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Abstract
Working memory plays a crucial role in our daily lives, and brain imaging has been used to predict working memory per-
formance. Here, we present an improved connectome-based predictive modeling approach for building a predictive model 
of individual working memory performance from whole-brain functional connectivity. The model was built using n-back 
task-based fMRI and resting-state fMRI data from the Human Connectome Project. Compared to prior models, our model 
was more interpretable, demonstrated a closer connection to the known anatomical and functional network. The model also 
demonstrates strong generalization on nine other cognitive behaviors from the HCP database and can well predict the work-
ing memory performance of healthy individuals in external datasets. By comparing the differences in prediction effects of 
different brain networks and anatomical feature analysis on n-back tasks, we found the essential role of some networks in 
differentiating between high and low working memory loads conditions.

Keywords  Brain-behavior prediction · Connectome-based predictive modeling · Functional connectivity · Feature 
selection · Working memory

Introduction

Memory is a critical component in the study of cognitive 
function in the brain. Long-term episodic memory could 
be retained a long time and can be retrieved by the brain 
at any time. Working memory (WM), was first proposed, 
theorized and modeled in 1960, is a kind of short-term 
memory, which can temporarily maintain the information 
of the outside world and call other resources of the brain to 
process this information (Miller and Pribram 1960). Work-
ing memory is a system that specializes in maintaining and 
storing information in the short term and it is also a basic 
supporting structure of the thought process (Baddeley 2003). 
A temporary "workbench of cognition" in which information 
can operationally processed and assembled can be described 
as working memory (Klatzky 1975). The multicomponent 
model of working memory contains four components: the 
central executive, the phonological loop, the visuospatial 
sketchpad, and the episodic buffer (Baddeley 2000). It is 
commonly associated with intelligence, information process-
ing, executive functioning, understanding, problem-solving, 
and learning, in infants to the elderly, and in a variety of 
animals (Cowan 2014).
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The n-back task was developed to study short-term 
memory (Kirchner 1958). N-back task is a common exper-
imental paradigm in the study of working memory (Redick 
and Lindsey 2013). In an n-back task, participants are pre-
sented with a series of visual or auditory stimuli (letters, 
numbers, or pictures) and during the task, decide whether 
the current stimulus matches the n previously presented 
stimuli. For example, in a 2-back task consisting of num-
bers, participants had to decide whether the current letter 
was the same as the one shown 2 time steps before. WM 
load can be controlled by the parameter n, the larger the n, 
the greater the memory load of the participants. The type 
of information stored in working memory and the com-
plexity of the task have been found to affect the patterns of 
brain activation linked to N-back performance (Rottschy 
et al. 2012). Through studies using the n-back task, several 
brain regions have been identified that are associated with 
WM. For example, the lateral premotor cortex; dorsal cin-
gulate and medial premotor cortex; dorsolateral and ven-
trolateral prefrontal cortex; frontal poles; and medial and 
lateral posterior parietal cortex are consistently activated 
during n-back to the task (Owen et al. 2005). Previous 
studies also have shown that different n showed different 
activated brain patterns in the n-back working memory 
paradigm, 2-back increased activation in left middle fron-
tal gyrus, left inferior frontal gyrus and left anterior insula 
compared to 1-back (Wang et al. 2019).

Functional magnetic resonance imaging (fMRI) detects 
variations in blood flow to measure brain activity (Rinck 
2014). The purpose of fMRI data analysis is to find cor-
relations between brain activity and the tasks that subjects 
undertake during the scans. It also seeks to establish links 
between specific cognitive processes elicited in participants, 
such as memory and recognition (Logothetis 2008). Connec-
tome-based predictive modeling (CPM) is a predictive mod-
eling method for different cognitive functions and charac-
teristics through whole-brain functional connectivity (Shen 
et al. 2017). It has been used to predict many cognitive func-
tions, such as intelligence between males and females, full-
scale and verbal intelligence in autism spectrum disorder, 
language processing and long-term memory (Dryburgh et al. 
2020; Jiang et al. 2020a; Lin et al. 2020; Tomasi and Volkow 
2020). Compared with traditional functional connectivity 
analysis, CPM provides an ideal framework to explore the 
"brain-behavior relationship", which fully considers all brain 
regions, and uses purely linear operations and data-driven 
methods to generate predictive models, thereby increasing 
the feasibility and interpretability of the models. In addition, 
cross-validation was used in CPM to help prevent potential 
errors inherent in whole-brain data-driven analysis and to 
increase the probability of replication in future studies (Shen 
et al. 2017; Sui et al. 2020). Many studies using functional 
links to predict behavior are based on resting-state fMRI 

data. However, studies have shown that task-based fMRI 
data can provide better prediction results (Jiang et al. 2020a).

In our research, we combined n-back task-based fMRI 
and resting-state fMRI data from the Human Connectome 
Project (HCP) to build models and used leave-one-out cross-
validation to validate the model performance. By improv-
ing CPM, features from the brain’s functional connections 
are more finely delineated, and the interpretation of model 
features is clearer on the basis of ensuring the model’s pre-
dictive ability. Our model can accurately predict healthy 
individuals’ working memory ability in both internal data 
sets and external validation sets. Our findings reveal brain 
regions and functional networks associated with working 
memory, as well as the role of brain networks in differentiat-
ing between high and low working memory loads. Further-
more, our research demonstrates the link between working 
memory and other cognitive abilities.

