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Machine-Learning-Based Generative Optimization Method and
Its Application to an Antenna Decoupling Design

Hao Huang™, Xue-Song Yang~, and Bing-Zhong Wang

Abstract— A machine-learning-based generative optimization method
using masked autoencoders (MAE) is proposed and applied to multi-
objective antenna decoupling structure design. The machine learning
method contains k-means algorithm and MAE neural network struc-
ture. The k-means is used for label-free classification of decoupling
structure samples, and MAE is used for the intelligent optimization
design of decoupling structures. By applying the machine-learning-based
method, MAE optimization models for designing decoupling structures
are obtained. An antenna decoupling example using neutralization line is
selected to validate the effectiveness of the proposed optimization method.
Measurement results show that the neutralization line designed by the
proposed method improves the antenna isolation by at least 6 dB, that
is, 521 reaches below at least —18 dB between 3.5 and 9.7 GHz, while
requiring little manual intervention during the optimization progress.

Index Terms—k-means clustering, machine learning, neutralization
line, optimization method.

I. INTRODUCTION

With the continuous development of wireless communication tech-
nology, people put forward higher requirements for the channel
capacity and communication quality of wireless communication sys-
tems. Multiple-input-multiple-output (MIMO) technology provides
a solution to these requirements by placing multiple antennas at
transmitter and receiver, greatly increasing communication capacity.
However, the dense arrangement of multiple antennas in a limited
space can cause severe mutual coupling between elements and then
deteriorate the performance. Thus, reducing mutual coupling between
MIMO antenna elements is an important task in MIMO antenna
design [1].

Many solutions have been proposed to reduce the mutual cou-
pling [2], [3], [4], [5], [6], [71, [8], [9], [10], such as parasitic
elements [2], [3], decoupling networks [4], [5], defected ground
structures [6], [7], and so on [8], [9], [10]. Among these decoupling
methods, neutralization line is an effective method which requires less
space between antennas and achieves good performance [9], [10].

The traditional design method of neutralization line is based
on a prior design experience and trials to determine the general
shape of decoupling structure and then optimize its geometrical
parameters. In recent years, some intelligent optimization algorithms
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have gradually been used in the field of electromagnetic design [11],
[12], [13], [14], and the machine-learning-based methods are par-
ticularly noteworthy among them. With its wide application, many
researchers are studying machine-learning-assisted optimization and
design methods for electromagnetic problems, such as antenna or
filter design, inverse scattering problem solving, and so on [15],
[16], [17], [18], [19], [20], [21], [22]. For example, building neural
network antenna models to replace the simulation process [15], [16],
[17], [18], designing inverse models to predict the values of design
variables [19], and accelerating the solution of integral equation [20],
[21], [22]. However, these machine-learning-assisted methods have
major application limitations, such as the inability to change the
basic shape of the electromagnetic structure, the inability to output
design parameters outside the parameter range of the training sample
set, and so on. Besides, most of the neural network-based models
or methods only accomplish parametric electromagnetic modeling
or optimization, and do not take full advantage of the powerful
image-based mapping capabilities of the new neural networks.

In this communication, to further reduce the requirement of a priori
knowledge for electromagnetic design engineers, while fully utilizing
the generalization ability of the machine learning models, a novel
neural network structure called masked autoencoders (MAE) is used
to build the optimal model of an antenna decoupling structure. MAE
is a new type of autoencoder. Like autoencoder in general, MAE is
often used for computer vision tasks such as image reconstruction
and image recognition due to its feature extraction capability. The k-
means algorithm is used to classify the training samples of the MAE
model without labels. To build MAE multiobjective optimization
model, each objective is set as a classification feature of the k-means
algorithm.

By combining the k-means algorithm with an MAE model, the
optimization model of an antenna neutralization line is obtained.
Measurement result shows that the designed neutralization line for
ultra-wide band (UWB) antennas improves the antenna isolation by at
least 6 dB, that is, Sp1 basically reaches below at least —18 dB within
the operating frequency band, and the whole optimization process
needs little manual intervention of the designer.

The organization of this communication is as follows. The basic
methodological theory and modeling process are briefly presented in
Section II, the validation of the proposed method and its performance
are described in Section III, the measurement and comparison are
given in Section IV, and the conclusion is given in Section V.

