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Abstract—This paper proposes an unsupervised method
for diagnosing and monitoring defects in inductive ther-
mography imaging system. The proposed method is fully
automated and does not require manual selection from the
user of the specific thermal frame images for defect diag-
nosis. The core of the method is a hybrid of physics-based
inductive thermal mechanism with signal processing-based
pattern extraction algorithm using sparse greedy-based
principal component analysis (SGPCA). An internal func-
tionality is built into the proposed algorithm to control
the sparsity of SGPCA and to render better accuracy
in sizing the defects. The proposed method is demon-
strated on automatically diagnosing the defects on met-
als and the accuracy of sizing the defects. Experimental
tests and comparisons with other methods have been con-
ducted to verify the efficacy of the proposed method. Very
promising results have been obtained where the perfor-
mance of the proposed method is very near to human
perception.

Index Terms—Data analytics for diagnosis and monitor-
ing, inductive thermal imaging, instrumentation, machine
intelligence, nondestructive testing and evaluation
(NDT&E).
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I. INTRODUCTION

I MAGING diagnostic system for defect detection is highly
demanded in industry [1], [2]. This has been applied on

inspection of electronic chips or dies in semiconductor produc-
tion lines [3]. Acciani et al. extracted the features of the regions
of interest in test images and then built multilayer neural net-
works for defect detection [4] on solder joints in surface mount
technology of industry. Tsai et al. proposed defect inspection
system of solar modules in electroluminescence (EL) images
[5]. Picon et al. proposed fuzzy spectral and spatial feature
integration method for classification of nonferrous materials
in hyperspectral data [6]. All these methods recognize that
image-based defect diagnostic system is a wide group of anal-
ysis technique used in science and industry to evaluate the
properties of material, component, or system without causing
damage [7]–[9]. Infrared thermography systems have reached
a prominent status as a nondestructive testing and evaluation
(NDT&E) image diagnostic method [10]–[12] with the advan-
tages of being fast, and providing noncontact, noninteraction,
real-time measurements over a large detection area with a long
range, security of personnel, and relatively easy interpretation
of results. Infrared thermography can be used to assess and
predict the structure or behavior beneath the surface by mea-
suring the distribution of infrared radiation and converting the
measurements into a temperature scale.

Inductive thermography (IT) system which combines two
techniques: 1) Eddy current (EC); and 2) thermography [13]
has the potential with an increasing span of applications [14].
Comparing with other thermography NDT&E systems, the heat
of IT is not limited to the sample surface, rather it can reach
a certain depth, which governed by the skin depth of EC.
Furthermore, IT focuses the heat on the defect due to fric-
tion or EC distortion, which increases the temperature contrast
between the defective region and defect-free areas. Eddy cur-
rent pulsed thermography (ECPT) is a kind of IT method, which
is the most widely used such as penetration depths measure-
ment in metallic materials [15], small defects detection for
compressor blades [16], probability of detection (POD) estima-
tion [17] of fatigue cracks, impact evaluation in carbon fiber
reinforced plastic (CFRP) [18], corrosion and blister detec-
tion under coating [19], and multiple cracks detection [20]. All
these works require signal processing tools to do defects analy-
sis. In ECPT, several thermal transient response features have
been used as an indicator of defect status, which is critical
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for acceptance/rejection decisions for maintenance and life-
time prediction [21]. Most methods are limited on manually
selecting the proper contrast components. To enhance the flaw
contrast and improve noise rejection qualities, pattern-based
image enhancement has been conducted by introducing the
raw data upon a set of orthogonal basis functions. Fourier
transform was applied to pulsed thermography and enhanced
the flaw contrast significantly using phase map [22]. Influence
of nonuniform heating and surface emissivity variation was
removed by using a Fourier transformation-based image recon-
struction algorithm [23]. Instead of a prescribed set of basis
functions, empirical orthogonal functions were also employed
to maximize the anomalous patterns of transient response. The
efficiency of principal component analysis (PCA) was com-
pared on thermography features extraction by considering the
initial sequence as either a set of images or a set of temporal
profiles [24]. In addition, the independent component analysis
(ICA) [25], [26] and nonnegative matrix factorization (NMF)
[27], [28] are proposed for defect characterization in IT sys-
tem. However, most pattern extraction-based methods are only
employed as a signal processing tool. The physics mechanism
is not fully linked to provide the benefits of defect detection,
while the results are acceptable, they are not completely accu-
rate. This ambiguous case prevents the use of IT system in
automated environments.

The sparse modeling of signals [29]–[36] which has proven
to be effective in signal processing, denoising, deconvolution,
compressive sensing reconstruction, inpainting, data mining,
multimedia, NMF, etc. Most natural signals exhibit such spar-
sity property in adequately chosen signal representations. These
include the wavelets [37], the curvelets [38], or even adaptively
learned signal representations [39]. Greedy algorithms [40]
have been widely used to find approximate solutions quickly
to combinatorial optimization problems [41]. In a few cases,
optimal solutions are guaranteed. Greedy algorithms for sparse
approximation have inspired less adaptive methods. Matching
pursuit (MP) can be converted to a low complexity adap-
tive form, as done in [42], and been extended to orthogonal
MP (OMP) [43] as well as stage-wise OMP [44]. Compared
with convex relaxation algorithms, greedy pursuits need more
measurements, but they tend to be more computationally effi-
cient. Sparsity has been exploited in recent unsupervised pattern
recognition methods [45]–[48]. The group of research inter-
est focuses on the low-rank and sparse components via convex
optimization have also been attractive, the robust PCA, is
[49] proposed iterative thresholding methods with low com-
plexity, but with low speed of convergence. Lin et al. [49]
proposed accelerated proximal gradient (APG) methods which
are faster and more accurate than robust PCA. The latest
approach such as variational Bayesian and Markov chain Monte
Carlo (MCMC)-based sparse PCA with specific prior where the
model parameters and hyperparameters are adapted by using
[50] and [51]. In all cases, a fully Bayesian treatment is applied
to inference. While these approaches increase the accuracy of
specific application and works efficient when suitable priority
is selected. Moreover, it consumes significantly high computa-
tional complexity at each iteration to adapt the parameters and
its hyperparameters.

