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Abstract—The existing indoor localization approaches based on
single fingerprints, such as received signal strength (RSS) and chan-
nel impulse response, are rather susceptible to the changing envi-
ronment, multipath, and nonline-of-sight. It is well known that in-
door localization can obtain higher positioning accuracy than the
single-fingerprint-based methods by fusing multiple information
sources (fingerprints/fingerprint functions). However, the existing
fusion methods cannot fully exploit the intrinsic complementarity
among multiple information sources and thus show lower accu-
racy. In this paper, we propose an accurate WiFi localization ap-
proach by Fusing A Group Of fingerprinTs (WiFi-FAGOT) via a
global fusion profile (GFP). WiFi-FAGOT first constructs a WiFi-
based GrOup Of Fingerprints (GOOF) in the offline phase, which
consists of RSS, signal strength difference, and hyperbolic loca-
tion fingerprint. Then, instead of direct localization by using the
WiFi-based GOOF, we design multiple classifiers by training each
fingerprint in the WiFi-based GOOF, namely GOOF classifiers. To
fully leverage the intrinsic complementarity among different kinds
of fingerprints, we propose a GFP construction algorithm by min-
imizing the average positioning error over the space of all GOOF
classifiers. Finally, in the online phase, we derive a grid-dependent
matching algorithm, namely, optimal classifier selection, to intel-
ligently choose a fusion profile in the GFP for more accurate lo-
calization. Experimental results demonstrate that WiFi-FAGOT
performs better than other systems in real complex indoor envi-
ronments.

Index Terms—WiFi, FAGOT, group of fingerprints (GOOF),
global fusion profile (GFP), KNN.

I. INTRODUCTION

THE rapid growth of the Internet of Things (IoT) in which all
kinds of physical devices and objects embedded with sen-

sors are connected via a network of networks is spurring many
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emerging applications in various monitoring, control, trans-
portation, and manufacturing systems [1], [2]. Many of these
emerging applications require accurate localization, in particu-
lar, wireless indoor localization [3]–[6]. Although space-based
satellite navigation systems such as global positioning system
(GPS) offer high outdoor localization accuracy, the poor connec-
tivity between satellites and end devices render them ineffective
indoor, thus triggering further research on indoor localization
[7]–[11] and navigation [12]–[14].

With the rapid development of wireless communications
technology, there is an ever-increasing scope of WiFi appli-
cations, and almost each smartphone has a built-in WiFi mod-
ule. Therefore, the WiFi-based indoor localization system has a
broader range of applications than other techniques.

Existing WiFi-based localization algorithms mainly include
geometric-based algorithms [15]–[18] and fingerprint-based al-
gorithms [19], [20]. The former needs more accurate estimates
of geometric parameters to yield a better location estimate. Nev-
ertheless, the radio signal in a complex indoor environment is
characterized by multipath fading, non-line-of-sight (NLOS)
propagation and time-varying, and it is therefore unlikely to ac-
quire the relative accurate geometric parameters, thus leading to
cumulative localization errors. In contrast, the fingerprint-based
approach does not need to estimate the geometric parameters and
does not require the layout of the environment and the locations
of the access points (AP), and has thus drawn much attention in
recent years. However, the accuracy of the fingerprint-based ap-
proach is known to be vulnerable to an unpredictable changing
environment.

To overcome the above drawbacks of the WiFi-based finger-
print system, several approaches have been proposed that can be
categorized into constructing robust location features [21], [22],
probabilistic methods [23], [24], and machine learning methods
[25], [26]. These methods can improve the positioning accuracy
to some extent, but they all employ single fingerprints, which
are still not robust to a changing environment because a single
fingerprint just captures the indoor environment from its own
viewpoint/perspective.

It has been proven that information fusion is an efficient strat-
egy to improve the drawbacks of the single fingerprints based
localization approaches [27]–[31]. In [30], we first proposed a
novel localization framework by fusing a group of fingerprints
(FAGOT), which extracts different kinds of fingerprints in ad-
dition to the conventional RSS fingerprints from the received
signals of multiple antennas to build a GrOup Of Fingerprints
(GOOF). The fingerprints in GOOF describe an indoor envi-
ronment from different perspectives, and so an efficient fusion
of GOOF is expected to improve the localization performance
significantly. Based on the constructed GOOF, we have derived
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a multiple classifiers multiple samples (MUCUS) fusion algo-
rithm to obtain a more accurate location estimate.

In this paper, we propose an accurate WiFi localization ap-
proach by Fusing A Group Of fingerprinTs (WiFi-FAGOT) via
global fusion profile (GFP). The key insight of our work is that
each fingerprint can depict the localization environment from
its particular perspective and can exhibit different advantages
at different grid points. In the offline phase, WiFi-FAGOT first
constructs a WiFi-based GOOF by extracting signal strength dif-
ference (SSD) and hyperbolic location fingerprint (HLF) from
the RSS of WiFi signals. SSD and HLF pay more attention to
pairwise information between APs, and thus are more robust to
a changing environment and heterogeneous devices [21], [22].
Then, instead of direct localization by using the WiFi-based
GOOF, we design multiple classifiers by training each finger-
print in the WiFi-based GOOF, namely, GOOF-classifiers. To
fully leverage the intrinsic complementarity among different
kinds of fingerprints, we propose a GFP construction algorithm
by minimizing the average positioning error over the space of
all GOOF-classifiers. Finally, in the online phase, we derive a
grid-dependent matching algorithm, namely, optimal classifier
selection (OCS), to intelligently select a fusion profile from
GFP for more accurate localization. Experimental results show
that our proposed system is superior to the existing methods in
accuracy.

The contributions of this work are summarized below.
1) We propose a WiFi-based GOOF, which consists of RSS,

SSD, and HLF. Although SSD and HLF are both derived
from RSS, their combinations can improve the accuracy
of localization significantly because SSD and HLF are
more robust to a changing environment and heterogeneous
devices.

