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Joint Estimation of Azimuth and Elevation via
Manifold Separation for Arbitrary Array Structures
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Abstract—Direction-of-arrival estimation is a ubiquitous task in
array processing. The conventional MUltiple SIgnal Classification
(MUSIC) method is often computationally expensive, particularly
in the application of joint azimuth and elevation estimation. In this
paper, we propose an efficient way to compute the two-dimentional
(2D) spatial spectrum. By using the manifold separation technique,
we find that the 2-D null-spectrum has the form of discrete Fourier
transform (DFT). Moreover, the coefficients of the DFT form can
be truncated and computed in parallel. Then by exploiting the fact
that the nonzero coefficients are concentrated only at the top-left
corner, we present a partial 2-D DFT to compute the 2-D spa-
tial spectrum, which can reduce the latency significantly. In order
to improve the estimation performance, we formulate an iterative
multidimensional-subspace-fitting estimator in which we apply the
first-order Taylor expansion to expand the projection operator. At
each iteration, the estimation errors can be computed by solving a
set of linear equations. Numerical results demonstrate that the pro-
posed estimator offers better estimation performance compared
with the classical 2-D MUSIC.

Index Terms—2D direction-of-arrival (DOA) estimation, arbi-
trary arrays, azimuth and elevation, partial 2D DFT, multidimen-
sional subspace fitting, manifold separation technique (MST).

I. INTRODUCTION

D IRECTION-OF-ARRIVAL (DOA) estimation is a ubiqui-
tous task concerned in array processing in which a phased

array is used to find the direction of a target by analyzing the
phase difference among the array antennas without mechanical
movement. This technique is attractive for the applications of
automotive radars [1], vehicular position tracking and vehicle-
to-vehicle radio channel characterization [2]. In [3], it is pointed
out that the terahertz (THz) band may be envisioned as the next
frontier for vehicular networks. Due to the THz propagation,
a primarily line-of-sight (LOS) channel environment is highly
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likely and therefore the wireless channel can be modeled with
the knowledge of DOA estimations. The DOA estimation prob-
lem that we will deal with in this paper can be briefly stated as
follows: estimate the azimuth and elevation angles using arbi-
trary array configurations.

Let us consider an array of L antennas with arbitrary geometry
operating in the presence of K narrowband signals. The signal
vector received at the time instant t can be expressed as

x(t) = Am(t) + n(t) ∈ CL (1)

where n(t) represents the additive white Gaussian noise. The
matrix A collects the steering vectors of the K signals, i.e.,

A = [a(θ1, φ1), . . . ,a(θK , φK )] ∈ CL×K (2)

where θ ∈ [0, 2π) and φ ∈ [0, π] denote the azimuth and eleva-
tion angles respectively. The vector m(t) has elements the K
complex narrowband signal envelopes.

The theoretical covariance matrix of the received vector x(t)
can be expressed as

R = ARsAH + σ2
nIL ∈ CL×L (3)

where Rs = E{m(t)mH (t)} is the signal covariance matrix,
σ2

n is the noise power, and IL denotes an L-by-L identity ma-
trix. The notation E{·} represents the expectation. In practical
applications, the covariance matrix can be estimated as follows

̂R =
1
T

T
∑

t=1

x(t)xH (t) (4)

where (·)H denotes the conjugate transpose operation and T is
the snapshot number. Then we perform eigenvalue decomposi-
tion on ̂R to produce

̂R = ̂Es
̂Λs

̂EH
s + ̂En

̂Λn
̂EH

n (5)

where ̂Es ∈ CL×K is the eigenvectors associated with the largest
K eigenvalues and ̂En ∈ CL×(L−K ) represents the eigenvectors
corresponding to the remaining small eigenvalues. Commonly
̂Es and ̂En are referred to as the signal-subspace eigenvec-
tors and noise-subspace eigenvectors. The diagonal matrices
̂Λs = diag[̂λ1, . . . ,̂λK ] and ̂Λn = diag[̂λK +1, . . . ,̂λL ] have di-
agonal elements associated with the signal and noise eigenvalues
respectively, where the eigenvalues are arranged in decreasing
order.

By exploiting the orthogonality between the signal and noise
subspace, the well-known MUltiple SIgnal Classification (MU-
SIC) method [4] searches the continuous array manifold vector
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over the area of θ and φ to find the K minima of the following
null-spectrum cost function

(̂θ, ̂φ) = arg min
θ,φ

{a(θ, φ)H
̂En

̂EH
n a(θ, φ)}. (6)

However, such spectral search process may be unaffordable for
some real-time implementations, which can be explained by
the following fact. To obtain each search point, the Frobenius
norm ‖̂EH

n a(θ, φ)‖2 (or ‖̂EH
s a(θ, φ)‖2) has to be computed.

This drawback becomes particularly apparent in joint estimation
of azimuth and elevation since we have to search over two
dimensions.