The contributions of the current work lie in the develop-
ment of the physics mechanism that underlies the IT system
and a derivation of a mathematical model that bridges the gap
between the physics mechanism and signal processing analy-
sis. The aim is to develop a data-analytics algorithm to extract
anomalous patterns in the IT system. A physics-based signal
processing approach combining sparse greedy principal compo-
nent analysis (SGPCA) is developed to identify and search the
defect region in the sample. The model represents a low-rank
variable as a sparse bilateral factorization with greedy-based
optimization to reduce the computational complexity during the
sparse pattern extraction stage. The physics mechanism as to
why sparse information benefits the IT heating phase will also
be discussed in detail. The comparison in terms of the POD and
computational complexity has been undertaken for different
sparse pattern extraction algorithms through the real exper-
iments. Experimental tests on man-made metal defects and
natural defects with complex geometry have been conducted
to show the validity of the proposed algorithm.

This paper is organized as follows. Section II discusses
the physics model of IT mechanism and the linkage as
well as development of sparse pattern extraction algorithm.
Section III describes the proposed sparse thermal pattern
extraction method. Sections IV and V introduce the experimen-
tal setup and present the experiment results. Finally, Section VI
concludes the work.

II. PROPOSED METHODOLOGY

A. Physics Mechanism of IT System

1) Inductive Thermal Conduction: The infrared cam-
era records both the spatial and the transient response of
temperature variation on the specimen. This can be repre-
sented as a spatial-transient tensor Ȳ, which has dimension
Nx ×Ny︸ ︷︷ ︸

Spatial

× N︸︷︷︸
Transient

. The governing equation describing the EM

field in the ECPT system can be deduced from Maxwell’s equa-
tions. When an EM field is applied to a conductive material,
the temperature increases owing to resistive heating from the
induced electric current, which is known as Joule heating. The
sum of the generated resistive heat Q is proportional to the
square of the magnitude of the electric current density. Current
density, in turn, is proportional to the electric field intensity
vector �E. The following equation expresses this relationship:

Q =
1

σ

∣∣∣ �Js∣∣∣2 =
1

σ

∣∣∣σ �E
∣∣∣2, where σ =

σ0

1 + α (T − T0)
(1)

σ is dependent on temperature, σ0 is the conductivity at the
reference temperature T0, and α is the temperature coefficient
of resistivity, which describes how resistivity varies with tem-
perature. In general, by taking account of heat diffusion and
Joule heating [24], the heat conduction equation of a specimen
can be expressed as

∂T

∂t
=

k

ρCp

(
∂2T

∂x2
+

∂2T

∂y2
+

∂2T

∂z2

)
+

1

ρCp
q (x, y, z, t) (2)



GAO et al.: UNSUPERVISED SPARSE PATTERN DIAGNOSTIC OF DEFECTS 373

Fig. 1. ECPT system.

where T = T (x, y, z, t) is the temperature distribution, k is the
thermal conductivity of the material (W/m · K), which is depen-
dent on temperature. ρ is the density (kg/m3), Cp is specific
heat (J/kg · K). q(x, y, z, t) is the internal heat generation func-
tion per unit volume, which is the result of the EC excitation.
The variation of temporal temperature depends on the spatial
temperature variation for heat conduction. According to (2),
heat conduction is influenced by T (x, y, z, t), ξ, υ, σ, μ, and
l, where ξ denotes the sensor geometry factor; υ denotes the
parameters of the excitation (frequency and amplitude) and l
denotes the lift off (distance between the sensor and sample).
From the above analysis, it becomes clear that the variation of
temperature spatially and its transient response recorded from
the IR camera directly reveals the intrinsic properties variation
of the conductive material.

2) IT Defect Detection: Fig. 1 shows the diagram of IT
defect detection system. The excitation signal generated by
the excitation module is a small period of high-frequency cur-
rent. The current in the coil will induce the ECs and generate
the resistive heat in the conductive material. The heat will
diffuse in time until the heat reaches equilibrium in the mate-
rial. If a defect (e.g., crack and fatigue region) is present in
the conductive material, EC distribution as well as heat diffu-
sion process will vary. Consequently, the spatial distribution of
temperature on the surface of material and the temperature tran-
sient response will show the variation, which is captured by an
infrared camera. It can be divided into two phases: 1) heating
phase; and 2) cooling phase. As an example, we take a finite
length sample with small penetrated slot as a defect testing sam-
ple. The resultant heating frame from IT (0.1 s) is presented in
Fig. 1 right bottom panel. In the heating phase, different heat
generation rates enlarge the temperature spatial variation. Hot
spots are observed around the slot tips and the cool areas locate
at both sides of the slot. In the cooling phase, heat diffuses from
high-temperature area to low-temperature area, and reduces the
contrast. In addition, the area located far away from excitation
coil will continually rise temperature because of its heat dif-
fusion. These different areas can be considered as the pattern
regions which share the similar transient responses in the sam-
ple. The infrared camera functioned as a temperature spatial
image signal recorder along with time flowing. In addition, the
camera actually records the mixed image signal correspond-
ing to the signal image from the thermal pattern regions at
each time point. These regions are termed as thermal patterns
in IT.