Materials and methods

Dataset 1: human connectome project S1200 
release

The n-back task-based fMRI and resting-state fMRI data 
came from Human Connectome Project S1200 release 
(http://​www.​human​conne​ctome.​org/), excluding subjects 
with either missing imaging data or missing behavioral 
data, a total of 874 subjects was used in the current study 
(470 females, 404 males, age 22–35). These subjects all per-
formed the n-back task, and in the task, they are presented 
with blocks of trials that consisted of pictures of places, 
tools, faces and body parts and asked to monitor sequentially 
presented pictures (WU-Minn 2017). Within each session, 
half of the blocks are 2-back working-memory tasks and 
half are 0-back working-memory tasks. In HCP, MRI data 
were acquired on a 3T Siemens Skyra. By using a slice-
accelerated, multiband, gradient-echo, echo planar imaging 
(EPI) sequence (TR = 720 ms, TE = 33.1 ms, flip angle = 
52◦ , resolution = 2.0 mm3 , multiband factor = 8, left-right 
phase encoding, resting-state fMRI scan duration = 14:33, 
task-based fMRI scan duration = 5:01) the fMRI scans 
were collected. The T1-weighted structural scans were col-
lected using a Magnetization Prepared Rapid Gradient Echo 
(MPRAGE) sequence (TR = 2400 ms, TE = 2.14 ms, TI = 
1000 ms, resolution = 0.7 mm3 ) (Van Essen et al. 2012).

The HCP data has been preprocessed using the HCP min-
imal preprocessing pipeline. The main preprocessing steps 
include (Glasser et al. 2013): gradient nonlinearity distor-
tion; 6 degrees of freedom (DOF) FSL/FLIRT-based motion 
correction; FSL/top-up-based distortion correction; registra-
tion to a T1 space image; and FSL/FNIRT-based registration 
to MNI 2-mm space. We preprocessed HCP using methods 

http://www.humanconnectome.org/
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that others had studied (Jiang et al. 2020b), to reduce low-
frequency drift and high-frequency noise, we further band-
pass-filtered the data at 0.009−0.08 Hz; the mean signal of 
the white matter, cerebrospinal fluid (CSF), and the move-
ment parameters and its derivatives were regressed out as 
confounding factors; as well as removal of linear trend. 
After preprocessing, we separated the different tasks (0-back 
and 2-back) of task-based fMRI, then the whole brain was 
parcellated by using the Shen 268-node whole-brain atlas 
to define functional network nodes (Shen et al. 2013). EV 
(Explanatory Variable) files included in the dataset provide 
a set of conditions (and their associated timing) that can be 
used in the analysis of each task. According to the onset 
and duration of each task provided by the database, we can 
separate the signals of 0-back tasks and 2-back tasks. By 
calculating the Pearson correlation between each of 268 
nodes of the whole brain, 268 × 268 symmetric functional 
connectivity matrices were created, then we used the Fisher 
transform to convert pearson r-values to z-values. For each 
subject, we used task-based fMRI and resting-state fMRI 
data, so two 268 × 268 symmetric functional connectivity 
matrices were created for each participant.

Dataset 2: conte center for the neuroscience 
of mental disorders

The external data set come from the Conte Center for the 
Neuroscience of Mental Disorders (CCNMD) at Wash-
ington University School of Medicine in St. Louis (Repovs 
et al. 2011). The task-based fMRI data set was obtained from 
the OpenfMRI database, its accession number is ds000115. 
Individuals diagnosed with schizophrenia, their unaffected 
siblings, and healthy controls performed three levels of an 
n-back task (0, 1 and 2-back). All participants took neuropsy-
chological tests, 4 cognitive scores can be calculated, including 
intelligence quotient (IQ), working memory (WM), episodic 
memory and executive function, these cognitive scores are 
reported in Z scores relative to the mean of the entire sample 
(Delawalla et al. 2006; Repovš and Barch 2012). A total of 
97 subjects were selected (39 females, 58 males, 74 healthy, 
23 Schizophrenic, age 11–30). All scanning occurred on a 
3T Tim TRIO Scanner at Washington University Medical 
School. Functional images (BOLD) were acquired using an 
asymmetric spin-echo, echo-planar sequence (T2*) (repetition 
time [TR] = 2500 ms, echo time [TE] = 27 ms, field of view 
[FOV] = 256 mm, flip=90◦ , voxel size = 4 × 4 × 4 mm). T1 
structural image was acquired using a sagittal MP-RAGE 3D 
sequence (TR = 2400 ms, TE = 3.16 ms, flip = 8 ◦ ; voxel size 
= 1 × 1 × 1 mm) (Repovs et al. 2011). Data preprocessing 
included: removal of first 5 images from each run, realignment, 
registration to a T1 space image, chose affine regularization 
in the segmentation with European, mean signal of the white 
matter, cerebrospinal fluid (CSF), and global were regressed 

out as confounding factors, removal of linear trend, normal-
ize by using EPI template and band-pass-filtered the data at 
0.009−0.08 Hz. Then the whole brain was parcellated by using 
the Shen 268-node whole-brain atlas to define functional net-
work nodes (Shen et al. 2013).Mean regional time series were 
obtained by averaging voxel-wise fMRI time series in each of 
the 268 nodes for each individual. 268 × 268 symmetric func-
tional connectivity matrices were created for each participant 
by calculating the Pearson correlation between each of 268 
nodes of the whole brain and using the Fisher transform to 
convert pearson r-values to z-values.

Individualized prediction model

We applied the CPM with the d prime (d ’) of 0-back and 
2-back tasks of working memory as behaviors and used 
the whole brain functional connectivity matrix from task-
based fMRI and resting-state fMRI data to build the model 
and predict behaviors. 0-back and 2-back d-prime index 
using the hit rate (H) and false alarm rate (FA) to calculate, 
d� = Z(H) − Z(FA) , and Z means z-score transformation 
(Haatveit et al. 2010). Because d ’takes into account both "hit" 
and "false positives", it is more precise than accuracy values 
(Wu et al. 2021), and the higher the d’, the more accurate the 
response and the better the performance. Figure 1 demon-
strates a summary of our prediction model. We made some 
improvements in feature selection to make the connection 
between the model and the brain network clearer and tighter. 
Firstly, when summarizing feature edges, the original method 
just divides them into the positive network and negative net-
work for summation, and four feature values can be obtained 
for each subject: sumpos-task, sumneg-task, sumpos-rest, sum-
neg-rest (e.g., sumpos-task represents the sum of edges whose 
correlation r value is bigger than 0 and p value is less than the 
threshold, when task-based fMRI data are used to select sig-
nificantly correlated edges). In our study, we divided the 268 
nodes into 8 brain network regions according to the Shen 268 
atlas (Finn et al. 2015), Fig. 2 is the Shen’s atlas categorizes 
268 regions into eight networks. Compared with the origi-
nal method of 4 features for each subject, the features of each 
subject are subdivided into 32. After feature summarization, 
correlation analysis between 32 characteristics of each sub-
ject and behavioral data was conducted again, then the top 8 
most relevant features were found and newly selected features 
were used to build models. To identified the top 8 features, we 
ranked the features by their relevance to the behaviors.
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Results