In order to reduce the computational load of MUSIC methods,
a variety of search-free methods have been studied. An excellent
review and comparison of these existing techniques are provided
in [5], [6]. The manifold separation technique (MST) is utilized
to extend the conventional root-MUSIC to arbitrary arrays in
[7]–[10]. Nevertheless, only azimuth estimation is considered in
the above works. In [11], joint azimuth and elevation estimation
for arbitrary arrays is concerned, in which the MST model is
used to convert the 2D DOA estimation to a problem of bivariate
polynomial rooting. However, if the array aperture becomes
large, the order of the bivariate polynomial must be quite large
which leads to unacceptable computational complexity for the
rooting procedure.

In this paper we build on our previous works of [12], [13]
to propose a computationally attractive 2D DOA estimator for
arbitrary arrays. First, we convert the 2D-MUSIC cost function
into standard two-dimensional discrete Fourier transform (DFT)
form by using the MST. In doing so, the 2D spatial spectrum can
be efficiently computed by using the 2D fast Fourier transform
(FFT) algorithms. For the sake of real-time implementation,
we present a highly parallel FFT-based algorithm to compute
the 2D spatial spectrum. Such method not only alleviates the
computation burden of root-MUSIC or MUSIC; it is also easy
for hardware implementation. Moreover, in order to improve
the estimation performance, we propose a multidimensional-
subspace-fitting method by using the first-order Taylor expan-
sion.

The rest of this paper is organized as follows. In Section II,
the model for 2D wavefield MST is recalled. We present our
FFT-based algorithm for computing the 2D spatial spectrum in
Section III, which consists of two main stages. Then, by using
the first-order Taylor expansion, a multidimensional-subspace-
fitting approach is formulated to improve the estimation per-
formance in Section IV. The simulation results are shown and
analyzed in Section V. Finally, the paper is concluded in Section
VI.

II. 2D WAVEFIELD MANIFOLD SEPARATION TECHNIQUE

By using the Fourier series expansion, the periodic array
steering vector can be decomposed as

a(θ, φ) = Gv(θ, φ) + ε ∈ CL×1 (7)

where ε denotes the modeling error. This is the so-called
manifold separation technique [7], [9], [14]. The vector
v(θ, φ) is the spatial Fourier basis consisting of the following

Vandermonde-structured vectors

v(θ, φ) = v(θ) ⊗ v(φ) ∈ CM 2×1 (8)

where

v(θ) =
[

z
M −1

2
θ , . . . , 1, · · · , z

−M −1
2

θ

]T

∈ CM ×1,

v(φ) =
[

z
M −1

2
φ , . . . , 1, . . . , z

−M −1
2

φ

]T

∈ CM ×1 (9)

with zθ = ejθ , zφ = ejφ and ⊗ representing the Kronecker
product. We can see that the vector v(θ, φ) depends only on
the wavefield. The model error ε can be safely neglected when
the mode number M is large enough. Note that different mode
numbers can be chosen for v(θ) and v(φ). Without loss of
generality, we choose the same mode number for both azimuth
and elevation vectors in this paper. Additionally, the matrix
G ∈ CL×M 2

is called the sampling matrix which depends only
on the sensor array configuration and its properties. It is clear
that the essence of the MST model in (7) is using a number of
2D Fourier series to approximate the array response.

We can acquire the sampling matrix through measurements
from a number of different location of angles. Typically, these
calibration measurements are obtained in controlled environ-
ments such as anechoic chambers. The antenna array is mounted
on a mechanical platform and then we rotate it about its centroid,
while a known active source is held fixed. This process creates
a discrete set of measured points. Let A�(θc , φc) ∈ CQe ×Qa de-
note the calibration measurement matrix for the �-th antenna
where Qa and Qe , respectively, represent the numbers of cali-
bration points along θ ∈ [0, 2π] and φ ∈ [0, π]. In order to make
the measurement data periodic in elevation with period 2π, we
construct a matrix Ar

� (θc , φc) ∈ C(Qe −2)×Qa from the measured
A�(θc , φc) by a shift of 180◦ in azimuth and a flip in elevation
followed by discarding the first and last row to avoid the redun-
dancy at the poles (i.e., 0◦ and 180◦ elevations) [11]. We can
combine these two matrices into a matrix

A′
� =

[A�(θc , φc)

Ar
� (θc , φc)

]

∈ C(2Qe −2)×Qa . (10)

The sampling matrix G� ∈ C(2Qe −2)×Qa for the �-th sensor cor-
responds to the 2D inverse discrete Fourier transform of A′

� .
Then stacking all the rows {vec{G�}T }L

�=1 (where vec{·} de-
notes the vectorization operator) and keeping the middle M 2

columns, we can obtain the sampling matrix

G =

⎡

⎢

⎣

vec{G1}T

...
vec{GL}T

⎤

⎥

⎦ ∈ CL×M 2
. (11)

For more details, see [11], [14], [15]. In this paper, we assume
that the sampling matrix has been obtained off-line prior to DOA
estimations and we place focus on the DOA estimations.

The aim of MST is twofold. First, we can exploit the Van-
dermonde structure in (7) to apply computationally efficient
DOA estimators to arbitrary arrays. Second, the sampling matrix
can accommodate the array nonidealities, e.g., mutual coupling,
physical location misplacement of array elements and mounting
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platform reflections, implying that the model in (7) is suitable
for real-world arrays.

