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Abstract— This article introduces a new imaging approach to
nondestructive defect detection by combining visual testing (VT)
and infrared thermal testing (IRT) in a multispectral vision
sensing fusion system. The goal is to overcome the hamper-
ing challenges faced by traditional imaging methods, including
complex environments, irregular samples, various defect types,
and the need for efficient detection. The proposed system simul-
taneously detects and classifies surface and subsurface defects,
addressing issues, such as false detection due to changes in surface
emissivity in IRT and the inability to detect subsurface defects
in VT. A novel multispectral fusion defect detection framework is
proposed, employing coarse-to-fine multispectral registration for
accurate alignment of infrared and visible images with different
resolutions and fields of view. Domain adaptation unifies the
feature domains of infrared and visible images by replacing
the phase components in the frequency domain. The framework
utilizes the complementary information from infrared and vis-
ible modalities to enhance detection accuracy and robustness.
Experimental validation is conducted on different specimens,
confirming the effectiveness of the proposed framework in detect-
ing and generalizing to various shapes and materials. Overall,
this article presents a novel imaging system that combines VT
and IRT, offering improved detection capabilities in complex
environments and diverse defect scenarios. The demo code is
available at: https://github.com/ljcuestc/YoloMultispectralFusion-
Coarse-to-fine-Registration.gi.

Index Terms— Coarse-to-fine image registration, defect detec-
tion, late fusion, multimodal, multispectral fusion.

I. INTRODUCTION

WITH the rapid development of the global manufac-
turing industry, nondestructive testing (NDT) takes

an increasingly essential role in electronic and communi-
cation equipment, instrumentation, transportation, pipeline
transportation, and aerospace as an efficient, nondestructive,
noncontact defects detection technology [1]. It is used to
guarantee product reliability and stability in the production
stage and monitor the changes of its structure and status in
the operation as well as maintenance stage.
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Vision-based NDT (VNDT) receives significant attention
due to its visualization capability, accuracy, and convenience.
VNDT includes terahertz testing (TT), X-ray testing, infrared
thermal testing (IRT), and visual testing (VT), of which
IRT and VT are the most representative technologies. IRT
can detect subsurface defects, such as debonding, bulging,
voids, and so on. Liu et al. [2] proposed a convolutional
graph thermography (CGT) method for subsurface defect
detection in polymer composites, which effectively reduces
noise and inhomogeneous backgrounds in infrared images.
Zhang et al. [3] used vibrothermography to detect impact dam-
age in basalt fiber reinforced polymer (BFRP), carbon fiber
reinforced plastics (CFRP), and linked the estimation of depth
information to loadings in partial least-squares thermography.
Puthiyaveettil et al. [4] designed a laser thermography system
and investigated the influence of material surface absorptivity
on crack detection. Ichi and Dorafshan [5] used semantically
segmented IRT images to evaluate the effectiveness of IRT
in the detection of subsurface deck delamination. Unlike IRT,
VT can only detect surface defects. However, it can obtain
high-resolution texture information to enhance the detection
sensitivity and accuracy. Cheng and Yu [6] introduced a
deep neural network DEA_RetinaNet for steel surface defect
detection, which embeds a novel channel attention mechanism
to reduce visual information loss. Li et al. [7] proposed an
automatic tear measuring system for drilling-induced delami-
nation defects in CFRP composite laminate, achieving accurate
tear measurements using a double-light imaging framework
under different light intensities. Ren et al. [8] discussed VT
in the field of industrial defect detection systematically and
applied deep learning in defect classification, localization,
and segmentation. Schlosser et al. [9] proposed a novel
hybrid multistage system of stacked deep neural networks
(SH-DNNs), which can detect the finest structures within only
a few micrometers in pixel size. However, significant technical
challenges still remain with the above two spectral-based
detection methods, whereas IRT results in ambiguity due
to the varying emissivity, and VT cannot detect subsurface
defects.

Multimodal sensing fusion can make full use of the
complementary and redundant information between differ-
ent modalities to improve the generalization and accuracy
of the system or model. It can overcome limitations from
single modality sensing. In recent years, multimodal fusion
has a large number of successful applications in different
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fields, such as autonomous intellisense and smarter healthcare.
Zhang et al. [10] introduced a multimodal sensor fusion
network (Robust-FusionNet) that effectively addresses the
distortions caused by severe weather conditions in LiDAR
point cloud data and camera images. Arnold et al. [11]
built a 3-D object detection system suitable for autonomous
vehicle, which realized the fusion and collaboration of mul-
tiple infrastructure sensors and can recall more than 95%
of the objects in the most challenging scenario. Islam et
al. and Chang et al. [12] proposed a multimodal sensor
system for wound assessment and pressure ulcer care that inte-
grated five sensing modalities, including electro-optic (EO),
depth, thermal, multispectral imaging, and chemical sens-
ing. Andreozzi et al. [13] presented a multimodal pulse
waves (PWs) sensor integrating a piezoelectric electrocardio-
gram (FCG) sensor and a photoplethysmography (PPG) sensor,
enabling simultaneous mechanical-optical measurements of
PW from the same site on the body.