Individualized prediction

We used leave-one-out cross-validation to test the prediction 
effect of the CPM model and the improved model (threshold 
p <0.05, select edges that were positively and negatively 
correlated with behavior across individuals). The results are 

shown in Table 1, and the prediction effect is measured by 
the Pearson’s correlations between observed and predicted 
scores and the root mean square error (RMSE). It can be 
seen that all models have a significant prediction effect on 
the d’ of 0-back and 2-back working memory. Combining 
resting-state and task-based fMRI data or only using task-
based fMRI data provided better predictive results than only 
resting-state fMRI data, this is consistent with the results 

Fig. 1   Summary of the predic-
tion model. We improved CPM, 
divided the feature values 
according to 8 brain network 
regions, and added the feature 
selection part. To connect brain 
functional connectivity with 
behavioral data, we combined 
n-back task-based fMRI and 
resting-state fMRI data for 
model building, and used exter-
nal data sets to verify the model

Fig. 2   Shen’s atlas categorizes 
268 regions into eight networks. 
The regions of the 8 networks 
were obtained from Shen 268 
atlas. These networks include 
the medial frontal network, 
the frontoparietal network, the 
default mode network, the sub-
cortical and cerebellar regions, 
the motor network, the visual I 
network, the visual II network, 
and the visual association 
network

Table 1   Prediction results of 0-back and 2-back d prime using CPM and 8-network-2FS

Tasks Model performance CPM Model performance CPM-8-network-2FS

Resting-state fMRI data 0-back r = 0.1806 p = 7.6065 × 10−08 RMSE = 
1.6450

r = 0.2185 p = 6.6347 × 10−11 RMSE = 
1.6372

Task-based fMRI data 0-back r = 0.5009 p = 1.0965 × 10−56 RMSE = 
1.4193

r = 0.4991 p = 3.0662 × 10−56 RMSE = 
1.4206

Combining task-based and resting-state 
fMRI

0-back r = 0.4908 p = 3.6221 × 10−54 RMSE = 
1.4307

r = 0.5013 p = 8.2418 × 10−57 RMSE = 
1.4231

Resting-state fMRI data 2-back r = 0.1794 p = 9.3252 × 10−08 RMSE = 
1.3373

r = 0.1635 p = 1.1779 × 10−06 RMSE 
= 1.2199

Task-based fMRI data 2-back r = 0.4268 p = 5.3205 × 10−40 RMSE = 
1.2149

r = 0.4214 p = 6.0608 × 10−39 RMSE 
= 1.3614

Combining task-based and resting-state 
fMRI

2-back r = 0.4340 p = 1.9033 × 10−41 RMSE = 
1.2123

r = 0.4224 p = 3.8257 × 10−39 RMSE 
= 1.2208
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of previous papers, which suggest that task-based brain 
connectivity can promote the detection of individual differ-
ences in brain–behavior relationships (Jiang et al. 2020b). 
However, there is little difference in the prediction results 
between using only resting-state fMRI data and combining 
resting-state and task-based fMRI data. Notably, combining 
task-based and resting-state fMRI and using the improved 
model for 0-back task can achieve great prediction results 
( r[0 − back] = 0.5013 ,  p = 8.2418 × 10−57 ,  RMSE = 
1.4231), combining task-based and resting-state fMRI 
and CPM can achieve great prediction results for 2-back 
task ( r[2 − back] = 0.4340 , p = 1.9033 × 10−41 , RMSE 
= 1.2123). From the results, we can know that improved 
model(CPM-8-Network-2FS) and original CPM model show 
little difference, and both of them can obtain significant pre-
diction models with good performance. This suggests that 
our new model can enhance the association of the model 
with brain networks by separating features into different 
networks and analyzing them in detail without reducing 
the validity of the model. Therefore, to make the connec-
tion between the model and the brain network connections 
clearer, the improved model was used for all subsequent 
results.

To ensure that the constructed model has the strong-
est predictive ability, this study explores the influence of 
threshold values used in the threshold operation of the cor-
relation matrix on the predictive ability of the model, that 
is, the predictive ability of the model constructed under 
different thresholds is quantitatively analyzed. We tested 
the performance of models at seven different thresholds 
(0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001 and 0.00005; 
Fig. 3). The predictive power of the model peaked for the 
0-back task at threshold = 0.0001 (0-back: r = 0.5173 , 
p = 5.6293 × 10−61 , RMSE = 1.4026). The predictive 
power of the model peaked for the 2-back task at threshold 
= 0.00005 (2-back: r = 0.4536 , p = 1.3989 × 10−45 , RMSE 
= 1.1958). We also tested the prediction ability of 0-back 
model on 2-back data and 2-back model on 0-back data 
respectively. The results show that both the 0-back model 
and the 2-back model can predict each other well (r[0-back 
model on 2-back data]= 0.3425 , p = 0.8369 × 10−25 , RMSE 
= 1.2852; Fig. 4c; r[2-back model on 0-back data] = 0.3178 , 
p = 5.8959 × 10−22 , RMSE = 2.1859 ; Fig. 4d). The follow-
ing external dataset validation section used the optimal 
model obtained here by adjusting the threshold value. It can 
be noted that in the 0-bcak model, the observed scores are 
skewed high, but the predictions are symmetrically distrib-
uted. We think this is because the data we used are brain con-
nectivity data, so that even if there are differences between 
each individual, they are not as different as behavioral data. 
In addition, the authors in the limitations section of the CPM 
paper also mention that prediction models tend to produce 
predicted values with ranges smaller than the range of true 

values (Shen et al. 2017). That is, the models overestimate 
the behavior of the individuals with the lowest measured 
values while underestimate. So, the predictive values derived 
through brain network connections are symmetric.

