed algorithm. The CFRP
composites were acquired from the Chengdu Aircraft Design
Institute, which is a part of the China Aviation Industry. These
specimens were used in the design and manufacturing of the
aircraft components. The first two specimens are flat surface
with a rectangular shape. The remaining three samples have
the V shape irregular surface. All the specimens have debond
defects of different diameters and depths. The more detailed
information about the specimen and defects can be found in
Table II.

IV. EXPERIMENTS ANALYSIS

The visual results along with the quantitative results are
presented. The comparative analysis is carried out with
the general OPT algorithms to show the efficacy and effi-
ciency of the proposed algorithm. The quantitative comparison
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TABLE II
INFORMATION ABOUT THE CFRP SPECIMEN

parameters used are F-score and the running (computation) time.
The general OPT-based NDT algorithms under comparison are
PCA [22], PPT [27], TSR [26], EVBTF [40], and S-MoG [41].
All the experiments are carried out in a corei7 computer with
a Windows 10 operating system having 8 GB RAM. MAT-
LAB2017b software is utilized for all the algorithms evaluation.
The comparative results for all specimens are summarized in
Table III.

The visual comparative results are shown in Fig. 4 in a tabular
form. Row 1 shows the comparison results for specimen 1. It is
a flat surface rectangular shape specimen. The defect depths are
1 mm and 2 mm. For this specimen, almost all the algorithms
perform well. However, from Fig. 4 (row 1) left to right, it can
be seen that strong noise is still present and all algorithms fail to
detect the defect with the smallest diameter defects on the right
end corner. Nonetheless, the proposed algorithm gives better
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TABLE III
COMPARATIVE RESULTS F-SCORE (LEFT) AND TIME TAKEN (RIGHT IN SECONDS)

Fig. 4. Comparative analysis of different algorithms.

contrast and resolution result. It detects all the debond defects
present on the specimen. Fig. 4 (row 2) shows the results of
the second sample with a flat surface and rectangular shape.
The defect depths are 2 mm and 2.5 mm. In comparison, the
proposed algorithm gives better contrast and resolution and
quantifies more defects than the other algorithms.

Fig. 4 (row 3) shows the comparative results for the specimen
3. It is a V− shaped irregular surface specimen. The defect
depths are (2, 2.25, 2.5, 2.75) mm. From Fig. 4 (row 3) left
to right, most algorithms fail to detect the debond defects.
The proposed algorithm is able to give reasonable contrast and
resolution results. The proposed algorithm detects all the defects
present in the specimen.

Fig. 4 (row 4) shows the visual results for CFRP spec-
imen 4. Here, the number of defects are 6. The depths
are (0.5, 0.75, 1, 1.25, 1.5, 1.75) mm. Because of the irregu-
lar shape and surface, the performance of these algorithms is
quite poor. The proposed algorithm gives better resolution with
good contrast results. All the debond defects are successfully
detected.

Fig. 4 (row 5) shows the visual results for specimen 5. The
number of defects here are 5. The depth of the defects are
(1.5, 1.75, 2, 2.25, 2.5) mm. The diameter of the defects are
9 mm and 10 mm. In the comparative analysis, the proposed
algorithm detects all the debond defects present on the specimen
and shows good resolution and contrast.
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The quantitative comparison based on F-score and computa-
tion time is tabulated in Table III. The last row shows the average
percent F-score for all the algorithms along with the average
computation time in seconds. On average, the PPT algorithm has
the detection efficiency of 63% with 208 s in average running
time. The average detection rate in terms of percent F-score for
the TSR algorithm is 76% with the average time consumption
of 494 s. The PCA algorithm has the fastest running time of
56 s with a reasonable detection rate of 76%. The algorithm
of EVBTF gives the highest running time of 970 s with a poor
detection capability of 40%. The S-MoG algorithm takes an
average time of 190 s to produce the results with the percent
efficiency of 71%. The proposed algorithm gives on average the
highest detection rate of 99%. The proposed algorithm takes
around on average 76 s to be the second-fastest algorithm to
PCA. By jointly optimizing the low-rank and sparse data in
a concatenated manner, it can remove the noise, improve the
resolution, and increase the detection efficiency.

The proposed model uses the PRMF [46] algorithm for the
sparse decomposition step. However, there are other similar al-
gorithms in the literature. In [49], Xiong et al. proposed a matrix
factorization algorithm called direct robust matrix factorization
algorithm. The block coordinate descent approach is proposed to
solve the low-rank decomposition problem, which is a variation
of the SVD and efficient thresholding. In [50], Wang and Yeung
proposed a Bayesian extension to the PRMF [46] model for the
image and video processing applications. In [51], Zhao et al.
proposed a model for the LRMF problem, which utilizes the
inference-based variational Bayes framework. It has been found
that these classes of algorithms have high computational cost
for the problem of defect detection in CFRP composites. In [52],
Meng and Torre proposed a novel model for the LRMF problem,
where they assume the noise to have an unknown probabilistic
distribution and estimate it by using an MoG model. In [53],
Cao et al. improved the model given in [52] by assuming that the
noise has mixture of exponential power (MoEP) distribution and
propose an EM algorithm to solve the problem. In [54], Kim and
Oh proposed a novel algorithm for the LRMF problem, which
utilizes the orthogonal matrix decomposition algorithm in the
augmented Lagrangian framework. In [55], Lin et al. proposed a
majorization–minimization approach for the problem of LRMF.
A surrogate function is used to replace the original problem and
the algorithm of a linearized alternating direction method with
parallel splitting and adaptive penalty is used for its solution
owing to its low computation cost.