Similarly, multimodal fusion algorithms have been rapidly
developed. Baltrusaitis et al. [14] surveyed the progress of
multimodal research and summarized five challenges faced in
multimodal research, namely, representation, translation, align-
ment, fusion, and co-learning. For the challenge of multimodal
representation, Baevski et al. [15] proposed a general frame-
work for unified representation of speech, vision, and language
through self-supervised learning. This work opens up new
ideas for multimodal representation. Liu et al. [16] proposed an
autoencoder-based multiview missing data completion frame-
work (AEMVC) to overcome the problem of missing data
in multimodal representation. In the translation challenge,
Liu et al. [17] proposed a variational multimodal machine
translation model (VMMT), which can model language uncer-
tainty in translation to eliminate the discrepancy between
training and prediction in existing variational translation mod-
els. In the field of multimodal alignment, Zhang et al. [18]
proposed a general multimodal detector called AR-CNN to
solve the problem of position shifts between different modal-
ities in object detection. Luppino et al. [19] presented a
novel unsupervised methodology to align the code spaces of
two autoencoders based on affinity information. In terms of
multimodal fusion, Ma et al. [20] proposed a fusion framework
of infrared and visible images called STDFusionNet on the
registered public TNO and RoadScene datasets, which can
preserve the thermal targets and the details of visible images.
Nagrani et al. [21] proposed a novel transformer architec-
ture [Multimodal Bottleneck Transformer (MBT)] that uses
“fusion bottlenecks” for modality fusion at multiple layers
and improves performance over vanilla cross-attention at lower
computational cost. Facing the challenge of multimodal co-
learning, Zadeh et al. [22] focused on the study of multimodal
co-learning. They proved that the model after multimodal
co-learning performed better in single-modal tasks based on
information theory.

Despite the above, there is limited research on multimodal
fusion detection systems specifically designed for near-surface
defects, and the majority of existing algorithms for fus-
ing infrared and visible images rely on publicly available
registered datasets [12], [21], [22], [23], which are not

directly applicable to the specific requirements of NDT. Thus,
a physics-coupled multispectral vision sensing fusion NDT
system is designed and a novel multispectral fusion defect
detection framework with coarse-to-fine multispectral regis-
tration capability is proposed. The proposed system integrates
IRT and VT to overcome the limitations of being susceptible
to surface conditions of IRT and the inability to detect sub-
surface defects of VT. The acquisition and excitation system
designed based on the physical attributes of each modality
contributes to acquiring high-quality images and defect fea-
tures, complementing the proposed algorithm and aiding in
further improving the accuracy of both coarse registration (CR)
and fine registration. The proposed system is capable of
acquiring time-synchronized infrared and visible image pairs
at specific trajectories and speeds for complex specimens for
further processing. The proposed algorithm framework utilizes
domain adaptation (DA) to unify the features extracted from
the infrared and visible images and realizes the accurate
registration of infrared and visible image pairs through the
coarse-to-fine module. Besides, it can be seamlessly integrated
with any object detection algorithm to achieve multispectral
decision-level fusion detection. The framework leverages the
complementarity and redundancy of infrared and visual infor-
mation to improve the accuracy and robustness.

The rest parts of this article are organized as follows:
Section II describes the details of the proposed algorithm.
Section III elaborates on the detailed design of the proposed
system as well as the samples and the implementation of
the proposed algorithm. Experiments and results analysis are
introduced in Section IV. Finally, conclusions and the future
work are drawn in Section V.