Brain regions and functional networks that predict 
WM performance

Using the improved CPM, we elucidated the contribution 
of the eight different brain networks to working memory 
performance which enabled us to compare the differences 
between 0-back and 2-back tasks in utilizing these brain net-
works. Figure 5a shows the prediction results of leave-one-
out cross-validation using 8 brain networks respectively, and 
the prediction effect is measured by r value. For 0-back task, 
subcortical and cerebellar regions, frontoparietal network, 
visual association network and motor network networks were 
the top predictive networks. For 2-back task, the most effec-
tive networks for model prediction were the frontoparietal 
network, default mode network, subcortical and cerebellar 
regions and visual association network, which would suggest 
that these brain networks are crucial for working memory. 
For statistical analysis, we divided the subjects randomly 
and equally into training and test sets, and this process was 
performed 500 times to obtain the model prediction perfor-
mance r-values for 500, and we subsequently conducted a 
paired t-test on the prediction performance of the two tasks 
to explore whether there were significant differences in the 
prediction performance of different brain network regions in 
the two tasks. Table 2 shows the t-test results for significance 
and effect sizes Cohen’s d. Through 500 times of two-fold 
cross-validation and T-test, we found significant differences 
in 0-back and 2-back working memory prediction ability for 
all eight networks. Although visual II network performed 

Fig. 3   Parameter optimization of the model. The predictive ability of 
the models constructed under seven different thresholds (p = 0.05, 
0.01, 0.005, 0.001, 0.0005, 0.0001 and 0.00005) was analyzed. The 
predictive power of the model peaked for the 0-back task at threshold 
= 0.0001 (0-back: r = 0.5173 , p = 5.6293 × 10−61 , RMSE = 1.4026). 
The predictive power of the model peaked for the 2-back task at 
threshold = 0.00005 (2-back: r = 0.4536 , p = 1.3989 × 10−45 , RMSE 
= 1.1958)
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better in 0-back tasks than 2-back in leave-one-out cross-
validation, this was probably due to chance factors. In the 
results of 500 times of two-fold cross-validation and T-test, 
as shown in Fig. 5b, that visual II network performs better 
in the 2-back task. In general, the brain networks performed 
better on the 0-back task, the default mode network, visual 
I network and visual II network performed better on the 
2-back network than the 0-back task (Fig. 5b).

To visualize the most predictive features and find the 
functional anatomy of positive and negative networks of WM 
task-trained and rest-trained WM model, we grouped the 268 
nodes into 10 brain regions and 10 functional networks. Edge 
selection threshold for visualization is p < 1 × 10−4 for clar-
ity. For 0-back tasks of WM task-trained, 1436 were selected 
in the positive network and 1194 edges were selected in the 
negative network. Nodes were mainly located in Prefrontal, 
L-Insula, R-MotorStrip, and L-Parietal (Fig. 6a). The posi-
tive networks were mainly concentrated in the motor net-
work, and the negative networks were mainly concentrated 
in the motor, frontoparietal, visual association, salience lim-
bic and medial frontal network (Fig. 7a). For 0-back tasks 

of rest-trained, 36 were selected in the positive network and 
84 edges were selected in the negative network. Nodes were 
mainly in L-Prefrontal, L-Cerebellum, L-Limbic, L- Pari-
etal and L-Prefrontal (Fig. 6a). The positive networks were 
mainly concentrated in the salience limbic, default mode 
and medial frontal network, and the negative networks were 
mainly concentrated in the motor, salience limbic, medial 
frontal and subcortical network (Fig. 7b). For 2-back tasks 
of WM task-trained, 1114 were selected in the positive net-
work and 984 edges were selected in the negative network. 
Nodes were mainly located in Prefrontal and R-Temporal 
(Fig. 6b). The positive networks were mainly concentrated in 
the frontoparietal, salience limbic, default mode and medial 
frontal network, and the negative networks were mainly 
concentrated in the frontoparietal and salience limbic net-
work (Fig. 7a). For 2-back tasks of rest-trained, 138 were 
selected in the positive network and 156 edges were selected 
in the negative network. Nodes were mainly distributed in 
R-Prefrontal, and some in L-Prefrontal, R-Parietal, L-Tem-
poral, and R-Occipital (Fig. 6b). The positive networks were 
mainly concentrated in the salience limbic, medial frontal 

Fig. 4   Scatter plot of the 
model-estimated 0-back and 
2-back d prime with respect to 
observed values. When integrat-
ing functional connectivity of 
task-based fMRI and resting-
state fMRI features together 
as input for model, Pearson’s 
correlations of r[0-back] 
= 0.5173 ( p = 5.6293 × 10−61 ) 
and r[2-back] = 0.4536 
( p = 1.3989 × 10−45 ) between 
predicted and observed scores 
were achieved for 0-back and 
2-back task respectively. 0-back 
model and the 2-back model can 
predict each other well, r[0-back 
model on 2-back data] = 0.3425 
( p = 0.8369 × 10−25 ) and 
r[2-back model on 0-back data] 
= 0.3178 ( p = 5.8959 × 10−22)
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and default mode network, and the negative networks were 
mainly concentrated in the salience limbic, frontoparietal 
and medial frontal network (Fig. 7b). Tables 3 and 4 provide 
more thorough details regarding nodes and networks, includ-
ing MNI Coordinates and degrees. 10 brain regions and 10 
functional networks is drawn according to the mapping 

website provided in the CPM paper (https://​bioim​agesu​ite-
web.​github.​io/​webapp/​connv​iewer.​html). The classification 
of the 10 regions in the mapping website just subdivide the 
subcortical and cerebellar regions (SUB) into Salience Lim-
bic (SAL), Subcortical (SC) and Cerebellum (CBL).