2) We propose a more accurate WiFi-FAGOT localization
framework by using the WiFi-based GOOF rather than
the single RSS fingerprints. Instead of using the WiFi-
based GOOF to localize target directly, WiFi-FAGOT first
trains multiple GOOF-classifiers and fuse them efficiently
for more accurate localization. The proposed framework
does not require any hardware changes and is applicable
to any WiFi-based systems.

3) We propose a GFP construction algorithm by minimizing
the average positioning error over all GOOF-classifiers
space with weights constraints in the offline phase. As
compared with the existing fusion profile (FP) construc-
tion approaches, GFP can fully exploit the complementar-
ity among different kinds of fingerprints, and thus yields
a more accurate location estimate.

4) We propose an OCS matching algorithm to fully exploit
the knowledge of the optimal classifier in the offline phase.
OCS chooses the weights based on the output of the op-
timal classifier instead of RSS direct matching (RDM).
It can overcome the impact of RSS fluctuation, and thus
further improves the performance of localization.

The remaining paper is organized as follows. Section II
introduces some works related to our study. The proposed
WiFi-FAGOT framework, the WiFi-based GOOF construction,
GOOF-classifiers training, GFP construction, OCS algorithm
as well as performance analysis are represented in Section III.
Section IV shows the experimental setup and results in real
and simulation environments. Finally, conclusions are drawn in
Section V. In addition, to improve readability, we summarize
various acronyms used in this paper in Table I.

TABLE I
LIST OF ACRONYMS

II. RELATED WORKS

Fingerprint-based localization has attracted much attention
recently because geometric-based algorithms show poor perfor-
mance in complex indoor environments. In WiFi localization,
RSS is one of the most attractive fingerprint due to the wide
deployment and availability of WiFi infrastructures. However,
the RSS-based localization system is not accurate and robust be-
cause RSS of WiFi is known to be vulnerable to unpredictable
changing environments and hardware differences. To overcome
the drawbacks of RSS, Kjrgaard et al. [22] proposed a hy-
perbolic location fingerprint (HLF) by recording fingerprints
as signal strength ratios between pairs of base stations instead
of absolute signal-strength values. HLF can solve the signal-
strength difference problem without requiring extra manual cal-
ibration. Hossain et al. [21], [32] proposed a signal strength
difference (SSD) fingerprint which outperforms the traditional
RSS fingerprints in terms of robustness across heterogeneous
mobile devices. In brief, HLF and SSD show small variations
as compared with the RSS because they consider the pairwise
information between APs. These fingerprints can improve the
drawbacks of the RSS from different viewpoints. To combine
the merits of these fingerprints, Fang et al. [33] proposed a delta-
fused principle strength (DFPS) fingerprint which combines the
delta signal strength (ΔRSS) with RSS to yield a more accu-
rate localization result. A similar idea was adopted in [34]. The
works in [33], [34] employ direct fusion of fingerprints. By dif-
ferent transformations of the received signals from a platform
with multiple antennas, we first proposed a GOOF for more
accurate localization [30]. The GOOF consists of five different
fingerprints including RSS, covariance matrix, signal subspace,
fourth-order cumulant, and fractional low-order moment; each
fingerprint in the GOOF can depict the indoor environment from
a unique perspective. Similar to [30], we propose a WiFi-based
GOOF which includes RSS, SSD, and HLF for more accurate
localization. The combination is done in the GOOF-classifiers
space instead of the WiFi-based GOOF space, and is proven to
further improve the accuracy of localization.

Fusion based localization has drawn much attention in re-
cent years. The existing fusion methods can be categorized
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as two groups: one is the weighting fusion strategy [27]–[29],
which trains fusion weights in the offline phase and uses these
weights to fuse a better localization result in the online phase;
the other is the direct fusion strategy in the online phase with-
out using weights, such as multiple classifiers multiple samples
(MUCUS) fusion method [30]. In general, the former shows
better performance in accuracy improvement than the latter be-
cause it leverages the knowledge (weights) from the offline
phase. The latter needs more online testing samples to yield one
localization result, and is thus not very efficient because we can-
not obtain more testing samples during the stationary phase of
the target in a WiFi environment. Hence, the weighting fusion
strategy is more practical than the direct fusion strategy in WiFi
localization.

The existing weighting fusion strategies can be divided into
two cases: one is based on a grid dependent fusion profile
(GDFP), such as dynamic fingerprint combining (DFC) [27]
and its variants [28], and the other is based on a grid inde-
pendent fusion profile (GIFP), such as minimum mean square
error (MMSE) based location estimation [29]. In a nutshell,
the former constructs different fusion profiles at different grid
points, while the latter trains one fusion profile for all grid points.
Therefore, GDFP is superior to GIFP in a complex environment.
However, the existing weighting strategies have two notable
drawbacks: 1) The existing fusion profile (FP) is not globally
optimal because it optimizes the weight for each classifier se-
quentially, and so they cannot make full use of the intrinsic
complementarity among different kinds of fingerprints; 2) the
weights selection method just uses a RSS direct matching strat-
egy, which is very sensitive to RSS fluctuations, and thus leads
to a large location error in a complex environment. Different
from the above approaches, in this work, we propose a WiFi-
based GOOF and derive a novel accurate WiFi localization by
fusing the WiFi-based GOOF via a global fusion profile. Our
proposed approach does improve the accuracy significantly as
compared with the existing fusion methods.