II. METHODOLOGY

Commonly used multispectral fusion algorithms for infrared
and visible image fusion are typically driven by publicly avail-
able spatiotemporal registration datasets. However, in practical
defect detection scenarios, it becomes challenging to obtain
the infrared and visible data streams that have already been
registered in space and time. The limitations of acquisition
equipment and control systems make achieving space-time
synchronization difficult. Due to the lack of a unified feature
domain between infrared and visible modalities, the available
features for defect detection become limited. Consequently,
directly obtaining spatially registered image pairs through
these features proves to be challenging. Additionally, most
infrared and visible fusion algorithms focus on generating
fused images that align to human visual perception and
often employ system of measurement, such as Chen–Blum
metric (QCB), structural similarity index measure (SSIM), and
mutual information (MI), to evaluate the quality of fused
images [23]. In contrast, defect detection places emphasis on
identifying defects and pays more attention to the missed
detection rate of defects. To overcome these challenges,
we propose a novel multispectral fusion defect detection
framework with coarse-to-fine multispectral registration. The
proposed multispectral fusion defect detection framework is
shown in Fig. 1. This general framework is suitable for com-
monly used detectors, such as YOLO series, R-CNN series,
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Fig. 1. Proposed novel multispectral fusion defect detection framework with coarse-to-fine multispectral registration. (a) CR with homography matrix. (b) DA
for unified feature domains. (c) BM via local sliding window incorporating variance information.

and so on. Note that in our study, YOLOv5 was adopted as the
baseline detector. The proposed framework can be succinctly
summarized into four distinct components: CR [see Fig. 1(a)],
DA [see Fig. 1(b)], box matching (BM) [see Fig. 1(c)], and
fusion strategy [see Fig. 1(d)]. It is noteworthy that DA and
BM are collectively referred to as fine registration.

A. Coarse Registration

Spatiotemporal registration between modalities is the basis
for multispectral fusion. The region of interest is approx-
imately assumed to be a plane due to the shape of the
specimen being plane or curved with low curvature. Thus, the
homography transformation can be employed to achieve CR
of image pairs. Suppose the detection system obtains k raw
image streams from k acquisition devices, which are denoted
as I1, . . . , Ik , and k ≥ 2. In this article, the infrared images
and visible images are declared as I1 and I2, respectively, and
k = 2.

Let the projection of a point P(xW , yW , zw) onto the plane
in the infrared thermal (IR) camera pixel coordinate system
and the visible camera pixel coordinate system are represented
as X1(x1, y1) and X2(x2, y2), respectively. Suppose the plane
is located on zW = 0, the mapping of the IR camera can be
expressed as follows: x1

y1
1

 = s1

 fx γ x0
0 fy y0
0 0 1

[
r1 r2 t

](3×3)

 xw

yw

1

 (1)

where s1 is the scaling factor,
[

fx γ x0
0 fy y0
0 0 1

]
= K1 is the intrinsic

matrix of the IR camera, and [ r1 r2 t ]
(3×3)

= E1 is the
extrinsic matrix of the IR camera. In the same way, the
mapping of the visible camera can be expressed as follows: x2

y2
1

 = s2 K2 E2

 xw

yw

1

 (2)

where s2, K2, and E2 are defined similarly as in (1) but for
the case of visible camera. Through (1) and (2), the mapping
between the point pair of the IR image and the visible image
can be expressed as follows: x1

y1
1

 =
s1

s2
K1 E1 K −1

2 E−1
2

 x2
y2
1

 (3)

where (s1/s2)K1 E1 K −1
2 E−1

2 = H is a 3 × 3 homography
matrix that represents the mapping between the point pair of
the IR image and the visible image. When the relative positions
of the IR camera, the visible camera, and the plane are fixed,
H is a constant matrix. In this case, the spatial registration of
infrared images and visible images can be achieved by solving
for H . Only four pairs of points are required to calculate the
unique solution of H which has eight degrees of freedom.
Considering potential inaccuracies in point pairs, the optimal
solution for H is derived using the least squares method on
the 88 corners of the checkerboard.
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B. Domain Adaptation

Domain adaptation (DA) can reduce the distribution dif-
ference between infrared and visible image pairs and unify
the feature domains. Therefore, it reduces the impact of
background differences on the similarity measure between
infrared and visible images to obtain better registration results.
According to [24], the semantic content of the image is mainly
carried by the phase component of the Fourier transform.
Inspired by this work, our article proposes a strategy to replace
the low-frequency part of the amplitude component between
the infrared and visible image pairs to reduce the distribution
difference. The Fourier transform of image is defined as

F(I )(u, v) =

H−1∑
h=0

W−1∑
w=0

f (h, w)e− j2π

(
h
H u+

w
W v

)
(4)

where F(I ) is the Fourier transform result of image I , which
can be decomposed into amplitude component F A(I ) and
phase component F P(I ).