Fig. 5   Model performance of 8 brain network regions and the differ-
ence of 0-back and 2-back predicted contributions of different net-
works. The networks include the subcortical and cerebellar regions 
(SUB), the frontoparietal network (FP), the visual association net-
work (VSA), the default mode network (DM), the medial frontal 
network (MF), the motor network (MOT), the visual II network (V2) 
and the visual I network (V1). a Prediction results of leave-one-out 
cross-validation using 8 brain networks respectively (threshold p < 

0.05). Subcortical and cerebellar regions, frontoparietal network, 
visual association network and motor network were predicted better 
than other networks for the 0-back task. Subcortical and cerebellar 
regions, frontoparietal network, visual association network and the 
default mode network are the most effective networks for model pre-
diction in the 2-back task. b The 500 times two-fold cross-validation 
and T-test results. Default mode network, visual I network and visual 
II network differed more noticeably across the two tasks

https://bioimagesuiteweb.github.io/webapp/connviewer.html
https://bioimagesuiteweb.github.io/webapp/connviewer.html


1486	 Brain Structure and Function (2023) 228:1479–1492

1 3

Network overlap

To test the effect of the working memory model on other 
cognitive behaviors, we selected nine other cognitive 
behaviors from the HCP database, including episodic 
memory, executive function, executive function/inhibition, 
fluid intelligence, language/reading decoding, language/
vocabulary comprehension, processing speed, sustained 

attention, verbal episode memory. Edge overlap was 
retrained for each task and then compared with the work-
ing memory task finding the overlapping edges to compare 
other cognitive and working memory differences in brain 
connectivity. However, when testing the generalizability of 
the model, the model effects were derived from predictions 
using the pre-trained working memory model and were not 
retrained again for different tasks, and the edge selection 
was also based on the pre-trained working memory model. 
So, the result can be a real generalization test. Table 5 
and 6 are the nine cognitive behaviors predicted results 
by using models built on 0-back and 2-back WM task 
and their edge overlap with working memory (threshold 
p <0.05). The Jaccard index measures the similarity of a 
finite set of samples, so in addition to the number of edge 
overlaps, we also provide the Jaccard index for the set of 
edges of the working memory task and other tasks. The 
higher the Jaccard index, the more similar the two samples 
are. We found that the model has a significant prediction 
effect on all nine cognitive behaviors (p <0.05), and the 
more overlapping edges they have with working memory, 
the better the model prediction effect (Fig. 8). The best 
predictions are for Fluid intelligence (r[0-back] = 0.4026, 

Table 2   Results of t-test for the difference in prediction effects 
between 0-back and 2-back task in different brain networks

Brain networks T-test

Significance Cohen’s d

Subcortical and cerebellar regions 6.60 × 10−81 1.0337
Frontoparietal network 1.75 × 10−18 0.4081
Visual association network 3.72 × 10−69 0.9256
Motor network 3.04 × 10−74 0.9724
Medial frontal network 2.20 × 10−35 0.6013
Default mode network 2.24 × 10−34 0.5907
Visual II network 4.34 × 10−36 0.6085
Visual I network 6.66 × 10−44 0.6871

Fig. 6   Brain regions and functional connections predicting WM 
d prime in 10 brain lobes. We grouped the 268 nodes into 10 brain 
lobes: Prefrontal, MotorStrip, Insula, Parietal, Temporal, Occipi-
tal, Limbic, Cerebellum, Subcortical and Brainstem (threshold 
p < 1 × 10−4 when selected edges). The Circle plots show number 
of connections they have in both the positive and negative networks 
between the 10 brain lobes (red representing a positive network and 

blue representing a negative network). In the glass brain, lines indi-
cate the edges, the size of the node represents the degree, indicating 
the total number of connections in the positive and negative networks, 
and is colored according to which network they have more connec-
tions in (red representing a positive network and blue representing a 
negative network)
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r[2-back] = 0.4080), language/vocabulary comprehension 
(r[0-back] = 0.3970, r[2-back] = 0.3743), Language/Read-
ing Decoding and Executive Function (r[0-back] = 0.3662, 
r[2-back] = 0.3631), with a lot of overlapping edges, indi-
cating a strong link between these behaviors with working 
memory.

External validation

To validate the model’s performance on out of distribu-
tion samples, we use external data sets to further verify 
the model predictions. The external data were obtained 
from CCNMD, and a total of 97 subjects were selected 

Fig. 7   Brain regions and functional connections predicting WM d 
prime in 10 networks of brain. In these matrix plots, rows and col-
umns represent 10 networks of brain function, including Medial Fron-
tal (MF), Frontoparietal (FP), Default Mode (DMN), Motor (Mot), 
Visual I (VI), Visual II (V II), Visual Association (VAs), Salience 

Limbic (SAL), Subcortical (SC) and Cerebellum (CBL). These cells 
represent the number of nodes in a positive and negative network (red 
representing a positive network, blue representing a negative network 
and orange representing the sum of positive and negative networks)

Table 3   The top five nodes with the strongest connections in the 0-back and 2-back task-trained prediction model

Task Node MNI coordinates (x, y, z) Lobe Degree Network

0-back Dorsolateral prefrontal cortex −10.15 55.69 30.24 L-Prefrontal 53 Medial frontal
Insular cortex −39.09 1.71 9.54 L-Insula 48 Motor
Premotor cortex and supplementary 

motor cortex
25.22 12.41 49.39 R-MotorStrip 45 Fronto- parietal

Insular cortex 41.39 3.51 7.15 L-Insula 44 Motor
Visuo-motor coordination −7.35 −34.12 67.46 L-Parietal 43 Motor

2-back Orbital part of inferior frontal gyrus −28.35 36.03 −15.64 L-Prefrontal 55 Limbic
Anterior prefrontal cortex 30.51 54.92 −3.52 R-Prefrontal 54 Fronto- parietal
Anterior prefrontal cortex −6.93 48.31 −5.71 L-Prefrontal 50 Default mode
Fusiform gyrus 25.23 −44.56 −12.22 R-Temporal 48 Visual I
Anterior prefrontal cortex 28.88 51.14 18.68 R-Prefrontal 47 Fronto- parietal
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(39 females, 58 males, 74 healthy, 23 Schizophrenic, age 
11–30). Since the modeling data and the external vali-
dation data come from different databases, the two pre-
processing processes are slightly different, see the Method 
section for details. Applying the 0-back and 2-back task-
trained models to task-based functional connectivity from 
these individuals (0-back model: threshold = 0.0001; 
2-back model: threshold = 0.00005), we found that the 

model established for the 0-back task could significantly 
predict the working memory and executive function of 
healthy individuals from CCNMD, and for the 2-back task 
model, healthy individuals’ working memory, executive 
function and IQ can be significantly predicted (Table 7). 
Although the model could not predict the working mem-
ory of schizophrenics, there was a significant effect when 
schizophrenic and healthy individuals were combined, 