III. PROPOSED ALGORITHM

A. WiFi-FAGOT Framework

Fig. 1 shows the functional blocks of our proposed WiFi-
FAGOT framework, which consists of two phases: offline and
online phase. Suppose that the location area can be divided into
G grid points, each numbered by a label, and the area is cov-
ered by L WiFi APs. In the offline phase, we first construct the
WiFi-based GOOF including RSS, SSD, and HLF. Assume that
the WiFi-based GOOF can be divided into two groups, namely,
GF and GF ′. Among them, GF = [DRSS ,DSSD ,DH LF ]
is used for GOOF-classifiers training, where DRSS , DSSD ,
and DH LF denote the RSS, SSD and HLF fingerprints, re-
spectively. Similarly, GF ′ = [D′

RSS ,D′
SSD ,D′

H LF ] is used
for GFP construction and to find the optimal classifier, where
D′

RSS , D′
SSD , and D′

H LF are also the corresponding RSS,
SSD, and HLF fingerprints, respectively. These three kinds of
fingerprints have their own advantages and disadvantages in
dealing with changing environment and heterogeneous devices,
and our proposed WiFi-FAGOT can exploit the complementar-
ity among them to improve the positioning performance.

In the offline phase, we first train GOOF-classifiers by us-
ing the offline GF fingerprints. The classifier f(·) can be
selected from either machine learning methods or probabilistic

Fig. 1. The overview of our proposed WiFi-FAGOT framework. (a) Offline
phase. (b) Online phase.

methods. Based on the GOOF-classifiers, we can further train
GFP ∈ R3×G by using the offline fingerprints GF ′. GFP is a
weighting matrix W , which stores weights of different kinds of
fingerprints at different grid points, and can be expressed as

W =

⎡
⎢⎣

w11 w21 · · · wG1

w12 w22 · · · wG2

w13 w23 · · · wG3

⎤
⎥⎦ (1)

in which the k-th column denotes the weights assigned for the
GOOF-classifiers at the k-th grid point, i.e., the fusion profile
of the k-th grid point. In addition, the optimal classifier needs
to be chosen by the optimal classifier selection (OCS) with the
same offline fingerprints GF ′, as shown in Fig. 1(a).

In the online phase, given a testing RSS sample, we can obtain
multiple predictions ẑ from the trained GOOF-classifiers and
the optimal weights selected by our proposed OCS algorithm.
The final location estimate can be obtained by the inner product
of the selected weights and the multiple predictions, as depicted
in Fig. 1(b).

To clarify the implementation of our proposed WiFi-FAGOT,
we give an example in Fig. 2. Considering an area with 25 grid
points and the distance between two adjacent grid points is
0.5 m. Assume that GOOF-classifiers and GFP have already
been constructed. Given a testing RSS sample with true grid
point 13, we first transform it to SSD and HLF, respectively.
Then, the predictions given by the GOOF-classifiers when in-
putting the testing samples of RSS, SSD and HLF are 9, 19 and
14, respectively, i.e., ẑ = [9, 19, 14]T . These multiple predic-
tions are then transformed into 2-D coordinates by the mapping
function g(·), i.e.,

g (ẑ) =

⎡
⎢⎣

0.5 0.5

0.5 1.5

1.5 1

⎤
⎥⎦ .
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Fig. 2. An example of WiFi-FAGOT.

If the optimal classifier given in the offline phase is the one
trained with DRSS , then the estimated grid point given by
OCS should be 9, and so we can index the 9th column
from the estimated GFP matrix Ŵ and obtain the weights
ŵ9 = [0.2, 0.3, 0.5]T . The final estimated location is obtained
by the inner product of the selected weights and the multiple
predictions, i.e., the estimated location of target p̂ = ŵT

9 g(ẑ) =
[1, 1.05].

B. WiFi-Based GOOF

We first proposed GOOF in [30], which is constructed by
transformations of the received signals of multiple antennas.
However, the fingerprints extracted from the received signals of
multiple antennas in [30] cannot be obtained by most commod-
ity WiFi devices. So, we propose a WiFi-based GOOF, which
can extract useful information from received WiFi signals. The
WiFi-based GOOF includes three different kinds of fingerprints:
RSS, SSD and HLF.

1) RSS: Denote rl
k (n) be the RSS value collected at the n-th

time index, at the k-th grid point, and from the l-th AP. Denote
DRSS (k) as the M RSS samples collected at the k-th grid point:

DRSS (k) = [rk (1), rk (2), . . . , rk (M)]

=

⎡
⎢⎢⎢⎢⎢⎣

r1
k (1) r1

k (2) · · · r1
k (M)

r2
k (1) r2

k (2) · · · r2
k (M)

...
...

. . .
...

rL
k (1) rL

k (2) · · · rL
k (M)

⎤
⎥⎥⎥⎥⎥⎦

, (2)

in which M is the number of the collected RSS samples for
training classifiers and rk (m) = [r1

k (m), r2
k (m), . . . , rL

k (m)]T ,
(m = 1, 2, . . . ,M, k = 1, 2, . . . , G). Then, the RSS finger-
prints for GOOF-classifiers training at all grid points can be
expressed as DRSS = [DRSS (1),DRSS (2), . . . ,DRSS (G)]
∈ RL×M ×G .

Similarly, denote D′
RSS (k) as N RSS samples collected at

the k-th grid point:

D′
RSS (k) = [rk (M + 1), rk (M + 2) , . . . , rk (M + N)]

(3)

where rk (n) = [r1
k (n), r2

k (n), . . . , rL
k (n)]T, (n = M+ 1,M+

2, . . . ,M + N). So, the fingerprints for GFP construction and

the optimal classifier selection at all grid points can be ex-
pressed as D′

RSS = [D′
RSS (1),D′

RSS (2), . . . ,D′
RSS (G)] ∈

RL×N ×G .
2) SSD: SSD calculates the differences of the RSS values

between pairs of APs to construct a new robust position feature
[21]. The primary goal of SSD is to eliminate the variation
caused by heterogeneous devices. It is calculated as

Δrij
k (n) = ri

k (m) − rj
k (m), i ∈ [1, L − 1], j ∈ [2, L], i < j

(4)

According to (4), the submatrix DSSD (k) can be written as

DSSD (k) = [Δrk (1),Δrk (2), . . . ,Δrk (M)] (5)

with Δrk (m) = [Δr12
k (m), Δr13

k (m), . . . , Δr
(L−1)L
k (m)]T ,

(m = 1, 2, . . . ,M). Similarly, we can obtain D′
SSD (k) as

D′
SSD (k) = [Δrk (M + 1), . . . ,Δrk (M + N)] (6)

with Δrk (n) = [Δr12
k (n),Δr13

k (n), . . . ,Δr
(L−1)L
k (n)]T , (n =

M + 1,M + 2, . . . , M + N). SSD can reduce the effect of the
variation of RSS because it has smaller variance as compared
with RSS.