II. MACHINE-LEARNING-BASED OPTIMIZATION METHODOLOGY
A. MAE Model

MAE is a new type of autoencoder model [23]. It contains two
subnetworks named encoder and decoder, respectively. Compared
with the general autoencoder, the input of MAE’s encoder network is
incomplete image information, while the input of the decoder network
is not only the output of the encoding network, but also the location

0018-926X © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Electronic Science and Tech of China. Downloaded on July 08,2023 at 10:49:23 UTC from IEEE Xplore. Restrictions apply.


https://orcid.org/0009-0005-5280-0784
https://orcid.org/0000-0003-4269-9414
https://orcid.org/0000-0003-0679-8925

6244
P A
[ | | ]
IR | B u
u u \ u
| [0 | =\ yZ | B\ |8
| | | LS LTS Y Decoder ]
[ [T | — N_| B/ N |
u s " .
| |
£ ™ .
o —®
9o \@" " hg
Fig. 1. Structure of MAE model.

token of the missing part of the image. The structure of MAE is
shown in Fig. 1.
For a mapping relationship

fo:x —>Xx (1)

the training of MAE model is divided into two parts
gg x>z 6)
hg:z+7 — & 3)

the encoder network learns the mapping relationship gy, it encodes
the incomplete high-dimensional input x into the low-dimensional
latent variable z (feature variable), which is a process of encoding
the data; the decoder network learns the mapping relationship 4g,
it decodes the combination of the latent variable z and masked
position token Z into the complete high-dimensional ¥, which is a
process of decoding the data. Due to this special mapping method,
autoencoder is often used for image restoration [24], noise cancella-
tion [25], and so on [26], [27].

In the process of image reconstruction, the role of encoder is to
extract the feature covariates of an image and put them into the
decoder. The role of decoder is to receive the output of the encoder,
intentionally masked it with noise, and then restore the masked parts
based on the received information. The MAE model initially masked
the original image randomly. But in this method, we manually select
the designed part of the decoupling structure as the masked area.

B. k-Means-Based Self-Supervised Classification of Samples

k-means algorithm is a basic unsupervised classification method,
which takes the feature parameters of the instance as input and the
category of that as output [28].

Given an unlabeled sample dataset D

D = {x1,x2,...,xn} 4)

where x; is the ith unlabeled sample, and each sample x;
{xi1,Xj2, ..., Xim} is an m-dimensional feature vector. The k-means
algorithm divides the sample set D into k disjoint clusters {C;|, [ =
1,2,...,k} based on the Euclidean distance, and each cluster con-
tains a variable number of samples. Therefore, the classification result
of the sample set D is denoted by the following equation:

P={C{,Cy,...,Cg} (®)]
where

CiﬂCszi, i#j (6)

CiuCyU---UCr=D. (@)

To build MAE multiobjective optimization model, several param-
eters of antennas are used as feature parameters in classification,
as shown in Fig. 2. Neutralization lines with similar decoupling
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Fig. 2. Sample unlabeled classification based on k-means algorithm (three
targets). A total of 3000 samples of two-element antennas with different
neutralization lines were collected, and S-parameters, radiation efficiency, and
realized gain of the antenna for optimized frequency points are used as feature
parameters in classification. (S1 € [—20 dB, —15 dB], radiation efficiency
€ [—1.5 dB, —0.5 dB], and realized gain € [2.5 dBi, 3.5 dBi].)
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Fig. 4.  Structures of the UWB antenna, its substrate is choose as a FR4

substrate with &, = 4.4, and loss tangent (tand) = 0.02 and thickness
1.6 mm.

performance are classified into the same class so that the designed
MAE learns their commonality to generate high-performance struc-
tures based on them.

C. Model Training Process

The model training process is divided into two stages: the pretrain-
ing stage and the fine-tuning stage. The training process of the model
is shown in Fig. 3.
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TABLE I
PARAMETERS OF UWB ANTENNA

Parameter R L1 Ly | Ly | Ly Wi Wa | Wy d
Value (mm) | 48 | 41 | 3.1 | 85 | 74 | 140 | 3.5 30 | 40

1000 1
000 b ; F
1000 10000 BB _ . Esadm i
Fig. 5. Generation of neutralization line samples. “1” and “0” represent the

presence and absence of metal in the corresponding position, respectively.