Table 4   The top five nodes with the strongest connections in the 0-back and 2-back rest-trained prediction model

Task Node MNI coordinates (x, y, z) Lobe Degree Network

0-back Orbital part of inferior frontal gyrus −32.05 20.46 −15.97 L-Prefrontal 7 Medial frontal
Cerebellum −46.41 −46.77 −42.86 L-Cerebellum 6 Cerebellum
Part of the perirhinal cortex −20.71 −30.77 −11.12 L-Limbic 5 Basal ganglia
Visuo-motor coordination −7.35 −34.12 67.46 L-Parietal 4 Motor
Anterior prefrontal cortex −6.93 48.31 −5.71 L-Prefrontal 4 Default mode

2-back Broca’s area 36.98 20.81 5.89 R-Prefrontal 25 Limbic
Frontal eye fields −11.17 34.26 51.48 L-Prefrontal 11 Medial frontal
Visuo-motor coordination −25.17 −52.42 68.13 R-Parietal 10 Visual association
Middle temporal gyrus −59.85 −27.42 −18.14 L-Temporal 9 Fronto- parietal
Secondary visual cortex(V2) 31.17 −91.77 −10.82 R-Occipital 9 Visual II

Table 5   Edge overlap of 0-back WM and other cognitions

Cognitions Edge overlap with 0-back WM (Jaccard index) (task-pos; 
task-neg; rest-pos; rest-neg)

Model performance CPM-8-network-2FS

Fluid intelligence 4368 (0.3509) 3960 (0.3197) 1020 (0.1552) 1220 (0.1633) r = 0.4026 , p = 4.8965 × 10−35

Language/vocabulary comprehension 4080 (0.3281) 4000 (0.3266) 1050 (0.1492) 1110 (0.1454) r = 0.3970 , p = 4.9063 × 10−34

Language/reading decoding 3610 (0.2809) 3708 (0.2952) 872 (0.1349) 1056 (0.1476) r = 0.3662 , p = 7.7715 × 10−29

Executive function 2564 (0.2237) 2664 (0.2379) 736 (0.1142) 1044 (0.1462) r = 0.3165 , p = 1.4166 × 10−21

Processing speed 2324(0.2129) 2130 (0.2003) 776 (0.1035) 958 (0.1111) r = 0.2705 , p = 5.6519 × 10−16

Episodic memory 2602 (0.2334) 2024 (0.1791) 644 (0.1041) 766 (0.1102) r = 0.2613 , p = 5.6538 × 10−15

Executive function/inhibition 1946 (0.1785) 1586 (0.1479) 534 (0.0885) 680 (0.0998) r = 0.2059 , p = 9.8605 × 10−10

Verbal episode memory 980 (0.0939) 1022 (0.0981) 314 (0.0575) 512 (0.0824) r = 0.1606 , p = 1.0888 × 10−06

Sustained attention 840 (0.0798) 984 (0.0948) 368 (0.0614) 476 (0.0691) r = 0.1036 , p = 2.2937 × 10−03

Table 6   Edge overlap of 2-back WM and other cognitions

Cognitions Edge overlap with 2-back WM (Jaccard index) (task-pos; 
task-neg; rest-pos; rest-neg)

Model performance CPM-8-network-2FS

Fluid intelligence 4138 (0.3593) 3778 (0.3467) 1420 (0.1999) 1472 (0.1890) r = 0.4080 , p = 4.9299 × 10−36

Language/vocabulary comprehension 3618 (0.2981) 3454 (0.2985) 1418 (0.1866) 1370 (0.1725) r = 0.3743 , p = 3.6907 × 10−30

Language/reading decoding 3444 (0.2969) 3422 (0.3092) 1294 (0.1856) 1356 (0.1827) r = 0.3632 , p = 2.3099 × 10−28

Executive function 2780 (0.2531) 2834 (0.2680) 1092 (0.1556) 1312 (0.1763) r = 0.3383 , p = 1.3305 × 10−24

Processing speed 2616 (0.2404) 2710 (0.2568) 996 (0.1473) 1014 (0.1394) r = 0.2912 , p = 2.2617 × 10−18

Episodic memory 2394 (0.2164) 2444 (0.2322) 1276 (0.1610) 1274 (0.1435) r = 0.2833 , p = 2.0013 × 10−17

Executive function/inhibition 2232 (0.2112) 1918 (0.1893) 726 (0.1072) 786 (0.1080) r = 0.2379 , p = 1.3435 × 10−12

Verbal episode memory 620 (0.0603) 512 (0.0518) 528 (0.0781) 688 (0.0950) r = 0.1395 , p = 4.1081 × 10−05

Sustained attention 740 (0.0752) 660 (0.0690) 432 (0.0689) 612 (0.0916) r = 0.1148 , p = 7.1606 × 10−04
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which may be affected by the number of subjects. There-
fore, we randomly selected 23 subjects from healthy indi-
viduals for prediction, randomly selected 100 times, and 
averaged the results. It can be seen that when the number 
of healthy subjects is reduced to 23, the model cannot 
significantly predict their behavior, suggesting that the 
number of subjects may have an impact on the predictive 
effect of the model. We also observed that the model had 
a significant predictive effect when the number of healthy 
subjects reached 55. And the model cannot generalize 
to schizophrenics also probably because the model was 
trained on data of the healthy. The result means that our 
model has a good predictive effect and good generaliza-
tion ability on healthy individuals, 0-back WM model can 
predict working memory and executive function ability 

and the 2-back WM model can predict working memory, 
executive function and IQ.