3) HLF: HLF [22] has also been proposed to mitigate the
hardware heterogeneity problem, and it uses ratios of the RSSs
between pairs of APs as fingerprints; it first converts RSS from
dBm to numerical values between 0 and 255. Denote γl

k (n) as
the converted value of rl

k (n), which can be express as

γl
k (n) = 255 + rl

k (n). (7)

The normalized logarithm signal strength ratio ηij
k (n) be-

tween the i-th and j-th AP at the k-th grid point can be
calculated as

ηij
k (n) = log

(
γi

k (n)
γj

k (n)

)
− log

(
1

γmax

)
(8)

where γmax = max {γ1
k (n), γ2

k (n), . . . , γL
k (n)}. The ranges of

i and j are the same as those of (4). According to (8), the
submatrix DH LF (k) can be written as

DH LF (k) = [ηk (1),ηk (2), . . . ,ηk (M)] (9)

where ηk (m) = [η12
k (m), η13

k (m) . . . , η
(L−1)L
k (m)]T , (m = 1,

2, . . . ,M). Similarly, we can obtain D′
H LF as

D′
H LF (k) = [ηk (M + 1), . . . ,ηk (M + N)] (10)

where ηk (n) = [η12
k (n), η13

k (n) . . . , η
(L−1)L
k (n)]T , (n = M +

1,M + 2, . . . ,M + N). As compared with SSD, HLF shows
smaller variance and is more robust to a changing environment.

Then, we can construct our proposed WiFi-based GOOF for
GOOF-classifiers training as GF = [DRSS ,DSSD ,DH LF ].
Similarly, the WiFi-based GOOF for GFP training and
the optimal classifier selection can be written as GF ′ =
[D′

RSS ,D′
SSD ,D′

H LF ]. For simplicity, we number the set
of fingerprints in the WiFi-based GOOF as GF 1 = DRSS ,
GF 2 = DSSD , and GF 3 = DH LF , respectively. Similarly,
we have GF ′

1 = D′
RSS , GF ′

2 = D′
SSD , and GF ′

3 = D′
H LF .

C. GOOF-Classifier Training

Specifically, the classifier refers to a function that maps an in-
put vector to a corresponding label (i.e., grid position/location).
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The classifier should be trained first with offline fingerprints to
learn a general rule by mapping inputs to outputs. Then, the
classifier can make predictions based on the unseen online RSS
measurements.

Let f(·) be a classifier trained with GF that maps a training
vector to a corresponding label (i.e., grid position/location). f(·)
mainly falls into two categories: machine learning and prob-
abilistic models. Machine learning models include k-nearest
neighbors (KNN), support vector machine (SVM) and random
forest (RF) (to mention just a few) [25], [26]. Probabilistic
models include Bayesian classifier, expectation maximization,
Gaussian process, etc. [23], [24]. We then train GOOF-
classifiers f (GF 1), f (GF 2), and f (GF 3) by using three
different kinds of fingerprints in the WiFi-based GOOF, i.e.,
GF 1, GF 2, and GF 3.

In this paper, we select KNN as our basis classifier, which
is a type of instance-based learning, or lazy learning. It is the
simplest one among all machine learning algorithms [35]. KNN
calculates the distance between an online testing vector and each
vector in the trained data by using a given distance metric. Here,
we use the Euclidean distance to determine the location.

D. GFP Construction

In the offline phase, we can obtain the predictions based on
the above trained classifiers by inputting the offline GFP training
data (GF ′), i.e., GF ′

1, GF ′
2, and GF ′

3. At the k-th grid point,
we have

⎧
⎪⎨
⎪⎩

ẑk
1 (n) = f (rk (n),GF 1)

ẑk
2 (n) = f (Δrk (n),GF 2)

ẑk
3 (n) = f (ηk (n),GF 3) ,

(11)

where ẑk
h (n) (h = 1, 2, 3, n = M + 1, . . . , M + N) is the pre-

diction of the corresponding sample of the h-th fingerprint,
rk (n) ∈ GF ′

1, Δrk (n) ∈ GF ′
2, and ηk (n) ∈ GF ′

3.
The existing fusion profile (FP) construction was proposed

in DFC [27], which searches for the weights sequentially by
minimizing the average positioning error over N samples. By
exploring this strategy, the weights of RSS, SSD, and HLF are
sequentially estimated as

ŵk1 = arg min
0≤wk 1≤1

1
N

N +M∑
n=M +1

e (rk (n)|wk1), (12)

ŵk2 = arg min
0≤wk 2≤1

1
N

N +M∑
n=M +1

e (Δrk (n)|wk2), (13)

ŵk3 = arg min
0≤wk 3≤1

1
N

N +M∑
n=M +1

e (ηk (n)|wk3), (14)

where e (rk (n)|wk1), e (Δrk (n)|wk2), and e (ηk (n)|wk3)
are the localization errors for the n-th RSS, SSD, and HLF
samples at the k-th grid point with the weights wk1, wk2, and
wk3, respectively, that is,

e (rk (n)|wk1) =
∥∥wk1 × g

(
ẑk

1 (n)
)− pk

∥∥
2 , (15)

e (Δrk (n)|wk2) =
∥∥wk2 × g

(
ẑk

2 (n)
)− pk

∥∥
2 , (16)

e (ηk (n)|wk3) =
∥∥wk3 × g

(
ẑk

3 (n)
)− pk

∥∥
2 , (17)

where ‖·‖2 is the �2-norm and pk = [xk , yk ]T is the known loca-
tion of the k-th grid point. ẑk

1 (n), ẑk
2 (n), and ẑk

3 (n) are given by
(11). g(·) : R1 → R2 maps a label (i.e., grid position/location)
to a 2-D coordinate.