The pre-training stage focuses on training the entire model, includ-
ing the encoder and decoder. Pretraining allows the model to learn
the basic mappings. The completed pretrained model can be used
for tasks such as classification and reconstruction of samples in the
pretrained sample set. However, for an optimization model, on the
one hand, we want the model to output better instances than those in
the existing sample set. On the other hand, new samples generated
during the optimization process are complementary to the existing
models and should be fully utilized.

Therefore, the fine-tuning stage focuses on partially tuning the
model using the validation samples output by the model during the
optimization process that do not meet the design requirements. These
new samples are reclassified based on the k-nearest neighbor (k-NN)
algorithm, and then the sample dataset is further expanded.

In contrast to the pretraining stage, the fine-tuning only updates the
training parameters of the decoder and requires fewer samples and
iterations. As the optimization proceeds, the model is simultaneously
fine-tuned and its output performance improves.

III. NEUTRALIZATION LINE EXAMPLE

An example of neutralization line design for a two-unit UWB
MIMO antenna is used to validate the optimization effect of the
proposed method [29]. The geometric structure of the two-element
patch antenna with the neutralization line to be optimized is shown
in Fig. 4, and its corresponding parameters are listed in Table I.

All the pretrained sample data for the neutralization lines are
obtained by the CST software, and all calculations are completed
on a Microsoft Windows Server Datacenter workstation with 2x
3.10 GHz Intel Xeon Gold 6248R CPU, Tesla P100-PCIE-16GB
GPU, and 1024 GB RAM.

After trading off the number of samples against the required
computational resources and time, a total of 3000 pretrained samples
of neutralization lines with different middle shapes, line lengths,
and widths are obtained using the random generation method and
quadrature sampling, as shown in Fig. 5. To further reduce the
difficulty of sample generation, prior knowledge is involved. Since
the shape positions of the two elements have a high degree of
symmetry, the symmetry principle is also applied to the generation
of the neutralization line. Besides, based on practical considerations,
discrete pixel points are not included. All samples are classified into
50 categories using the k-means algorithm, numbered from 1 to 50,
and the larger the digit, the better the isolation performance of the
neutralization line within the corresponding category. The parameters
involved in the classification include Sy, S71, bandwidth, gain, and
several other optimization objectives.
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Fig. 6. Detailed MAE architecture.
TABLE II

TRAINING INFORMATION OF MAE NEURAL NETWORK

Number of epochs/ .
Time
samples
Sample generation 3000 3473 h
MAE Pre-train 3000 48.8 h
Training | Fine-tune 104 1.6 h + 13.8 h (Sim.)

The detailed MAE architecture is shown in Fig. 6, and the
activation function is set to GeLU. The training samples are input
into the MAE in the form of images, and the resolution is set to
224 x 224. Due to the complexity of MAE and the limited number
of samples, much more training samples than test samples are needed
to ensure the training effect and avoid falling into mode collapse.
Therefore, 2800 samples are randomly selected as training samples
and the remaining 200 samples are used as test samples during the
pretraining stage of MAE. The number of epochs is set to 3000. The
training information of MAE is listed in Table II.

In the fine-tuning stage, since each output gets only one new
sample, after the k-NN-based classification of the new sample, all
samples within its class and target class are reused for the fine-tuning
training. The number of epochs is set to no more than 200.

In each epoch of the fine-tuning, the class label output by the
encoder is replaced by the label corresponding to the decoupling
structures with the better isolation performance in the sample set, and
the corresponding structures are generated by the decoder. When mul-
tiple generated structures fail to improve the isolation performance,
it indicates that the current structure may have reached the limit of
the isolation performance. Therefore, for further optimization, the
initial structure is adjusted based on the best existing structure and
the masking design area is reselected.

To accomplish the optimization task more efficiently, the design of
the neutralization line follows the order of the connecting line and the
middle shape. The optimization flow and results of the neutralization
line design based on MAE are shown in Fig. 7. The final optimized
decoupling structure is simulated by CST. The results show that the
neutralization line generated and optimized based on the MAE model
has a good decoupling effect. The main function of the 3000 epochs
of the pretraining stage is to establish the basic mapping relationship
and further clarify the output, and the function of the epochs in the
fine-tuning stage is to further adjust the initial structure according to
the optimization objective.