A resizable mask is defined at the center of the amplitude
component, which is expressed as follows:

Mα(h, w) = 1(h,w)∈[−αH :αH,−αW :αW ] (5)

where α is the hyperparameter, which indicates the mask
size (0.01). In order to model the background distribution of
the visible image I2 that is close to the infrared image I1, the
low-frequency portion in the amplitude component of I1 is
used to replace the corresponding low-frequency portion in I2.
Note that surface defects with darker tones tend to exhibit
higher absorbance, which results in their appearance as white
on infrared images. As such, the inputs for DA are 255 − I1
and I2. The DA result is obtained by inverse Fourier transform,
which is expressed as follows:

I u
2 = F−1(

[Mα◦F A(255 − I 1)

+ (1 − Mα) ◦ F A(I2), F p(I2)]
)
. (6)

C. Box Matching

The position of the same defect in different modalities is
close after CR. The reference modality and the sensed modal-
ity are introduced into the multispectral setting. Consider I1 as
the reference modality and others as the sensed modalities. The
fine registration refers to the precise alignment of the bounding
box in the sensed modality on the reference modality, which
can be achieved by sliding a window near the corresponding
position of the reference modality to find the matching box
with the highest similarity.

As shown in Fig. 2, suppose the center point of Bi j is P ,
and the corresponding point of P on the reference modality
is P ′. Set P ′ as the center point of the sliding window to
determine the position of the sliding window. The size of the
sliding window can be calculated as follows:

Ww = Bw + 2 × (Nw × Stride) (7)
Wh = Bh + 2 × (Nh × Stride) (8)

where Ww and Wh and Bw and Bh are the width and height
of the sliding-window and Bi j , respectively; Nw and Nh are

Fig. 2. Process of similarity calculation.

the number of slides in the width direction and the height
direction, respectively.

SSIM has been used to evaluate the similarity between
infrared images and visible images [25], which includes three
parts: luminance similarity score, contrast similarity score,
and structural similarity (SS) score. Since the brightness and
contrast of the infrared image and the visible light image are
quite different, the registration mainly focuses on the structural
information of the target. The SS score in SSIM is adopted
to measure the similarity between boxes. The SS score is
formulated as follows:

SS(x, y) =
σxy + C1

σxσy + C1
(9)

where σx and σy are the variance of x and y, respectively; σxy

is the covariance of x and y.
Even with the flipping of colors during the DA process,

there remain several surface defects on the specimen that
exhibit brighter hues relative to the background and possess
elevated absorbance rates. These defects are characterized by
a white appearance in both visible light and infrared images.
Consequently, the target to be matched needs to slide the
window on the image and the inverted image after domain
adaptive processing to obtain similarity matrices, respectively.
The final similarity matrix is obtained by calculating the
infinite norm of these two similarity matrices

SS f = max(SSB∈W (Bi j ,Bu),SSBu∈W u (Bi j ,255 − Bu)).

(10)

However, a small SS f value will still be obtained when
there is no defect target in the sliding window on the refer-
ence modality, which will interfere with the matching result.
To overcome this issue, the variance (log) of the SS f is
introduced to distinguish whether or not the target is contained
in the sliding window. A low variance value (threshold <

THRv) indicates that the sliding window solely encompasses
the background and lacks any target.
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Under the proposed SS with variance (SS-V), the matching
box can be estimated as follows:

B
′

i j =

{
arg max(SS f ), log(Var(SS f )) > THRv

Bi j , others.
(11)

D. Fusion Strategy
Fusion strategy contains the strategy of bounding box fusion

and class fusion.
1) Bounding Box Fusion Strategy: Inspired by non-

maximum supression (NMS) [26] and weighted boxes fusion
(WBF) [27], bounding box fusion strategy divides all pre-
diction boxes into different objects by intersection-over-union
(IoU) and merges the boxes of the same target into a fusion
box according to specific rules. The detailed process is sum-
marized as follows.

1) Declare empty list O for objects clusters. Add the pre-
diction results of the reference modality (S11, . . . , S1m)

to the lists O1, . . . , Om , respectively.
2) Iterate through the predicted boxes of the sensed modal-

ity and try to find a corresponding box in the list O . The
correspondence is defined as a large overlap between
boxes (IoU > THRc). If the correspondence is found,
add the prediction result Si j containing the box to the
list O containing the corresponding box, else create a
new object list Om+1 and add the prediction result Si j

containing the box to Om+1.
3) In order to minimize the fusion error, the fusion strategy

is determined by whether there is a prediction result Si j

from the reference modality in Ok . Suppose there are
N prediction results in Ok . If there is such an Si j , the
fusion result Bk F is Bi j ; otherwise, the fusion result is
the weighted average of all bounding box in Ok . The
strategy can be formulated as follows:

Bk F =


Bi j , ∃Bi j ∈ S1
1
N

∑
Bi j ∈Ok

Bi j , others. (12)