The algorithm given in [49] is a simple and an easy way to
implement, whereas its performance is normal. The algorithms
given in [50] and [51] are based on the Bayesian framework. The
class of variational Bayes framework based algorithms for the
problem of defect detection in CFRP composites using optical
thermography have been analyzed by Lu et al. [40]. These
algorithms have poor performance and high computation cost
for an irregular shape CFRP specimen. The algorithms given
in [52]–[55] are quite robust and assume that the noise has a
more complex distribution rather than the Gaussian distribution.
These classes of algorithms were analyzed in [41]. It has been
found that these algorithms for the defect detection problem with

Fig. 5. Comparative results for specimen 4 on different algorithms and
their computation time in seconds. (a) [52] (156 s). (b) [50] (1986 s).
(c) [53] (340 s). (d) [55] (420 s). (e) [42] (464 s). (f) [35] (29 s). (g) [38]
(14 s). (h) proposed (93 s).

the irregular shape specimen fail to perform well. In addition,
these algorithms are quite complex and lots of parameters need
to be tuned for the solution of a particular problem. Based on
this analysis, the PRMF [46] algorithm was selected owing to
its simple implementation, less parameter tuning, and robust-
ness to fit in the framework of EJSLRMD. In the multilayer
architecture of EJSLRMD, it requires more parameters and
complex architecture, which increases the computational cost as
referred in [40] and [41]. The PRMF algorithm in the proposed
framework converges significantly fast and simultaneously it is
able to recover the signal more accurately with complex noise
distributions.

Fig. 5 shows the comparative results on specimen 4 with irreg-
ular shape that has six defects on varying depths. Fig. 5(a) shows
the results of the matrix factorization algorithm given in [52]. It
can be observed from the results that it is difficult to distinguish
the defects and background. The computational cost is 156 s.
Fig. 5(b) is the result of Bayesian robust matrix factorization
algorithm given in [50]. The results are over smooth and defects
are not clearly visible. The computational cost is significant
high of 1986 s. Fig. 5(c) shows the result of exponential power
distribution based algorithm [53]. Here the noise is assumed
to have a more complex distribution. However, the algorithm
is unable to detect the defects clearly. The computational cost
of this algorithm is 340 s. Fig. 5(d) shows the result of matrix
factorization algorithm in [55]. However, it is unable to detect the
defects and its computational time is 420 s. Fig. 5(e) shows the
result of tridecomposition model given in [42] called the stable
principal component pursuit. The computational cost is 464 s.
The result is over smooth and defects are hidden in the back-
ground and blurry. Fig. 5(f) shows the results of a state-of-the-art
algorithm given in [35] called the SPCT. The computational
time is very less 29 s. However, as the CFRP specimen has an
irregular shape and varying depth, the algorithm is unable to
detect the defect more clearly. Fig. 5(g) shows the results of a
nonnegative matrix factorization algorithm given in [38]. This
algorithm has least computational cost of 14 s. The algorithm
is able to detect at most three defects out of six with a strong
noise present. The last figure shows the result of the proposed
algorithm. The computational time is 93 s. It can be seen that
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TABLE IV
EXPERIMENTAL ANALYSIS ON SYNTHETIC DATA WITH DIFFERENT NOISE CONFIGURATIONS

Fig. 6. Inherent layering results for the specimen 1. (a) Layer 1.
(b) Layer 2. (c) Layer 3. (d) Layer 4. (e) Layer 5. (f) Layer 6.

the proposed algorithm is able to detect all defects clearly with
good resolution and reasonable computational cost. For the case
of debond detection in CFRP composites with irregular shape
and varying depth, the proposed EJSLRMD algorithm provides
better quality and detection results under comparison with recent
matrix factorization and other infrared nondestructive testing
state-of-the-art algorithms.

The proposed algorithm is tested on the synthetic data for
modeling different types of noise and results as presented in
Table IV. A series of matrix decomposition based algorithms
are compared. The results are quoted in terms of the relative
reconstruction error (RRE) and time in seconds. Table IV shows
that the proposed algorithm is able to recover the mixture of
noise more accurately as compared with the other algorithms of
PCA [22], robust PCA (RPCA) [56], Bayesian RPCA (BRPCA)
[57], variational Bayesian PCA (VBRPCA) [58], PRMF [46],
MoG [59], and S-MoG [41]. The best results are highlighted in
bold. It can be seen that the proposed algorithm is able to recover
the signal with least error when the noise is considered as the
complex noise also the time taken is reasonable as compared
with other algorithms.

Fig. 6 shows the inherent layering results for specimen 1. The
proposed algorithm is able to detect and quantify the defects up
to layer 4 for this specimen. Further layering induces overfitting
of the data and the results get worse as can be seen from Fig. 6(e)
and (f).

V. CONCLUSION

In this article, a joint low-rank sparse modeling algorithm was
proposed. The algorithm was evaluated for inner debond defects

as well as on synthetic data for modeling the complex noise. By
optimizing the low-rank and sparse data using the concatenated
feature space helped to boost the computation speed, estimate
the complex noise, and detect weaker information defects hidden
in the background. The quantitative results based on F-score
and RRE proved that the proposed model performed well in
modeling complex noise and quantifying weaker debond defects
presented on the irregular shape CFRP composites. The com-
parative analysis with general OPTNDT and low-rank sparse
modeling algorithms proved the efficacy of the proposed model.

In future works, the proposed model will be validated on more
challenging CFRP specimen with irregular shape and varying
depth. The proposed method will be applied across wider in-
frared measurement technology such as eddy current pulsed
thermography. The computational complexity of the model will
be further improved for online NDT.
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