Discussion

In this study, we used the task-based and resting-state func-
tional connection matrices of 874 subjects from the Human 
Connectome Project dataset to establish working memory 
prediction models for 0-back and 2-back tasks. In the pro-
cess of model building, we improved the CPM method, we 
subdivide the features according to the functional brain net-
works, rather than just adding them together as in the origi-
nal CPM approach, and each brain region can be predicted 
separately and the predictions can be compared. This can 
give us a clearer understanding of the importance of differ-
ent brain networks in working memory and make the model 
more closely related to brain connectivity. According to 
the results of the leave-one-out cross-validation, our model 
performed well at predicting individual working memory 
performance, was easier to interpret, and had a stronger rela-
tionship to the brain network. Furthermore, the model has 
greater potential for enhancement as the number of features 
increases from four to thirty-two. By using external data set 
validation from CCNMD, we demonstrated the validity of 
the model for predicting working memory ability on healthy 
individuals, as well as IQ, episodic memory and executive 
function. The model cannot be generalized to patients with 
schizophrenia, either because the model was trained on data 
from healthy individuals or because the amount of patient 
data is too small, which needs to be further explored in the 
future. Through exploring the prediction effect of working 
memory model on other cognitive behaviors, we found that 
the prediction ability of models is related to network overlap 
and the higher network overlap between a kind of cogni-
tive behavior and working memory network, the stronger 
the prediction ability of working memory model for it. 
This finding demonstrates the close relationship between 

Fig. 8   Edge overlap and r value of 0-back and 2-back WM and other 
cognitions. The R-value calculation used the working memory model 
to predict other cognitive performance separately, and the edge over-
lap was the amount of overlap between the predicted edge of the 
working memory model and other cognitive behaviors when picked 
the edge of the prediction model (threshold = 0.05). The best predic-
tions were for Fluid intelligence (r[0-back] = 0.4026, r[2-back] = 
0.4080), language/vocabulary comprehension (r[0-back] = 0.3970, 
r[2-back] = 0.3743), Language/Reading Decoding and Executive 
Function (r[0-back] = 0.3662, r[2-back] = 0.3631)

Table 7   External validation of WM model

Bold values indicate significant results (p < 0.05)

Task Subjects Working memory Executive function IQ Episodic memory

0back All r = 0.2918 , p = 0.0037 r = 0.3041 , p = 0.0025 r = 0.1347 , p = 0.1883 r = 0.0796 , p = 0.4383

Healthy r = 0.3195 , p = 0.0055 r = 0.3744 , p = 0.0010 r = 0.1508 , p = 0.1998 r = 0.0633 , p = 0.5922

Schizophrenic r = 0.3249 , p = 0.1303 r = 0.2855 , p = 0.1866 r = 0.0025 , p = 0.9909 r = 0.2013 , p = 0.3570

Healthy ( n = 23) r = 0.2593 , p = 0.3136 r = 0.3722 , p = 0.1843 r = 0.1763 , p = 0.4152 r = 0.1275 , p = 0.5318

Healthy ( n = 55) r = 0.2822 , p = 0.1676 r = 0.3841 , p = 0.0363 r = 0.2164 , p = 0.1850 r = 0.1008 , p = 0.5807

2back All r = 0.3453 , p = 0.0005 r = 0.4132 , p = 0.00002 r = 0.2933 , p = 0.0035 r = 0.2826 , p = 0.0050

Healthy r = 0.2384 , p = 0.0408 r = 0.3201 , p = 0.0054 r = 0.2803 , p = 0.0156 r = 0.1663 , p = 0.1566

Schizophrenic r = 0.3164 , p = 0.1414 r = 0.3883 , p = 0.0671 r = 0.0679 , p = 0.7582 r = 0.1358 , p = 0.5368

Healthy ( n = 23) r = 0.2532 , p = 0.3072 r = 0.2494 , p = 0.2965 r = 0.3492 , p = 0.1903 r = 0.2348 , p = 0.3088

Healthy ( n = 55) r = 0.2386 , p = 0.0411 r = 0.3229 , p = 0.0463 r = 0.2829 , p = 0.1169 r = 0.2478 , p = 0.1804
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fluid intelligence, language/vocabulary comprehension, 
Language/Reading Decoding and Executive Function with 
working memory.

In the n-back working memory experiment, the 2-back 
task requires both attentional monitoring and working 
memory, while 0-back only requires attentional monitoring 
of the target, so the comparison of brain activation during 
2-back versus 0-back can determine the regional response of 
working memory (Li et al. 2021). We used working memory 
d-prime to represent an individual’s working memory per-
formance. Anatomically, in both 0-back and 2-back tasks, a 
wide distribution of nodes was seen in the prefrontal cortex 
(PFC), which was consistent with the regional response to 
N-back memory described in previous studies: the prefron-
tal cortex is thought to be critical for the maintenance of 
elastic information during the working memory task (Funa-
hashi et al. 1989; Fuster and Alexander 1971). In particular, 
there were a lot of nodes in Dorsolateral prefrontal cortex 
(DLPFC) in our results. DLPFC has often been reported 
in studies of working memory, and evidence from human 
functional neuroimaging and delayed response task studies 
in non-human primates suggests that DLPFC plays a crucial 
role in working memory (Bauer and Fuster 1976; Owen et al. 
2005). The results of the 2-back task also revealed a wider 
distribution of nodes in the DLPFC than those from the 
0-back task, highlighting the critical role the DLPFC plays 
in working memory. Although the rest-trained WM models 
showed higher number of connections between the ventro-
lateral prefrontal cortex (VLPFC) than DLPFC with other 
regions, this result is also reasonable, as VLPFC activation 
has been shown to occur in working memory activities in 
previous brain imaging studies (Wolf et al. 2006). As shown 
in our results, extensive connections between nodes in the 
parietal, temporal and cerebellum with other nodes were also 
observed in 2-back task, which are similar to brain regions 
reported in previous investigations of working memory. Like 
the PFC, the parietal cortex plays a significant role in work-
ing memory function and is essential for working memory 
information processing (Koenigs et al. 2009). Although 
the temporal lobe is not considered important in working 
memory, it has been shown to have sustained neural activ-
ity during working memory (Axmacher et al. 2007). And 
studies have shown that the cerebellum is linked to working 
memory (Zylberberg and Strowbridge 2017).