2) Class Fusion Strategy: Class fusion strategy is divided
into confidence score fusion and class fusion. The fusion result
of confidence score is the average of all N scores accumulated
in Ok , with the following fusion formulas:

C Sk F =
1
N

∑
C Si j ϵOk

C Si j . (13)

The class fusion strategy is designed manually according
to the modality characteristics and the relationship between
the modalities. Different modalities determine different fusion
rules. In this article, IRT can detect surface defects and subsur-
face defects, whereas there exists confusion in classification.
VT has a strong ability to detect surface defects, while it
cannot detect subsurface defects. The purpose of fusion is to
reduce the influence of the surface emissivity change of the
specimen on IRT and to detect and classify surface defects
and subsurface defects at the same time. Therefore, the class
name fusion strategy is as follows:

C N k F =

{
surface, ∀C N i j ∈ Ok, ∃C N i j ∈ S2

sub_surface, others.
(14)

Fig. 3. (a) Schematic of the proposed system. (b) Proposed physic coupling
multispectral vision sensing fusion NDT system.

E. Quantitative Detectability Assessment

Log-average miss rate (MR-2) can be used to summarize the
detector performance. In previous research such as in the fields
of object detection and multispectral pedestrian detection [28],
[29], [30], MR-2 has been used. The MR-2 is computed from
the miss rate (MR) against false positives per image (FPPI)
(log–log). The MR and FPPI are evaluated as

MR =
FN
GT

(15)

FPPI =
FP
N

(16)

where FN is the false negative, FP is the false positive, GT is
the number of the ground truth, and N is the number of the
positive. Finally, MR-2 is calculated by averaging MR at nine
FPPI rates evenly spaced in log-space in the range 10−2–100,
and the lower score represents better performance.

III. EXPERIMENTAL SETUP

A. Experimental Setup of the Proposed Fusion NDT System

The schematic of the proposed physic coupling multispec-
tral vision sensing fusion NDT system is shown in Fig. 3(a).
The entire system consists of a manipulator, an acquisition and
excitation system, a laser generator, a collaborative control
module, and a PC. The manipulator controls the movement
of the acquisition and excitation system, where it can detect
samples with different shapes at different speeds. The acqui-
sition and excitation system include laser head, IR camera,

Authorized licensed use limited to: University of Electronic Science and Tech of China. Downloaded on January 05,2024 at 01:41:42 UTC from IEEE Xplore.  Restrictions apply. 



5005313 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 73, 2024

and visual camera. The laser generator is emitting a line laser
for excitation. When excitation system scans the sample at a
certain speed with a specific trajectory, the thermal distribution
and visual information on the surface of the sample will be
captured by IR camera and the visual camera, respectively. The
collaborative control module directly controls the movement of
the manipulator while it indirectly controls the laser generator,
IR camera, and visual camera through the computer, so as to
realize the synchronization and coordination of the movement
of the manipulator, the excitation, and the acquisition of the
IR camera as well as the visual camera. Consequently, the
thermal distribution reflects the information of defects, surface
stains, and the texture information by the IR camera and the
visual camera for further analysis. Fig. 3(b) shows the pro-
posed system. The experimental parameters are described as
follows.

1) The working power of the laser generator is set to 20 W.
The focal length of the laser head is 25 cm, and the focal
area is 3 mm wide and 20 cm long.

2) The movement speed of the manipulator can be set
0–1 m/s, and the movable space range is a spherical
space of 1 m. The movement accuracy is 10 µm.
Due to the varying thermal conductivity of different
materials, a lower thermal conductivity requires a higher
excitation power. After experimental verification, the
scanning speed was set to 20 and 5 mm/s for CFRP
and GFRP materials, respectively, to provide optimal
excitation.

3) MAGNITY MAG62 is chosen as the IR camera.
The frame rate and resolution are 25 Hz and
640 × 480 array, respectively. The thermal sensitivity
is 0.06 ◦C.

4) The visual camera is chosen as MV-SUF1200GM,
which can sample at 25 Hz and has a resolution of
4096 × 3000 array. The lens is chosen as MV-LD-12-
20M-A.

B. Acquisition and Excitation System

The proposed acquisition and excitation system contributes
to acquiring high-quality images and defect features for fur-
ther processing. The system designed based on the physical
attributes of each modality is shown in Fig. 4(a) and (b).
The placement of the IR camera is intricately tied to the
fundamental infrared radiation theory known as Lambert’s
cosine law, which is expressed as follows:

Iθ = Incosθ (17)

where Iθ represents the radiation intensity in the direction θ

with the normal line of the radiation surface (radiation
intensity in the observation direction), and In represents the
radiation intensity in the normal direction of the radiating
surface. In order to capture the strongest radiation intensity
during practical inspections, the observation direction of the IR
camera should be perpendicular to the plane of the specimen.