The hot spots are used specially for defect location and siz-
ing. Fig. 1 shows the example of temperature distribution at the

sample surface as the lift-off distance is set d = 4 mm. When
the inductor is close to the tip of the defect (d = 4 mm), it is
seen that significant EC flows around the tip of the defect and
the defect behaves predominantly as a slot.

3) Relationship Between Excitation System, Heating
Phase, and Cooling Phase With Respect to Material
Variation: IT uses inductive heater as the excitation system.
Hence, it is specific for conductive materials or multilayer sys-
tem with conductive layer. The inductive heat depends on the
parameters of material and excitation signal.

1) To optimize the signal-to-noise ratio (SNR), the heat
power should be maximized. Normally, the high-current
amplitude (hundreds of ampere) and great frequency
(>100 kHz) are used.

2) The longer heating time results in the accumulation of
large amount of heat Q. For detecting surface defects, the
long heating time is useful for good SNR and contrast
[18]. At the same time, the longer heating time is useful
for detecting the deep defects due to heat conduction from
surface to deep defects [51].

3) The long cooling time is useful for heat conduction to
detect deep defects. The thermal penetration depth for a
pulsed excitation is determined by the thermal diffusivity
α of the material and by the observation time t (cooling
time) after pulse heating.

4) The small electrical conductivity can lead to a high heat
power and great EC penetration depth. The thermal diffu-
sivity depends on thermal conductivity, mass density and
specific heat. If the thermal diffusivity is large, the tem-
perature changes quickly. Hence the sampling frequency
of the camera must be high enough to capture the changes
of temperature.

4) Detectability: In general, the ECPT is valid for both
deep and shallow defects, which is based on the physics
principles of inductive heating, heat conduction, and infrared
radiation. According to skin effect in inductive heating, the
EC has a penetration depth δ, which is expressed by equation
δ = 1√

fπμσ
, where f is the frequency of the pulsed excitation.

If the shallow defects are in this skin area, they will dis-
turb the EC distribution and then the temperature distribution.
Theoretically, the lower excitation frequency has deeper detec-
tion depth. In practice, in order to improve the heating efficient
with IT, the frequency is about 100 kHz and the skin depth is
relative small. For example, ferromagnetic metals have a much
smaller skin depth (about 0.04 mm at 100 kHz). Therefore,
shallow/surface defects can be detected. The heat will con-
duct to the interior and lateral area of the material. If the deep
defects disturb the heat conduction process, the surface temper-
ature distribution will be different from the surrounding area.
The heat conduction is used to detect the deep defects [51].
The temperature will be captured by IR camera. If the surface
defects show a different emissivity value, the temperature will
be different from the surrounding area.

5) IT Multiphase Analysis: According to (2), the first-
order derivative of the temperature response of transient
response, as shown in Fig. 2(b), is composed of heat diffu-
sion and Joule heating [52]. In Fig. 2(c), we can infer from the
thermal video that the heat conduction procedure can be divided
into six phases.
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Fig. 2. (a) Thermal image at 0.1 s after heating. (b) Transient temperature response at impact point plotted against time. (c) First derivatives of
temperature response.

1) Phase 1: A resultant singular electric current field is gen-
erated, and the EC quickly rises from zero to maximum,
and then converges to a steady state. This phase is very
short (approximately 5 ms) and the heat diffusion does
not play an obvious role which can be considered zero or
a constant small value. In (2), we only take into account
the Joule heating during this phase.

2) Phase 2: Electric current field maintains a stable state.
The sum of the generated resistive heat Q is constant.
However, heat diffusion velocity gradually increases and
following a different temperature increases according to
Fourier’s law of heat conduction. Simultaneously, heat
diffusion is getting more obvious due to the significant
heating propagation time. Heat diffusion plays a main role
in the thermal video during this phase.

3) Phase 3: Heat conduction also reaches the equilibrium
state. The sum of the generated resistive heat Q and heat
diffusion are at equilibrium in this phase.

4) Phase 4: EC quickly decreases from maximum to zero
when exciting signal is stopped. Similar to the first phase,
the procedure is very short, which lasts about 5 ms.
Change of heat diffusion is not abrupt in such a short
time. Joule heating plays a main role in the thermal video
during this phase.

5) Phase 5: There is no EC in this phase, so q(x, y, z, t) can
be omitted in (2). The change of the first-order derivative
is resulted from the velocity variation of heat diffusion.

6) Phase 6: Heat diffusion is at a stable state.

As mentioned in Section I, IT focuses the heat on the defect
due to friction and EC distortion, which increases the temper-
ature contrast. Thus, for surface defects, the selection of phase
one and four are directly attributed to Joule heating due to the
EC distortion. More description and comparison of phase selec-
tion will be detailed in Section V. Moreover, the IR camera used
as a temperature measurement sensor has an important role
in IT. Inductive thermograph is a relative measurement tech-
nique, the temperature contrast between defect and surrounding
area is important. Therefore, the sensitivity of camera has an
influence on defect detect sensitivity. In the proposed method,
the high-end thermal camera is used, the SC7500 is a Stirling
cooled camera with a 320× 256 array of 1.5−5 µm InSb detec-
tors. This camera has a sensitivity of <20 mK and a maximum
full frame rate of 383 Hz such that the interface of the cam-
era sensitivity can be reduced to minima. The distance has an

influence on the heating efficiency. A small distance is desir-
able, but with an overly too small distance, the distribution of
the EC is forced into a small area, which reduces the detectable
area. To avoid this effect, transmission mode where IR camera
and heater are located on the opposite side of objects is investi-
gated if the object is thin. The increase of distance may decrease
the SNR and defect detectability. In the proposed method, the
1 mm distance lift off between the coil and sample is verified to
balance good SNR and proper excitation heating.