After having obtained all the weights of multiple classifiers
sequentially, they are normalized together according to

3∑
h=1

ŵkh = 1, k = 1, 2, . . . , G. (18)

Note that the weights searching strategy by using (12)–(18) is
just the optimization for each classifier over all N samples.
It cannot fully excavate the intrinsic complementarity among
different kinds of fingerprints. Therefore, the FP of DFC is not
a global optimal solution.

To overcome the drawback of FP, we propose a GFP con-
struction algorithm as follows. Let wk = [wk1, wk2, wk3]T be
the k-th weight vector in the GFP, which can be constructed
by minimizing the average positioning error over all GOOF-
classifiers space as follows

ŵk = min
wk

1
N

N +M∑
n=M +1

e′
(
ẑk (n)|wk

)
(19)

s.t. wT
k 1 = 1,

wkh ≥ 0, h = 1, 2, 3

where 1 is a 3 × 1 all one vector. The localization error
e′(ẑk (n)|wk ) is given by

e′
(
ẑk (n)|wk

)
=
∥∥wT

k g
(
ẑk (n)

)− pk

∥∥
2 , (20)

where ẑk (n) = [ẑk
1 (n), ẑk

2 (n), ẑk
3 (n)]T with ẑk

h (n) being given
by (11). Equation (19) is a nonlinear optimization problem; in
this work, we solve it by quasi-Newton method, which achieves
rapid convergence.

After having obtained ŵk , the estimated GFP matrix can be
given by

Ŵ = [ŵ1, ŵ2, . . . , ŵG ] . (21)

Our proposed GFP can be obtained by solving the optimization
problem depicted in (19) and (20), which is a joint optimization
of multiple classifiers. As compared with the FP constructed
from DFC, our proposed GFP can excavate the complemen-
tarity among different kinds of fingerprints. We summarize the
procedure of constructing GFP in Algorithm 1.

E. Optimal Classifier Selection (OCS)

After having obtained GFP, another key problem for accurate
fusion localization is to choose the optimal weights for fusing
the outputs of the trained classifiers when given an RSS testing
sample r̃ in the online phase, i.e., how to estimate a suitable
grid index k̂ for r̃? The existing k̂ estimation method is RDM
between the testing sample r̃ and the training fingerprints GF 1,
that is

k̂ = arg min
k

∥∥r̃ − GF 1(k)
∥∥

2 (22)

where GF 1(k) is the mean vector of the GF 1(k). However, this
matching strategy is easily affected by the fluctuation of RSS
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Algorithm 1: GFP construction.
Input: 1) The number of grid points G; 2) The WiFi-based

GOOF for GFP construction GF ′; 3)The trained
GOOF-classifiers, i.e., f(GF 1), f(GF 2), and
f(GF 3);

Output: The estimate of GFP matrix Ŵ
1: for k = {1, 2, . . . , G} do
2: for n = {M + 1,M + 2, . . . , M + N} do
3: Compute prediction vector ẑk

1 (n), ẑk
2 (n), and

ẑk
3 (n) by using (11)

4: Compute the positioning error by using (20)
5: end for
6: Compute the k-th weight vector by using (19)
7: end for
8: Ŵ = [ŵ1, ŵ2, . . . , ŵG ]
9: return Ŵ

in complex indoor environments, and leads to an additional
matching error to the localization system.

To overcome this drawback, we propose an OCS algorithm.
Firstly, we find the optimal classifier in the offline phase by
minimizing the positioning errors as follows

ĥ = arg min
h

G∑
k=1

N +M∑
n=M +1

∥∥g (ẑk
h (n)

)− pk

∥∥
2, (23)

where ẑk
h (n) is the prediction of the h-th classifier, as shown

in (11).
In the online phase, assume that we receive a testing RSS

sample r̃, we then transform it into SSD Δr̃ and HLF η̃. For
simplicity, we let θ̃1 = r̃, θ̃2 = Δr̃ and θ̃3 = η̃. Given the index
of the optimal classifier ĥ, we can obtain θ̃ĥ . Then, the matching
grid point can be given as

k̂ = f
(
θ̃ĥ ,GF ĥ

)
, (24)

Then, the optimal weights ŵk̂ will be selected from the es-
timated GFP matrix Ŵ based on the estimated grid point k̂.
Equations (23) and (24) are the main steps of our proposed OCS
algorithm, as summarized in Algorithm 2. OCS could choose
the weights based on the output of the optimal classifier; in other
words, it selects the optimal weights by resorting to the knowl-
edge of the optimal classifier. So, it is superior to the RDM
method adopted by DFC.

Given the matching grid point obtained by the OCS algorithm,
the final location estimate is given by

p̂ = ŵT
k̂
g (ẑ) , (25)

where ẑ = [f(θ̃1,GF 1), f(θ̃2,GF 2), f(θ̃3,GF 3)]T .