In addition, to maintain field of view (FOV) consistency,
the direction of the visible camera should be toward the

Fig. 4. (a) Acquisition and excitation system. (b) Schematic of the acquisition
and excitation system.

perpendicular point between the observation direction of the IR
camera and the plane of the specimen, as shown in Fig. 4(b).
However, the tilting of the visible camera may cause image
blurring in specific regions due to variations in depth of field.
When the work distance greatly surpasses the focal length, the
depth of field of the camera can be calculated as follows:

1L1 =
FδL2

f 2 + FδL
(18)

1L2 =
FδL2

f 2 − FδL
(19)

where 1L1 and 1L2 represent the narrow depth of field
and large depth of field, respectively, F and f represent the
aperture and the focal length of the lens, respectively, L is
the work distance, and δ is the diameter of the permission
circle of confusion. The relevant parameters employed in the
experiments are listed in Table I.

Substituting the mentioned parameters into (18), the narrow
depth of field is calculated to be 42.5 mm. By employing
the geometric relationships illustrated in Fig. 5, it can be
calculated that the tilt angle of the visible camera should
not exceed 28.9◦ to ensure high-quality visible images. The
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TABLE I
SOME PARAMETERS OF VISIBLE CAMERA

Fig. 5. Geometric relationships of the visible camera.

calculation of tilt angle is equivalent for narrow depth of field
and large depth of field.

Furthermore, the surface temperature of the sample excited
by the line laser is given by Cramer and Winfree [31] as

T (x) =
q

πκ
e

−vx
2α

K0

[
v|x |

2α

]
+ 2

∞∑
n=1

K0

v(x2
+ (2nL)2)

1
2

2α


(20)

where v is the scanning velocity, α is the thermal diffusivity,
which is determined by the inherent properties of the material,
and L is a constant representing the thickness of the plate.
According to (20), v should be proportional to α to maintain
a constant dynamic range of the surface temperature. This
provides a theoretical basis for setting varying velocity for
different materials of the sample during experimentation. Thus,
when subsurface defects are present, there is a time delay for
temperature to reach the defect and feedback to the surface.
Hence, the ideal observation point should be located behind
the heating point, which corresponds to the cooling phase [32].
Moreover, setting the observation point in the cooling phase
can also avoid excitation interference and improve the signal-
to-noise ratio.

C. CR Configuration

In this study, a novel calibration board is designed for the
CR of thermal and visual cameras, as shown in Fig. 6. The
novel calibration board is made of a printed circuit board
with a white-on-black coating on the surface to provide a
visually salient checkerboard pattern for the camera. As illus-
trated in Fig. 6(b), dense circuits are buried under the black

Fig. 6. Calibration board. (a) Appearance picture. (b) Internal dense circuits.

squares to generate heat when energized, which provides an
infrared salient checkerboard pattern for the IR camera. Simul-
taneously, one-to-one correspondence between black squares
and buried dense coils maintains spatial consistency, which
provides the same checkerboard pattern for further registration
between IR camera and visual camera.

When acquiring CR data from the powered calibration
board, the optimal observation time is determined based on the
heat conduction process. This process can be regarded as the
accumulation of the instantaneous point heat sources in space
and time. Temperature variation at x of the instantaneous point
heat sources is expressed as follows:

T (x, t) =
Q

cρ(4παt)3/2 e−
x2
4αt (21)

where Q is the energy, and c, ρ, and α are the heat capacity,
density, and thermal diffusivity, respectively. The temperature
contrast between the reference point and its neighboring point
is expressed as follows:

1T (t) = T (0, t)−T (1x, t). (22)

Suppose 1T ′(t) be the derivative of 1T (t). Since all the
variables are positive, it is easy to get 1T ′(t) < 0, which
means 1T (t) is decreasing. Thus, the images with the largest
temperature contrast at the beginning of excitation should be
collected for CR.

D. Samples Preparation

In order to verify the robustness and accuracy of the
proposed system and algorithm, seven standard and natural
samples with different shapes and materials were chosen for
testing. Four of them are standard specimens, and the other
three are natural samples with natural defects, which are
caused in a real industrial production environment. The first
two standard specimens are flat CFRP with buried standard
subsurface defects. Strips of different colors represent different
surface defects. The sample no. 3 is flat glass fiber-reinforced
plastic (GFRP) with through-bottom void standard subsurface
defects. The sample no. 4 is curved CFRP with buried standard
subsurface defects, which remains difficult for detection. The
sample no. 5 and no. 6 are flat GFRP with natural defects.
The sample no. 7 is the hull of a used unmanned ship made
of CFRP, which is the most difficult test sample due to its
complex structure.