IV. MEASUREMENT AND COMPARISON

The antenna is fabricated and measured, and its corresponding
results are shown in Figs. 8 and 9. The isolation performance of
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Fig. 7. Flow and results of the design and optimization of the neutralization line based on MAE. (a) Flowchart of the optimization method based on the

MAE model, (b) simulation results of neutralization line, and (c) changes of the middle part of neutralization line in the optimization.

TABLE III

COMPARISON INFORMATION WITH SIMILAR OPTIMIZATION ALGORITHMS

Ref Optimization Optimization Optimization Optimization Number of Determination of
eferences
method objects target time simulation samples initial stage
ultra-wide
30 UWB ant trial and
301 GA antenna band response Not Given Not Given nal an
error method
[31] Dual band patch antenna | dual band response
ber of pixels,
[32] Pixel antenna single S11 point Not Given 8000 fiumber ot pixels
GA general shape of antenna
ingle E field ds ixel value,
[33] Passive metallic reflectors -Smge. e. 25-30 h 4000 random prxe .va ue
intensity point number of pixels
. magnitude and phase optimized parameters,
[34] GA Transmitarray antenna 303.6 h 3645
of S11 and S21 random parameter value
length of genes,
[35] Multi-objective GA Reconfigurable antenna beam directions Not Given 1200 ghote n s
number of switches
[36] GA+CMA . modal significance Not Given 100-200 number of pixels
Pixel antenna =
[37] GA+SA S11, radiation pattern 1.7-3.7 h 90-100 trial, monte carlo method
Dielectrics around
[38] GP+ANN ! " gain pattern 53 h 1160 random pixel value
monopole antenna
Neutralization li f ds ixel value,
This work | MAE+K-means cutralization fne o S11, Sa1, gain 642 h 3104 random pixel vale
UWB antenna number of pixels

neutralization line designed by MAE reaches below at least —18 dB.
The designed neutralization line improves the isolation by at least
6 dB within the whole operating frequency band compared to the
antenna without the neutralization line. The simulation results of Sj
reach below —15 dB between 4.7 and 9.0 GHz, but the practical
measurement results have some deterioration (below —10 dB). The
measurement results of Sp; reach below —20 dB, better than the
simulation results (—18 dB). The measurement results are basically
consistent with the simulation results.

Compared with the initial structure from reference [29], the pro-
posed method not only optimizes the outer shape, but also generates
holes inside the shape to get better isolation performance, so it has
higher freedom of optimization. During the fine-tuning stage, new
samples with better performance are continuously added, and the
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sample set is in an expanding state, so the model will be more likely
to output good neutralization line design.

The proposed optimization method is also compared with some
GA-based methods in literature, as listed in Table III.

Compared to the GA-based parametric optimization methods [32],
[33], [34], the proposed method has higher freedom of optimization,
which can do better local optimization search. The MAE model runs
on a pixel-by-pixel basis so it may require more processing time than
parametric optimization methods using GA. Compared with the pixel
optimization using GA [29], [30], [31], [35], [36], the proposed model
has the same flexibility by generating the sample in pixel form. But
in the proposed method, prior knowledge can be more easily involved
in sample generation, which requires less samples and computational
resources. The proposed model is more dependent on the provided
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training samples, and it does not optimize the defined target directly,

so it may be more likely to fall into a local optimum than the existing
GA-based methods.
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V. CONCLUSION

In this communication, a machine-learning-based optimization
method has been proposed to intelligently design neutralization lines.
The obtained MAE optimization model can design the masked parts
based on the initial structure according to the optimization objectives.
An example of neutralization line for UWB antenna is used to validate
the effectiveness of the method. About 3000 samples of neutralization
lines have been used for the pretraining of MAE. By setting the initial
structure of the neutralization lines, the optimization model outputs
the required neutralization lines derived from the initial structure and
requires little manual intervention of the designer. The measurement
results show that the neutralization lines designed by the MAE-based
method have good isolation performance within a wide range of
frequency bands.

Compared to the parametric optimization models, MAE opti-
mization models can optimize the basic topology of the structure.
Compared to the pixel optimization models, it requires less simulation
samples. The proposed method can be widely used to passive planar
devices, such as metasurfaces, filters, power dividers, and so on.
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