III. PHYSICS-BASED DATA ANALYTICS

A. Thermography Sparse Pattern Extraction

1) Observation Model: As shown in Fig. 1, hot spots are
observed around the slot tips and the cool areas locate at both
sides of the slot. In the cooling phase, heat diffuses from high
temperature area to low temperature area, and reduces the con-
trast. In addition, the area where locate far away from excitation
coil will continually rising temperature because of heat diffu-
sion. These different areas can be considered as the thermal
pattern regions. Specifically, it can be seen in Fig. 1, position
1 represents an hot spots region X1(t) with high rising and
high falling rate of temperature; position 2 represents an cool
areas X2(t) with moderate rising and falling rate; position 3
represents an nondefect region X3(t) with high rising rate fol-
lowed by a continually low speed rising and then drop down;
and position 4 represents an nonexcitation region X4(t) with
continually temperature increasing. Mathematically, the ther-
mography image captured by the infrared camera is considered
as a mixing observation signal image Y(t). The term mi is the
mixing parameter which describes the contribution of the ith
position to the induced recorded thermography image in Fig. 1.
Thus, the mathematical model [25] can be described as

Y(t) ≈
Ns∑
i=1

miXi(t) (3)

where Ns denotes the number of independent signal image
areas. The visual representation of (3) is shown in Fig. 3.

Our previous study [25] has developed single channel
blind source separation algorithm for pattern separation of
IT. However, the method requires statistical independence
on the waveform within the duration of signal capture and
further process of pattern identification is also demanded
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Fig. 3. Mathematical representation of mixing process of ECPT.

which is often violated in practice. Instead, we use a fixed-
length segment drawn from transient response [53], [54],
such that continuous transient slices of length N can be
chopped out of a set of image sequences from t to t+
N − 1, and the subsequent segment is denoted as Y′ =
[vec(Y(t)), vec(Y(t+ 1)), . . . , vec(Y(t+N − 1))]

T, where
“T” denotes the transpose operator and “vec” denotes the
vectorize operator. The constructed image sequences is then
expressed as a linear combination of the signals generated by
the different pattern regions such that

Y′ = MX′ (4)

where Y′ ∈ RN×L, L = Nx ×Ny . M = [m1, . . . ,mNs
] ∈

RN×Ns is the mixing matrix, mi is the ith mixing vec-
tor and X′ = [vec(X1(t)), vec(X2(t)), . . . , vec(XNs

(t))]
T ∈

RNs×L. Assuming that Ns = N and M has full rank.
2) General Principle of Pattern Extraction: Our previ-

ous study already used general PCA to separate the observed
variables. To solve (4), one possible way is to use the singular
value decomposition (SVD) which is a form of factorization

Y′ = UΣV (5)

where U and V are the orthogonal matrices and Σ consist
of the singular values. The columns of U represent the PCA
basis vectors. With possible dimension reduction, e.g., choos-
ing Ns ≤ N , there exits Ns number of basis vectors maximally
informative subspace of input data, thus the basis vectors are
selected and determined by the information contained in the
nonzero singular values.

3) Sparse Pattern Extraction: However, previous study
does not involve or leverage on the phases of heat conduc-
tion and sparse factors. Sparseness refers to a representational
scheme where only a few units (out of a large population)
are effectively used to represent typical data vectors [55]. In
effect, this implies most units taking values close to zero while
only few take significantly nonzero values. The sparse fac-
tors enforce the solution to consider only the significant region
where the defect may lie within the surrounding background.
This is shown in Fig. 2(a). For data with sparse outliers or par-
tially contaminated by noise of overwhelming magnitude, sheer
low-rank assumption cannot fully capture its complex struc-
ture. Therefore, (4) can be considered as combination of sparse
pattern (e.g., hot spots) and nonsparse patterns

Y′ =
[
MX′]

i=1,...,Ns,i�=j︸ ︷︷ ︸
L

+MjX
′
j︸ ︷︷ ︸

S

+G. (6)

In reality, they play an important role in enhancing the defect
detectability of IT system. A general assumption of (6) can be

denoted as Y′ = L+ S+G, i.e., the pattern matrix Y′ can be
decomposed as the sum of a low-rank matrix L (e.g., for posi-
tion 2, 3, and 4 reflected patterns in Fig. 1), a sparse pattern
S (e.g., hot spots) which contains the spiky anomalies that are
rarely shared by different instances, and G which is the noise
term. When the algorithm optimizes the sparse S, it is actu-
ally trying to find the joint sparse estimation of Mj and X′

j

(not just X′
j). The sparse estimation of X′

j is required to obtain
the correct shape of the pattern while the sparse estimation of
Mj is to enable the user to determine the exact time when the
target pattern takes place. By replacing L with its bilateral fac-
torization L = UV where U and V are rank-1 matrices of (6)
(The low-rank matrix variable in solving other thermal patterns
is modeled in a bilateral factorization form UV for the pur-
pose of developing SVD-free algorithms.) and regularizing the
L1-norm of S entries, the cost function can be expressed as

minU,V,S ‖Y′ −UV − S‖2F + λ‖vec(S)‖1 (7)

where vec(·) denotes the vectorize operation, ‖ · ‖F denotes
the Frobenius norm, and ‖ · ‖1 denotes L1-norm. In this paper,
we explore the greedy pursuit model [56] for optimizing the
parameters in (7). The advantage of this method is that it can
significantly balance both complexity and accuracy. By opti-
mizing U,V,S, we take the gradient of the cost function with
respect to these parameters and set it to 0. Starting with U, we
have

∂ ‖Y′ −UV − S‖2F + λ‖vec(S)‖1
U

= (Y′ −UV − S)VT

(Y′ −UV − S)VT = 0

(Y′ − S)VT −UVVT = 0

Uk = (Y′ − S)VT
k−1

(
Vk−1V

T
k−1

)−1
.