Since different materials have different thermal conductivi-
ties, different excitation powers need to be used when detecting
specimens with different materials. Concurrently, the trajectory
of the manipulator will be set according to the shape of
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TABLE II
DESCRIPTIONS OF SEVEN SPECIMENS

the specimen. In the experiment, the laser power is constant,
and the moving speed of the manipulator is changed to adjust
the excitation power. The relevant descriptions of the different
specimens and the corresponding experimental settings are
shown in Table II.

E. Ground Truth of the Fusion Result

The ground truth of the fusion result reflects the defect infor-
mation obtained by combining infrared and visible images,
which cannot be obtained by directly labeling a single image
as the ground truth from traditional target detection. Therefore,
this article designs specific rules to obtain the ground truth of
fusion results for both infrared and visible image pairs, which
also provides a precedent of multispectral fusion detection.

The time-synchronized infrared and visible image pairs are
obtained through the acquisition and excitation system, and
then, the spatial registration as well as resolution unification
(640 × 480) of the image pairs are realized through CR. Next,
Labelme toolkit is used to label the infrared images and visible
images of spatiotemporal registration to obtain IRgt and VISgt,
respectively. Defects of the infrared and visible images are

TABLE III
SOME PARAMETERS OF THE PROPOSED MODEL

labeled named as “sub_defect” and “defect,” respectively.
Finally, IRgt is adjusted artificially against VISgt to obtain the
ground truth of fusion result (Fgt) according to the following
rules: traverse the target box in VISgt, if the target can be
detected in IRgt, change the label of the corresponding target
box in IRgt to “defect”; otherwise, add the target box in VISgt
to IRgt.

F. Implementation

The proposed algorithm is developed in Python and consists
of CR and fine registration. The dataset for the CR model
is derived from the dynamic scanning of calibration boards.
Due to the varying scan speeds required for different materials
mentioned earlier, we obtained CR data for CFRP and GFRP
materials at speeds of 5 and 20 mm/s, respectively, to mit-
igate registration errors stemming from speed discrepancies.
CR is carried out on the temporally synchronized visible
and infrared datasets collected from seven samples, utilizing
respective CR data to accomplish spatial registration between
infrared and visible image pairs while standardizing image
dimensions.

The fine registration was integrated into the base detector
YOLOv5s using the PyTorch framework. Individual infrared
and visible detection models are trained for each of the three
natural specimen datasets due to their unique defect charac-
teristics, whereas the datasets from four standard specimens
serve to train a unified infrared and visible detection model.
Identical parameters are employed for each training session
across these datasets. The data are randomly partitioned into
80% for training and 20% for validation. The training adopts a
warmup strategy, leverages stochastic gradient descent (SGD)
as the optimizer, and implements OneCycleLR for the learning
rate optimization strategy. The values of some parameters
deployed during the training are shown in Table III. All the
experiments are conducted on a GeForce RTX 3080 GPU with
20-GB RAM.

IV. EXPERIMENTAL ANALYSIS

A. Comparison With Typical Methods

The proposed method was compared with traditional single-
spectrum detection methods and the proposed decision-level
fusion strategy with other similarity measures by utiliz-
ing MR-2 as the quantitative evaluation index. Traditional
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TABLE IV
COMPARISON RESULTS OF SIX TYPICAL METHODS ON SEVEN SPECIMENS. RED INDICATES THE BEST RESULT,

AND BLUE REPRESENTS THE SECOND BEST RESULT

TABLE V
QUANTITATIVE RESULTS OF ABLATION STUDY

single-spectrum detection methods are mainly IRT and VT.
Simultaneously, MI [33], InteNCC [34], Matchnet [35],
and DeepDIM [36] were chosen as the comparison meth-
ods of similarity measurement in the proposed method.
They are representative of traditional statistical-based and
deep learning-based methods for local registration. Table IV
presents the comparative outcomes of the proposed approach
with respect to other methods on all seven samples.

The results indicate that InteNCC, Matchnet, and DeepDIM
achieved the best performance with MR-2 of 4.26, 6.98, and
11.09 on no. 6, 5, and 1 samples, respectively. However, these
methods exhibited poor performance on other specimens with
an average MR-2 of up to 20–40. In contrast, the proposed
method obtained an average MR-2 of 8.43, which represents
an improvement of 16.38 over the best comparison method
DeepDIM and achieved either optimal or suboptimal perfor-
mance on all specimens. The robustness and accuracy of the
proposed method are significantly better than the comparison
methods.