F. Performance Analysis

1) Robustness: The three fingerprints, RSS, SSD, and HLF
in the WiFi-based GOOF show different intrinsic character-
istics. Although both SSD and HLF can reduce the impact
of heterogeneous devices, they adopt different strategies. SSD
calculates the differences of the RSS values between pairs of
APs, while HLF uses ratios of the RSS values between pairs
of APs and then normalizes the ratios. To show the intrinsic

Algorithm 2: OCS.
Input: 1) The testing sample r̃; 2) The trained

GOOF-classifiers, i.e., f(DRSS ), f(DSSD ), and
f(DH LF ); 3) The index of the optimal classifier ĥ;

Output: The estimated grid point k̂
1: Transform Δr̃ and η̃ from r̃

2: Find θ̃ĥ by using ĥ

3: Compute the grid point estimate k̂ by using (24)
4: return k̂

characteristics of the three fingerprints, we define two metrics,
namely, the percentage of standard deviation (PSD) σ and cor-
relation coefficient ρ. The PSDs of RSS, SSD and HLF can be
expressed as

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

σl
k,RSS =

√
1

M

∑M
m = 1 [r l

k (m )−μr ]2

|μr | × %

σij
k,SSD =

√
1

M

∑M
m = 1 [Δr i j

k (m )−μΔ r ]2

|μΔ r | × %

σij
k,HLF =

√
1

M

∑M
m = 1 [η i j

k (m )−μη ]2

|μη | × %

(26)

where μr , μΔr , and μη are the mean values of DRSS (k),
DSSD (k), and DH LF (k), respectively; | · | denotes the ab-
solute value. Note that PSD is a metric to evaluate the ability
of a fingerprint against a changing environment because it is a
statistic on different time index m. The smaller the PSD, the
more robust the fingerprint.

The correlation coefficient ρ(j) between the fingerprint vec-
tors at the k-th and the (k + j)-th grid points is given

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ρRSS(j) = rT
k rk + j

‖rk ‖2‖rk + j ‖2

ρSSD(j) = ΔrT
k Δrk + j

‖Δrk ‖2‖rk + j ‖2

ρHLF(j) = ηT
k ηk + j

‖ηk ‖2‖ηk + j ‖2

.

(27)

Note that the correlation coefficient reflects the spatial discrim-
ination among grid points, the bigger ρ, the poorer spatial dis-
crimination.

Here, we conducted a small experiment with two different
smartphones (Vivo and Huawei). We collected 100 RSS samples
at each grid point for both devices. Then, we calculated the
mean RSS measurement at each grid point. Fig. 3(a) shows
the mean RSS measurements at the 1st AP. The mean PSD of
RSS of two devices is 14.9% as shown in Table II. Fig. 3(b)
and (c) show the SSD and HLF values between the 1st and
2nd APs. The PSDs of SSD and HLF are 7.1% and 3.6%,
respectively, which demonstrate that SSD and HLF can reduce
the variation caused by heterogeneous devices and are more
robust to changing environments.

With respect to spatial discrimination, Table II lists the mean
correlation coefficients among different grid points. We find that
SSD and HLF yield bigger ρ than RSS does. The correlation co-
efficients of SSD and HLF are 0.6302 and 0.8276, respectively.
That is, SSD and HLF show poorer spatial discrimination as
compared with RSS.

In summary, RSS, SSD, and HLF have their own advan-
tages and disadvantages in dealing with heterogeneous devices,
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Fig. 3. The RSS, SSD, and HLF values considering heterogeneous devices at different grid points. (a) The mean RSS measurements collected at the 1st AP.
(b) The SSD values between the 1st and 2nd APs. (c) The HLF values between the 1st and 2nd APs.

Fig. 4. Layout of the 21st floor in our experimental study.

TABLE II
THE PERCENTAGE STANDARD DEVIATIONS AND CORRELATION

COEFFICIENTS OF DIFFERENT KINDS OF FINGERPRINTS

changing environment, and spatial discrimination. So, the com-
bination of them by using our proposed WiFi-FAGOT can im-
prove the positioning performance to a certain degree.

2) Accuracy: As compared with the existing fusion meth-
ods, our proposed WiFi-FAGOT can enhance accuracy well.
First, the weights constructed from GFP can fully excavate the
intrinsic complementarity among different kinds of fingerprints.
The accuracy can be improved by fusing these weights. Second,
our proposed OCS algorithm can further improve the accuracy
by decreasing the weight selection errors induced by the RSS di-
rect matching. The simulation results show that the performance
of our proposed WiFi-FAGOT is much closer to the Cramér-Rao
lower bound (CRLB) [36], [37] as compared with other existing
methods in the following section. Here, we just discuss fusion
of three kinds of fingerprints (features); our method can still
improve the accuracy as long as the added features satisfy the
principle of ensemble learning [38].

IV. EXPERIMENTAL SETUP AND RESULTS

We compare our proposed WiFi-FAGOT framework with four
existing fusion methods: DFC [27], MMSE [29], DFPS [33] and
MUCUS [30]. The root mean square error (RMSE) is defined

as

RMSE =

√
1
J

∑J

n=1

[
(x̂n − x)2 + (ŷn − y)2

]
(28)

where [x̂n , ŷn ]T represents the n-th location estimate, and
[x, y]T is the true location of the source, and J is the number of
experiment trials.

A. Real Office Scenario

The experiment was carried at the 21st floor of the Innova-
tion building on the campus of University of Electronic Science
and Technology of China. The area is about 73 m × 20 m, i.e.,
1460 m2. It mainly includes 10 offices, one corridor, and 9 APs,
which are sparsely deployed to guarantee that at least 3 APs are
detectable at each grid point, as shown in Fig. 4. First, we divide
the whole area into many grid points and the distance between
two adjacent grid points is 0.8 m. We hold an Android smart-
phone arbitrarily to collect RSS fingerprints. At each grid point,
we collect M = 20 and N = 10 RSS measurements for GF 1
and GF ′

1, respectively. Note that our fusion approach is effec-
tive regardless of the selected values of M and N . Specifically,
at each grid, we use GF 1 and GF ′

1 to derive another finger-
prints, i.e., GF 2, GF ′

2, GF 3, and GF ′
3. Then, we can obtain

the WiFi-based GOOF GF and GF ′. In the online phase, we
collect 1200 RSS testing samples at 80 different grid points on
the next day. The AP and interior environment are shown in
Fig. 5.