(8)

Note subscript in k denotes the variable in the kth iterate.
Next, we consider V

∂ ‖Y′ −UV − S‖2F + λ‖vec(S)‖1
∂V

= UT (Y′ −UV − S)

UT (Y′ −UV − S) = 0

UT (Y′ − S)−VUTU = 0

Vk =
(
UT

k−1Uk−1

)−1
UT

k−1 (Y
′ − S)

(9)

Finally, we consider S

∂ ‖Y′ −UV − S‖2F + λ‖vec(S)‖1
∂S

= (Y′ −UV − S) + λ

(Y′ −UV − S) + λ = 0

Sk = Sλ (Y
′ −UkVk)

(10)

where Sλ is an element-wise soft thresholding opera-
tor with λ threshold such that SλY

′ = {sgn(Y′
mn)

max(|Y′
mn| − λ, 0)}. In this work, λ is selected by exploring
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the heuristic approach to get the optimal threshold. We will
treat this in two cases. For the case where S is positive, the
differentiation of abs(S) results in unity. This allows λ to be
incorporated into the solution to render extraction of sparse
pattern. For the special case of S is zero, even though this point
is nondifferentiable, it is does not prevent the development of
the proposed algorithm. The reason is because at this point
(S = 0), the image is already sparse and there is no further
need to impose lambda into the solution.

For computation efficiency [57], we investigate the
product of UkVk, this leads to UkVk = Uk(U

T
k Uk)

−1

UT
k (Y

′ − S) = PUk
(Y′ − S). This implies that the product

UkVk equals to the orthogonal projection of (Y′ − S) onto
the column space of Uk. According to (8), the column space of
Uk can be represented by arbitrary orthonormal basis for the
columns of (Y′ − S)VT

k−1. For example, we can compute it
as Q via fast QR decomposition QR = QR((Y′ − S)VT

k−1).
In this case, the product UkVk can be equivalently computed
as UkVk= PQ (Y′ − S)= QQT (Y′ − S). Therefore, Uk and
Vk in (8) can be replaced by Q and QT (Y′ − S), respec-
tively. This gives a faster updating procedure. In addition, the
proposed method invokes the updates in (8) with a greedy incre-
mental rank r for both U and V. In particular, it starts from
a V ∈ �r0×N with a small integer r0, iterates (8) and (9) for
K times, and then augment the rank of V to r1 = r0 +Δr by
adding Δr extra rows to V, where Δr is the rank step size.
In the proposed model, the Δr rows are selected greedily as
the top Δr row basis on which the object decreases fastest.
Accordingly, they maximize the magnitude of the partial deriva-
tive of the object with respect to UV, which is basis on which
the object decreases fastest. Namely

∂ ‖Y′ −UV − S‖2F
∂V

= Y′ −UV − S. (11)

Hence the Δr rows are the top Δr right singular vectors
of the fat matrix UT (Y′ −UV − S), which can be quickly
obtained by a small SVD and The rank r stops augmenting
when reaching certain error tolerance. In the proposed model,
the top ri row basis are successfully obtained when optimiz-
ing V of ri +Δr rows. The essential task of the updates is to
optimize the added Δr rows, while the first ri rows take part
in the update merely for keep the incoherence between rows.
Therefore, it converges faster than simultaneously optimizing
the whole r rows. In addition, the newly added Δr rows are
initialized as the fastest decreasing directions. This repeatedly
increases the rank until a sufficiently small decomposition error
is achieved. The rank of the low-rank component is adaptively
estimated and does not rely on initial estimation. The specific
steps can be summarized in Table I.

IV. EXPERIMENT SETUP

A. IT Experimental Platform

The experimental setup is shown in Fig. 4(a). An Easyheat
224 from Cheltenham Induction Heating is used for coil excita-
tion. The Easyheat has a maximum excitation power of 2.4 kW,
a maximum current of 400 Arms and an excitation frequency

TABLE I
THERMAL SPARSE PATTERN EXTRACTION

Fig. 4. (a) IT system. (b) Excitation coil. (c) Steel test sample.

range of 150–400 kHz (380 Arms, and power is about 2.17 kW,
and 256 kHz are used in this study). The system has a quoted
rise time (from the start of the heating period to full power) of
5 ms, which was verified experimentally. Water cooling of coil
is implemented to counteract direct heating of the coil. The IR
camera, SC7500 is a Stirling cooled camera with a 320× 256
array of 1.5−5 µm InSb detectors. This camera has a sensitivity
of <20 mK and a maximum full frame rate of 383 Hz, with the
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option to increase frame rate with windowing of the image. A
rectangular coil is constructed to apply directional excitation.
This coil is made of 6.35 mm high conductivity hollow copper
tube. In the experiment, only one edge of the rectangular coil
is used to stimulate EC to the underneath sample. In this study,
the frame rate is 383 Hz, and 2 s videos are recorded in the
experiments.