From the results of functional network, both in the 0-back 
task and 2-back task, we can see that the networks are more 
focused on the default mode and frontoparietal network, 
salience limbic and medial frontal. This is consistent with 
known research findings, studies have shown that dynamic 
signals between salience, frontoparietal, and default mode 
networks can predictive performance (Cai et al. 2021). In 
addition, connections within and between regions of the 
default mode network are highly utilized in predicting WM 

performance (Avery et al. 2020). The medial frontal is asso-
ciated with the executive process (Talati and Hirsch 2005), 
so that part of the network connection may be due to the 
executive function being wanted in the working memory 
task. In particular, in the positive network of 0-back task-
trained models, we notice that the number of nodes distrib-
uted in the motor network is much higher than the other 
networks and much higher than the number of nodes in the 
motor network of 0-back tasks. This conclusion is consistent 
with our findings in the network prediction section, where 
the motor network predicted the 0-back task significantly 
better than the 2-back task. Previous study has demonstrated 
that involvement of the motor system in working memory 
scales inversely with individual working memory capac-
ity (Marvel et al. 2019). Similarly, based on our results, we 
believe that the use of the motor network is also inversely 
proportional to the working memory load.

The brain network region model performance outcomes 
are comparable to the network connectivity distribution 
results. Subcortical and cerebellar regions, frontoparietal 
network, visual association network and motor network 
predicted more accurately for the 0-back task than other 
networks. Subcortical and cerebellar regions, frontoparietal 
network, visual association network and the default mode 
network are the most successful networks for model pre-
diction in the 2-back task, which suggests that these brain 
networks are essential for high load working memory task. 
Subcortical and cerebellar regions made the best contribu-
tion to the model in both n-back tasks, which are comparable 
to the findings reported in earlier studies: subcortical regions 
such as the cerebellum are indeed involved in working mem-
ory and some specific parts of the cerebellum are regulated 
by working memory load (Kirschen et al. 2005; Zylberberg 
and Strowbridge 2017). Interestingly, when comparing the 
difference in prediction results between the 0-back task and 
the 2-back task for each of the eight networks, although in 
general the brain networks performed better on the 0-back 
task, we discovered that the visual I network, visual II net-
works and default mode network performed better on the 
2-back network than the 0-back task and the frontoparietal 
network is less different in the prediction of the two tasks. 
The 0-back task relies on detecting the stimulus that matches 
the target, while the 2-back task requires participants not 
only to detect and encode the incoming stimulus, but also to 
maintain and update the information. The 2-back task repre-
sents a higher working memory load compared to the 0-back 
task. This suggests that there may be functional differences 
between these brain networks in the 0-back and 2-back tasks. 
Studies have shown that the causal influence between mul-
tiple nodes in frontoparietal network, salience network and 
default mode network is modulated by high (2-back) and 
low (0-back) working-memory load conditions and predicts 
working memory performance, and communication between 
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frontoparietal regions and the default mode network is essen-
tial for the appropriate load response (Cai et al. 2021; Ery-
ilmaz et al. 2020). This provides support with the significant 
differences between default mode network and frontoparietal 
network in our predicted results for two tasks. Although vis-
ual I network and visual II networks did not perform as well 
as several other networks in predicting working memory, 
they showed significantly higher prediction performance in 
the high working memory load task than in the low working 
memory load task. Previous functional magnetic resonance 
imaging research revealed greater distractor competition 
effects on the sensory correlates in primary visual cortex 
(areas V1–V2) in conditions of high working memory load 
and high working memory load resulted in increased con-
gruency-related functional connectivity between anterior 
cingulate cortex and V1 (Kelley and Lavie 2011). Our find-
ing suggests that visual I network and visual II networks are 
associated with working-memory load conditions and they 
have a stronger network connectivity effect in high working 
memory loads. By comparing the prediction effects of these 
brain networks for 0-back and 2-back tasks, visual I network, 
visual II networks and default mode network showed better 
prediction effects in the 2-back task. In addition to demon-
strating the important role of these networks in high working 
memory loads, since these networks can distinguish between 
high and low working-memory load conditions, they could 
be able to play an essential role in relevant predictive clas-
sification tasks in future studies.

Conclusion

In this study, we build models for predicting low and high 
working memory load (0-back and 2-back) working memory 
performance, the improved CPM makes the model more 
interpretable and more connected to the brain by subdividing 
the features into different brain networks. This allows us to 
compare the role of different networks in prediction and thus 
gain a clearer understanding of the role of different brain 
networks in working memory. And by increasing the number 
of model features, we provide more possibilities for future 
model improvement. We demonstrated the model’s ability to 
generalize across different cognitive activities and to predict 
a wide range of healthy individuals by verifying its perfor-
mance to be applied to other cognitive tasks and external 
data sets. In addition, a wide distribution of nodes was seen 
in the prefrontal, parietal, temporal and motor strip. And net-
works are mainly concentrated in the frontoparietal network, 
salience limbic, medial frontal and default mode network. 
These nodes and networks suggest a strong connection with 
working memory. By comparing the prediction effects of 
brain networks for 0-back and 2-back tasks, visual I network, 
visual II networks and default mode network demonstrated 

the important role in high working memory loads. Subcorti-
cal and cerebellar regions, frontoparietal network and visual 
association network predicted more accurately for both high 
and low working memory loads task than other networks, 
however, the motor network outperforms the default mode 
network for low working memory load and the default mode 
network for high working memory load. In summary, our 
model correlates resting-state and task-based fMRI with 
working memory behavior, and the model can well predict 
working memory performance and other behaviors closely 
associated with working memory. Unlike traditional fMRI 
research methods, we innovatively use CPM modeling 
approach to study high and low load working memory brain 
mechanisms. Our findings theoretically provide a wealth of 
information on the neural infrastructure of the WM process, 
including high and low working memory loads, that can help 
us better understand the neuroimage correlations behind 
working memory.
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