As shown in Fig. 6, the RMSEs of DFC and DFPS are 3.55 m
and 3.59 m, respectively, close to that of HLF, implying that
these two fusion methods cannot fully exploit the complemen-
tarity among different kinds of fingerprints. MMSE performs
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Fig. 5. The interior environment and AP in our experimental study.

Fig. 6. The RMSEs of different localization methods.

worse than the above two fusion methods because MMSE adopts
the GIFP strategy, and thus degrades the performance of local-
ization in this office environment. The worst one is MUCUS
whose RMSE is 3.78m because MUCUS does not exploit the
offline knowledge, i.e., GFP and OCS, and it needs more on-
line testing samples to yield a more accurate localization result,
which is not applicable for WiFi localization because the RSS
measurements in WiFi environment need more collecting time
than that of the platform used in [30]. Note that the RMSE of
our proposed WiFi-FAGOT is 3.4 m, which outperforms other
methods.

We also illustrate the cumulative distribution function (CDF)
of RMSE of these methods in Fig. 7, which shows that WiFi-
FAGOT reduces the 90th percentile RMSE by 13.73%, 14.08%,
22.1%, 25.77%, 21.02%, 31.23%, and 21.33%, as compared
with DFC, MMSE, DFPS, MUCUS, RSS, SSD, and HLF, re-
spectively. This improvement comes from the joint utilization
of GFP and OCS.

To reveal the impact of the number of different kinds of
fingerprints on the localization performance, we compare the
RMSEs of WiFi-FAGOT, DFC, MMSE, DFPS and MUCUS
with two and three kinds of fingerprints in Fig. 8. Note that
the case of two different kinds of fingerprints discussed here

Fig. 7. The CDFs of different localization methods.

Fig. 8. The RMSEs versus different number of fingerprints.

represents the average RMSE of all combinations of two kinds
of fingerprints in GF . The WiFi-FAGOT with three kinds of
fingerprints performs the best as compared with other cases. For
the case of two different kinds of fingerprints, WiFi-FAGOT
also performs better than other methods, which also verifies
the effectiveness of our method. These results show that our
proposed WiFi-FAGOT can fully leverage the complementarity
among different kinds of fingerprints, and thus overcomes the
drawbacks of other fusion methods.

Next, we evaluate the localization performance of two dif-
ferent grid matching strategies, i.e., RDM and OCS. As shown
in Fig. 9, WiFi-FAGOT always outperforms DFC regardless of
the matching strategies. Note that RDM chooses the weights by
using RDM which is very sensitive to the fluctuation of RSS,
while OCS chooses the weights based on the prediction of the
optimal classifier obtained in the offline phase. So, OCS has
a higher probability of selecting true fusion weights, and thus
enhances the performance of localization system significantly.
Note that the WiFi-FAGOT with RDM can also outperform



7322 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 67, NO. 8, AUGUST 2018

Fig. 9. The CDFs versus different matching strategy.

DFC with OCS because the WiFi-FAGOT successfully resorts
to the knowledge of GFP, which can fully leverage the intrinsic
complementarity among different kinds of fingerprints, and thus
obtains the improvement in accuracy significantly.

To clarify the differences between FP and our proposed GFP,
we illustrate the weights assignments by FP and GFP in Fig. 10.
Owing to the limited space, we only list the weights of 10
grid points for comparison. The weights assigned by GFP, as
shown in Fig. 10(b), exhibit greater differences as compared
with those by FP. Fig. 10(a) shows that the weights assigned by
DFC at most grid points are close to each other, and thus do
not reflect the differences in performance among fingerprints.
In comparing Fig. 10(a) and (b), we can find that our proposed
WiFi-FAGOT framework can fully exploit the complementarity
among different kinds of fingerprints.

B. Heterogeneous Devices

To evaluate the impact of heterogeneous devices, we con-
ducted an experiment on the fourth floor of the LiRen Building
in the campus of University of Electronic Science and Technol-
ogy of China. The area is about 11.5 m × 12 m with 4 detectable
APs. We divide the area into many grid points and the distance
between two adjacent grid points is 1.2 m.

Specifically, we construct RSS fingerprints with a Vivo smart-
phone. At each grid point, we collect 60 and 40 RSS measure-
ments for GF 1 and GF ′

1, respectively. In the online phase, we
use both Vivo and Huawei smartphones to evaluate the perfor-
mance of the WiFi-FAGOT framework. At each grid point, we
collected 40 RSS testing samples for both devices.

Fig. 11 compares the CDFs of different algorithms versus
heterogeneous devices. We can observe that WiFi-FAGOT per-
forms the best in Fig. 11(a) for device 1 (Vivo smartphone),
reducing the 90th percentile RMSE by 9.8%, 27.5%, 9.8%,
31.45%, 32.65%, 29.19%, and 27.16%, as compared with
DFC, MMSE, DFPS, MUCUS, RSS, SSD, HLF, respectively.
Similarly, in Fig. 11(b) for device 2 (Huawei smartphone), it
reduces the 90th percentile RMSE by 7.56%, 11.76%, 10.67%,
31.95%, 27.45%, 18.79%, and 29.58%, as compared with DFC,
MMSE, DFPS, MUCUS, RSS, SSD, HLF, respectively. The
results demonstrate that no matter what devices a user uses in
the online phase, our proposed WiFi-FAGOT can make full use

Fig. 10. The comparison of fusion weights of FP and our proposed GFP.

of the intrinsic complementarity among different kinds of fin-
gerprints, and thus achieves superior performance over other
methods.