A steel sample (0.24 mm × 45 mm × 100 mm) with a slot
of 10 mm length, 2 mm width is prepared (Fig. 4(c)]. A
100 ms heating duration is selected for inspection, which is
long enough to elicit an observable heat pattern. To simulate the
lift-off variation in complex geometrical sample test, the steel
sample is placed with a small angle against the coil [Fig. 4(b)].

B. Probability of Defect Detection

The POD of defect is defined as

POD =
TP

TP + FN
(12)

where TP refers to true positive which represent the situation
where the sample contains a defect and the method indicates a
defect is present, and FN refers to false negative which repre-
sents the situation where the sample does not contain a defect
and the method does not indicate a defect is present.

To validate the comparison results, structural similarity
(SSIM) index measurement system is employed to measure the
POD. It is a new index of image similarity measure. The SSIM
theory presents that natural image signals are highly structured,
the structure has a very strong correlation between pixels, and
especially the spatial correlation of pixel is closest. The SSIM
theory contains important information of an object structure in
a visual scene. Indeed, the three components are combined to
yield an SSIM given by

S(x, y) = f (l(x, y), c(x, y), s(x, y)) (13)

where luminance comparison of two image (x, y) is defined as

l(x, y) =
2uxuy + C1

u2
x + u2

y + C1
(14)

where u is mean intensity, C1 is constant to avoid instability,
when u2

x + u2
y is very close to zero. The contrast comparison is

defined as

c(x, y) =
2σxσy + C2

σ2
x + σ2

y + C2
(15)

where σ is standard deviation and the structure comparison
function is defined as

s(x, y) =
2σxy + C3

σxσy + C3
(16)

where σxy is correlation coefficient, C2 and C3 functions
as same as C1, by combing all three factors, this gives the
definition of SSIM [58], namely

SSIM(x, y) =
(2uxuy + C1) (2σxy + C2)(

u2
x + u2

y + C1

) (
σ2
x + σ2

y + C2

) (17)

Fig. 5. First-order derivative of the transient response.

Fig. 6. (a) PCA of first derivative of whole thermal video. (b) PCA of first
derivative of partially (phase one) thermal video.

V. RESULTS AND DISCUSSION

A. Influence of Phase Selection of IT

One example of raw inductive thermal image is shown in
Fig. 1. The first derivative of transient response according (2)
is shown in Fig. 5.

As can be seen clearly, the phase one can be interpreted
within the rectangular box. In order to emphasize the impor-
tance of analyzing the phase selection, the comparison of defect
pattern extraction by selecting first derivative of whole and
partially (phase one) thermal video using general principle
component analysis (PCA) using (5) by setting the number Ns

of pattern basis to four. This selection is based on Monte Carlo
approach where the process is repeated over 100 realizations
within the range between the one up to 10 components and the
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Fig. 7. Sparse pattern extraction results. (a) Proposed method. (b) Variational Bayesian sparse PCA with Gaussian sparse prior. (c) Bayesian
sparse PCA based on MCMC with Bernoulli sparse prior.

selection of the four in order to obtain the optimal defect pattern
extraction results.

In Fig. 6, both extraction results highlight the singular pat-
tern around the crack tips. However, the PCA of first-order
derivative of the “phase one” of the thermal video has enabled a
heightened state of emphasis with higher resolution in the zone
around the tips of the hot spots. In addition, this brings the ben-
efit of lesser computations since only few thermal images are
used. From the physics viewpoint, during the heating phase for
a finite uniform thickness plate, a heat generation rate Q can be
defined as the generated heat in unit time due to Joule heating,
using the Cartesian coordinates (x, y) as follows:

Q = σ

{(
∂φ

∂x

)2

+

(
∂φ

∂y

)2
}

(18)

where φ denotes the electric potential and σ electric conduc-
tivity. Since the two components of the electric current are
expressed in terms of the derivatives of φ, heat generation rate
Q theoretically goes to infinity at the crack tips. A resultant high
temperature rising rate is generated in heating phase (i.e., crack
tips) [25]. In the cooling phase, since there is no heating source,
the variation of temperature Temp in a finite uniform thickness
plate is described as

∂Temp

∂t
=

k

ρCp

(
∂2Temp

∂x2
+

∂2Temp

∂y2

)
(19)

where t, ρ, Cp, and k denotes time, mass density, heat capac-
ity, and thermal conductivity, respectively. It is clear that the
temporal variation of temperature depends on the variation of
spatial temperature. Fourier’s law of heat conduction states that
the time rate of heat transfer through a material is proportional
to the negative gradient in the temperature and to the cross
section area of the material. For a uniform thickness plate used
in this study, the cross section area is constant. Due to the sin-
gular areas around the slot tips, a high temperature gradient is
generated while high EC density appears around the slot tips.
During the shot time, the EC quickly rises from zero to max-
imum, retains at the steady state [25]. The heat diffusion does
not play an obvious role as can be considered zero or a small
value. This is the reason Fig. 6 indicates that the separated

TABLE II
SSIM RESULTS OF DIFFERENT METHODS

defect pattern place more emphasis on the crack tips where the
heat diffusion does not significantly affect the heat distribution.
Once the whole thermal procedure is processed, both heat dif-
fusion and Joule heating are fused together in heat conduction
procedure and the separated pattern assembles less in the crack
tips.

B. Impact of Sparse Pattern Extraction

The sparse pattern extraction takes important role in quanti-
tatively analyzing the cracks. We have compared the proposed
method with the relative recent approach on sparse pattern
extraction. These are the variational Bayesian sparse PCA with
Gaussian sparse prior [49] and the robust Bayesian PCA with
Bernoulli sparse prior [50]. The comparison is validated in both
accuracy and computation complexity. In our proposed method,
the sparse greedy model is explored for sparse pattern extrac-
tion which by adjusting proper sparse parameters that gives
even better results and behaves much faster update procedure.
Fig. 7 shows the extraction results.