The running speed of each registration algorithm was also
evaluated by measuring the registration time for each image
pair. The corresponding results are provided in Table IV. The
proposed framework demonstrates an average processing time
of 6.80 s per image pair, outperforming deep learning-based
methods, which require 135.81 and 507.60 s, respectively.

Nevertheless, there is still potential for improvement when
compared to the processing time of the InteNCC algorithm
accelerated by the integral graph, which takes only 0.37 s per
image pair.

B. Ablation Study

In this section, ablation studies on the proposed method
were performed on all seven samples to further analyze the
individual components and their contribution to the overall
performance. For each experiment, only the component under
study is removed while preserving all other components
unchanged. Specimens numbered 4 and 7 are special-shaped,
while the others are flat-shaped. Table V presents the quantita-
tive results of the ablation experiments, while Fig. 7 provides
a detailed illustration of each step.

1) Coarse Registration (CR): Due to the inconsistent res-
olution and FOV between the original image pairs collected
by the visual camera and the IR camera, the original image
pairs cannot be used for multispectral fusion detection directly.
As shown in Table V, the low MR-2 (9.98) of the image pairs
collected on the flat specimens shows that high registration
accuracy can be achieved after CR. However, poor registration
accuracy is indicated by an average MR-2 of 14.61 for speci-
mens with specific shape, which is shown in Fig. 7(a) and (d).
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Fig. 7. Details of ablation experimental results. (a) and (d) CR. (b) and (e) CR_BR. (c) and (f) Ours.

2) Box Matching (BM): Based on the CR, we further add
the BM to the multispectral fusion defect detection framework
and evaluate its contribution. Table V illustrates that the
MR-2 on special-shaped specimens decreased (no. 4 decreased
5.45 and no. 7 decreased 3.00), while it increased on
flat specimens after adding the BM module (flat samples
increased 17.10 on average). The relevant details can be seen
in Fig. 7(b) and (e). The BM module demonstrates the capa-
bility to further reduce the MR-2 and improve the registration
accuracy of infrared and visible image pairs in specimens with
special shapes. However, its poor performance on flat speci-
mens negatively impacts the overall algorithm performance
(increased 11.01 on average). The disparity in background
and characteristics between visual and infrared images may
account for this phenomenon. Visible images capture the
visible light spectrum, whereas infrared images capture the
infrared spectrum that conveys thermal information. These
inherent differences give rise to challenges in achieving accu-
rate registration between the two modalities.

3) Domain Adaptation (DA): In order to unify the feature
domains of infrared and visible images pairs and further
enhance the registration accuracy, the DA module was incor-
porated into the algorithm and compared the impact on the

overall performance with and without it. Table V demonstrates
that the MR-2 is further reduced by 3.94 in specimens with
special shapes after adding DA. Furthermore, the issue of
increased MR-2 on flat specimens caused by the BM module
has been solved (the MR-2 was reduced by 17.85 against
CR + BM and by 0.75 against CR in flat specimens), which
is shown in detail on Fig. 7(c) and (f).

V. CONCLUSION

This article has presented a novel multispectral fusion
defect detection framework with coarse-to-fine multispectral
registration, enabling simultaneous detection and classification
of surface and subsurface defects. Additionally, a physics-
coupled multispectral vision sensing fusion system has been
designed to acquire time-synchronized multispectral data.
The feasibility and generalization of the proposed frame-
work and system are evaluated on seven specimens with
varying materials and shapes. Ablation studies have demon-
strated the effectiveness of coarse-to-fine registration in
achieving accurate spatial alignment of infrared and visible
detection boxes. Furthermore, DA reduces the distribution
differences between infrared and visible images, unifying the
feature domains. Comparative experiments have confirmed
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Fig. 8. Detailed flow diagram of the proposed multispectral fusion defect detection algorithm.

that the proposed framework effectively combines the advan-
tages of IRT and VT. The proposed method achieves an
impressive MR-2 score of 8.43, outperforming the closest
comparison method by a significant margin of 16.38. This
notable improvement in performance showcases the enhanced
robustness and accuracy of the proposed framework, demon-
strating promising potential. Future work will focus on further

enhancing the registration algorithm and DA module to
achieve even greater improvements in speed and accuracy.

APPENDIX

Fig. 8 illustrates a detailed flow diagram representing the
specific process and data flow of each step in the proposed
multispectral fusion defect detection algorithm.
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