C. Changing Environment

Note that the experiments conducted in Sections IV-A and
IV-B are typical changing environments because we constructed
fingerprints and conducted tests on different days. To better clar-
ify the adaptivity of our proposed WiFi-FAGOT, we construct
the WiFi RSS by using the path-loss model [39]

Pl = P0 − 10γ log
(

dl

d0

)
+ nl, (29)

where Pl in dBm denotes the power received at the target trans-
mitted by the l-th AP, dl is the distance between the target and
the l-th AP. P0 is the received power in dBm at a reference dis-
tance d0, γ is the path loss factor and nl is a zero-mean Gaussian
distributed random variable with variance σ2

l .
Assume that four APs are placed at the four corners of a

room of size 196 m2 at positions [0 m, 0 m]T , [0 m, 14 m]T ,
[14 m, 0 m]T , [14 m, 14 m]T , respectively. At each grid point,
we generated 60 and 40 RSS measurements for GF 1 and GF ′

1,
respectively. In the online phase, we generated 100 RSS test-
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Fig. 11. The CDFs of different algorithms versus heterogeneous devices.
(a) Device 1. (b) Device 2.

TABLE III
THE DIFFERENT PATH LOSS FACTORS USED IN OUR SIMULATION

ing samples at each grid point. The WiFi-based GOOF is then
generated from the above RSS fingerprints.

To elicit the numerical analysis, we partitioned the indoor
environment from one to four subareas with different path loss
factor γ, as shown in Table III, in which n′ = 1 means that
γ1 = 2 in the path-loss model, i.e., the indoor environment
does not change; n′ = 2 means that we use two different path
loss factors γ1 = 2 and γ2 = 3 to simulate the changing in-
door environment. The different γ′s for n′ = 3 and n′ = 4 are

Fig. 12. The RMSEs versus the number of subareas.

also listed in Table III. Fig. 12 depicts the RMSEs versus the
number of subareas. Note that the performance of MMSE de-
grades faster than other algorithms as the complexity of en-
vironment increases because MMSE adopts GIFP for fusion.
Although DFC is an adaptive one based on GDFP, the FP and
matching strategies of DFC degenerate its performance. Thus,
the RMSE of DFC increases faster than our approach. DFPS,
which combines delta signal strength with RSS directly, does
not consider the importance of different kinds of fingerprints,
and thus the RMSE also increases faster than our method. MU-
CUS also degrades quickly as the complexity of the environ-
ment increases because it only exploits the predictions of test
samples and will lead to cumulative RMSE as most predic-
tions are wrong. Comparatively, the more complex the indoor
environment is, the more superior our proposed approach will
be. Hence, our WiFi-FAGOT framework is more robust to the
changing environment than the other methods.

D. Comparison to the Cramér–Rao Lower Bound (CRLB)

Next, we compare RMSEs of different algorithms with the
Cramér-Rao lower bound (CRLB) of RSS-based localization
[36], [37] via simulations. CRLB provides the lower bound
on the covariance of estimates of an unknown parameter p̂.
Here, p̂ = [x̂, ŷ]T is the estimate of the ground truth location
p = [x, y]T of a gird point. We assume RSS is also generated
from (29), and the layout of the environment and APs are the
same as described in Section IV-C. For better understanding, we
first define the signal-to-noise ratio (SNR) in dB as the mean of
squared distance over noise variance. Thus, σ2

i can be obtained

using σ2
i = d2

i

10SNR/10 .
We follow the derivation of [36], [37] to calculate the RSS-

based CRLB. Denote CRLBs for x and y as V ar(x̂) and V ar(ŷ),
respectively, and the corresponding CRLB for p is

V ar (p̂) = V ar (x̂) + V ar (ŷ) =

∑L
i=1

ρi

d2
i∑L

i=1

∑L
j=1,j �=i ρiρjCij

,

(30)
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Fig. 13. The RMSE of different methods compared with CRLB. (a) Path loss
factor γ . (b) SNR (dB).

where L is the number of APs, Cij = (cos ϕi sin ϕj

di dj
−

cos ϕj sin ϕi

dj di
)2, sin ϕi = y−yi

di
, cos ϕi = x−xi

di
and ρi =

( 10γ
σi log 10 )2. Note that V ar(p̂) represents the mean square

error (MSE), and in this work we use
√

V ar(p̂) to serve as a
benchmark to compare with the RMSEs of different methods
as shown in Fig. 13. Since we can calculate a CRLB at each
grid point, we take their average as the final CRLB. Fig. 13
shows the RMSEs of different methods versus path loss factor
γ and SNR. We can observe that the RMSEs of WiFi-FAGOT
is much closer to the CRLB than other methods, thus validating
the superiority of our proposed WiFi-FAGOT.

V. CONCLUSION

In this paper, we have proposed an accurate WiFi localization
approach by Fusing A Group Of fingerprinTs (WiFi-FAGOT)
via GFP. WiFi-FAGOT first constructs a WiFi-based GOOF in
the offline phase, which consists of RSS, SSD, and HLF. Then,
instead of direct localization by using the WiFi-based GOOF,
we design multiple classifiers by training each fingerprint in

the WiFi-based GOOF, namely, GOOF-classifiers. To overcome
the drawbacks of existing fusion localization methods, we have
also proposed a GFP construction algorithm to fully exploit the
complementarity among different kinds of fingerprints. GFP
outperforms the conventional FP in localization accuracy. In
the online phase, we have derived the OCS algorithm to intel-
ligently choose a fusion profile in GFP for higher localization.
Although WiFi-FAGOT is also based on the RSS fingerprint, it
can improve the accuracy of localization by fully leveraging all
fingerprints without modifying any hardware, and is thus very
promising for indoor localization in the WiFi environment.
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