In Fig. 7, by emphasizing the sparseness of solution, the edge
of the hot spots on crack tips can be quantified and has benefit-
ted the quantitative sizing of the defect. The proposed method
has successfully accentuated the expected sparse locations
which indicate the hot spots of the crack tips. The variational
Bayesian sparse PCA has also outlined the defect edge, how-
ever, with reference to the physics mechanism, the edges along
the hot spots have been incorrectly detected (which should not
present., Finally, the full Bayesian sparse PCA presents an infe-
rior result which has emphasized both hot and cool areas as well
as being interfered by noise. The above results are also con-
firmed by POD results as shown in Table II. The POD study
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Fig. 8. Annotation results of crack edge.

is the comparison results between the referenced annotation
with the extraction by algorithms. Fig. 8 shows the annotation
results where the crack edge region is marked as “1” and the
rest denoted as “0”.

Table II shows the comparison of the proposed method based
on phase one thermal sparse pattern extraction. With human
annotation results, the POD for all different methods, while a
higher performance is attained by the proposed method with an
average accuracy of 99%.

The variational Bayesian sparse PCA (VBSPCA) gives 87%
while the worst result is obtained by MCMC sparse PCA which
gives 68%. In addition, according to the computation time, the
proposed method gives extremely low cost while it only take
0.07 s to achieve the extraction. This brings significantly bene-
fits for industry online detection. VBSPCA requires more time
about 7.64 s and the MCMC sparse PCA requires the most
time about 1029 s. The reasons for these is attributed to both
variational Bayesian and fully MCMC sparse PCA having to
update the model parameters and hyperparameters in each iter-
ation which cost extra computation complexity. Although the
update parameters has advantages to bypass human interven-
tion but it brings the drawbacks to the incorrect selection of
prior distribution for the model parameters and/or convergence
to local minima.

In terms of parameters selection of the proposed method, the
parameter K and tolerance τ does not highly affect the extrac-
tion results. In general, it suffices to set K = 1 and τ = 10−3

and this has been validated using Monte–Carlo repeated exper-
iment involving more than 100 independent trials. On the other
hand, the sparse pattern extraction results is highly reliant on
λ and Δr. First, for determining λ, which is based on model
order selection where experiment is repeated by progressively
increasing λ from 0.1 to 1 with step size is 0.1 (the deviation
of the performance of all three experiments is POD ±0.015).
Second, we have constructed another experiment by varying
Δr. This parameter is a rank step size and should be integer.
Our approach to determining Δr is based on model order selec-
tion where experiment is repeated by progressively increasing
Δr from 1 to 5. For each experiment, we record the POD results
and the overall obtained result is shown in Fig. 9. It is clearly
seen from the figure the best POD result is obtained when
Δr = 2. The POD results decrease gradually with the setting
of Δr > 2.

Fig. 9. Impact of parameter setting on POD results.

C. Impact of Detectability of Contamination Level of
Material

The measurement set-up variation, relative humidity of the
room, contamination level of material are valuable for the prac-
tical application of IT. Among the above three impact factors,
the contamination level on the surface is the main factor to inter-
face the results. In order to validate the proposed method in
this situation, we have done the extra experiment. In the in-situ
application, the materials under test (MUT) always have oil,
coating, or an oxidation layer on the surface. This will change
the thermal emissivity significantly. The variation can be used
to detect the surface damage like rust or corrosion. However, the
variation sometimes introduces illusory temperature inhomo-
geneity and results in false alarms. We paint the sample surface
with black and shine strips which are equally spaced with 5 mm
width. The shinning strips are the polished area while the black
strips are the area sprayed with black paint. Both illustrate dif-
ferent level of emissivity. The emissivity of the black region
is 1, which is the same for a blackbody. On the other hand,
the emissivity of the shinning stainless steel surface is about
0.16. In this situation, once the test sample with the mixture of
areas with strong emissivity gradient over another (e.g., black
stains on the surface) and defect (e.g., slot which consists of
cool and hot spots areas), the task of separating different ther-
mal patterns becomes a very difficult challenge. Generally, the
temperature of hot spots is three times higher than the cool
area. However, the temperature of a black strip region can be
as high as ten times higher than at the cool area due to the high
emissivity. In this case, the hot spots around the slot tip cannot
be observed and this directly reduces the probability of detect-
ing the defects. Fig. 1(b) shows the temperature distribution at
the end of heating (0.1 s) of testing sample in Fig. 10(a). Due
to the high emissivity of the black area, there is no obvious
high temperature region around the slot tips. The high temper-
ature can only be observed at the black area above the coil. In
addition, Fig. 10(c) shows the temperature distribution at the
cooling phase (1.6 s). The high temperature still can only be
observed at the black strip area because of both high emissivity
and heat diffusion. The transient temperature behavior at differ-
ent positions is shown in Fig. 11. Pos 1 is at the crack side with
black strip (high emissivity), Pos 2 is at the black strip where
the area is far away from the excitation, Pos 3 is at the crack tip
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Fig. 10. (a) Painted steel sample with slot. (b) Infrared image at 0.1 s (the end of heating phase). (c) infrared image at 1.6 s (the cooling phase).

Fig. 11. Transient response of different positions.

with the shinning strip, Pos 4 is at the crack side with shinning
strip above the coil.

As can be seen in Fig. 11, different position behaves with dif-
ferent temperature transient characteristics. However, Pos 1 as
well as other similar black strip area (above the coil) exhibits
extreme high temperature transient in both heating and cooling
phase in which other thermal patterns have been over-shadowed
and therefore, they cannot be distinguished. This issue is diffi-
cult to tackle in defect detection using the ECPT method where
the hot spot around defect tips cannot be taken as an indicator
of defects especially for small cracks. Notwithstanding this, it
will lead to error when both black stain and cracks are present
on the surface of the test sample.

Thus, the proposed method as well as compared methods
will face a very challenging task to separate the hot spots.
The following are the extraction results obtained from the pro-
posed method, variational Bayesian sparse PCA, MCMC sparse
Bayesian sparse PCA, and general PCA.

Fig. 12 shows that by emphasizing the sparseness of solu-
tion, the edge of the hot spots on crack tips can be quantified
at the situation even under the influence of various emissiv-
ity levels. The proposed method has successfully extracted the
expected sparse locations that indicate the hot spots of the crack
tips. The variational Bayesian sparse PCA has also accurately
outlined the defect edge but it still mixes with the emissiv-
ity interface and misses the informative points of left edge.
The full Bayesian sparse PCA performs less satisfactorily and
still retains a mixture of a large part of ambiguity. Finally,

the general PCA has enabled the extraction of the hot spots
region but it has not fully reduced the emissivity interface. The
above resultsare also supported by the POD results as shown in
Table III. In terms of time consumption, the proposed method
is very fast and takes only 0.11 s to render the extraction. The
variational Bayesian sparse PCA also gives fast computation
and takes about 8.34 s while the MCMC sparse PCA as well
as the general PCA take a relatively longer time and requires
about 1043 and 18 s, respectively.

D. Industrial Application: Micro-Natural Crack Detection

To verify the proposed system, thermal fatigue cracks (a 4.2-
mm length crack) in steel blade are used for testing. A steel
blade sample provided by Alstom is also investigated in this
study (Figs. 13 and 14). In the blade, flaws are produced in-
situ with controlled thermal fatigue loading. The flaws grow
with natural thermal fatigue damage mechanism. In this study,
one natural crack: 167BBB1361 is detected. The crack loca-
tion is marked with red circles in Fig. 13. Crack 167BBB1361
is 4.2 mm length. A 200-ms heating duration is selected for
inspection.

Fig. 15 shows the general NDT method using Penetrant Test
(PT) image provided by Alstom and ECPT image at 0.1 s. In
the PT image, the area of cracks is marked with red circle. The
hot spots of crack can be visually identified, while the image
is blurred. This phenomenon indicates that there exist cracks in
the sample. However, the cracks are difficult to be quantified.
Fig. 16 shows the proposed results.

From Fig. 16, it is clearly shown that the proposed method
has not only accurately located the hot spots (crack tips) but also
precisely sized the cracks. By comparing with human detec-
tion, the proposed method is a fully automatic and unsupervised
defect detection method. The human detection seriously suf-
fers from the lack of subjective evaluation and requires the
manual selection of informative data for the defect detec-
tion. In addition, current defect characterization method in IT
imaging system requires highly trained personnel. Therefore,
automated defect characterization method is very desirable in
future Intelligent Manufacturing and Maintenance. Moreover,
the time cost is high since it requires manual detection. The
detection results may not be repeatable. Additionally, con-
sidering the accuracy, this can be divided into two parts for
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Fig. 12. Pattern extraction results. (a) Proposed method. (b) Variational Bayesian sparse PCA. (c) Bayesian sparse PCA based on MCMC.
(d) General PCA.

TABLE III
SSIM RESULTS OF DIFFERENT METHODS

Fig. 13. Steel blade with thermal fatigue natural crack.

Fig. 14. ECPT test platform.

comparison: standard defect sample and natural defect. The
human detection can render reasonably good accuracy in eval-
uating the defect based on regular sample. This is very sensible
since the defect itself is introduced by human and we have
the prior knowledge of the location and size of the defect.
For natural cracks, it is extremely difficult for human detection
because all the prior knowledge is unknown and the cracks are
significantly small. This is shown in Fig. 13 where the size of
the crack is only 1 mm wide. This is a very difficult task for
human to detect the natural crack.

Fig. 15. Thermal fatigue natural cracks detection: length: 4.2 mm (a) PT
image, (b) ECPT image at 0.1 s.

Fig. 16. (a) Thermal sparse pattern extraction results of natural crack.
(b) Zoomed-in result (red circle).
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The method ECPT is specific for conductive materials from
CFRP composites to metals, and multilayer components includ-
ing conductive parts. Its limitation is that it is invalid for
nonconductive materials. However, by means of changing the
inductive heater to lamp heater, ultrasound heater or laser
heater, the proposed data analytics method and its physical
interpretation are still valid for almost all thermal-conductive
material.

VI. CONCLUSION AND FUTURE WORK

In this paper, inductive phase thermal sparse pattern extrac-
tion has been proposed for NDT&E. Both ECPT system and
algorithm have been tested to validate the method. The physi-
cal interpretation of heat conduction phase of both Joule heating
and heat diffusion has been conducted and the phase of Joule
heating proved its efficiency for crack detection. The sparse pat-
tern extraction method allows and emphasize sparse abnormal
pattern such as hot spots around the crack tips to be extracted
automatically for flaw contrast enhancement. The proposed
method has been tested on both man-made and natural defects
from industry. Future work will focus on samples with com-
plex surface condition, e.g., roughness and emissivity variation.
Complexity defects detection, e.g., subsurface defect in metal-
lic material, impact damage, and delamination in carbon fiber
structures will also be investigated.
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