III. FFT-BASED 2D MUSIC

This section provides an FFT-based method to compute the
2D spatial spectrum with arbitrary array configurations. Insert-
ing the MST expansion model of (7) into the MUSIC cost func-
tion in (6), the spatial spectrum becomes

p(θ, φ) = v(θ, φ)H
(

GH
̂En

̂EH
n G

)

v(θ, φ)

= p(θ)T Cp(φ)

=
M −1
∑

k1=−(M −1)

M −1
∑

k2=−(M −1)

[C]M +k1,M +k2z
−k1
θ z−k2

φ

(12)

where p(θ)=[zM −1
θ , . . . , 0, . . . , z

−(M −1)
θ ]T and p(φ)=[zM −1

φ ,

. . . , 0, . . . , z
−(M −1)
φ ]T are Vandermonde structured vectors. The

notation [·]m,n stands for the (m,n)-th element of the matrix
between square brackets. The matrix C ∈ C(2M −1)×(2M −1) is
called the coefficient matrix. Apparently, the expression in (12)
is of typical 2D DFT form and therefore we can apply the well-
known 2D FFT algorithm to calculate the 2D spatial spectrum
efficiently. Next, we will show how to efficiently compute the
the coefficient matrix and the 2D spatial spectrum.

A. Coefficient Matrix Computation

The coefficient matrix C can be found by the following two
steps [11]. First, we express the matrix B � GH

̂En
̂EH

n G in
block form as

B =

⎡

⎢

⎢

⎢

⎣

B1,1 B1,2 . . . B1,M

B2,1 B2,2 . . . B2,M

...
...

. . .
...

BM,1 BM,2 . . . BM,M

⎤

⎥

⎥

⎥

⎦

(13)

where each sub-block matrix is an M -by-M matrix. Then com-
puting the sum of the block elements along all 2M − 1 diagonals
produces

D =
[

D1 D2 . . . D2M −1
]

(14)

with

Di =
∑

∀M −(m−n)=i

Bm,n . (15)

Secondly, for the (i, q)-th element of C, we compute the sum
of the elements along the q-th diagonal of Di to produce

[C]i,q =
∑

∀M −(m−n)=q

[Di ]m,n (16)

where 1 ≤ i, q ≤ 2M − 1.
Alternatively, here we present a faster one-step operation to

compute the coefficients. The sample matrix can be rewritten in
block form as

G =
[

G1,G2, . . .GM

]

(17)

where the size of each sub-block matrix is L-by-M . Taking the
summations along the i-th diagonal of GH

̂En
̂EH

n G, we obtain

Di =
∑

∀M −(m−n)=i

GH
m
̂En

̂EH
n Gn

=
L
∑

k=K +1

∑

∀M −(m−n)=i

GH
mekeH

k Gn

=
L
∑

k=K +1

∑

∀M −(m−n)=i

(GH
mek )(GH

n ek )H (18)

where the noise eigenvectors ̂En = [eK +1, . . . , eL ].
Inspired from [16], the sum of the entries of the q-th diag-

onal of any outer product xyH (where x,y ∈ CL×1) can be
accomplished by

∑

∀L−(m−n)=q

[xyH ]m,n = yH JL,qx (19)

where the shift matrix JL,q ∈ RL×L is defined as

JL,q =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

[

O Iq

O O

]

, if 1 ≤ q ≤ L

[

O O
I2L−q O

]

, if L + 1 < q ≤ 2L − 1

(20)

with the notation O denoting the zero matrix of appropriate
size. As a consequence of this property, the sum of the elements
along the q-th diagonal of Di can be obtained by

[C]i,q =
∑

∀M −(m−n)=q

[Di ]m,n

=
L
∑

k=K +1

∑

∀M −(m−n)=i

eH
k GnJM,qGH

mek

=
L
∑

k=K +1

eH
k
˜Gi,qek

= Tr
{

˜Gi,qΠn

}

(21)

where Πn = ̂En
̂EH

n =IL − ̂Es
̂EH

s denotes the noise-subspace
projector, Tr{·} denotes the trace of the matrix between braces
and the L × L matrix

˜Gi,q �
∑

∀M −(m−n)=i

GnJM,qGH
m (22)

is independent of any signal and therefore can be formed off-
line. Here we assume that K < L − K and therefore we use the
signal eigenvectors instead of the noise eigenvectors to reduce
the computational complexity.

In practice, the magnitude of the matrix C is concentrated
within a small support area centered at [C]M,M . Therefore, in-
stead of the full coefficient matrix, a truncated version is used for
further processing. More specifically, only the 2Mt + 1 middle
rows and middle columns of C are needed (where Mt < M ),
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which is defined by MATLAB notation as

Ct = C(M − Mt : M + Mt,M − Mt : M + Mt). (23)

It is difficult to find an analytical expression for Mt , but a
convenient rule of thumb Mt ≈ 2κR has been suggested in [17],
where κ is the signal wavenumber and R is the largest distance
between the array sensors and the origin of the coordination
system. We can see that such value marginally meets the Nyquist
criterion. In practical application, oversampling is often used to
increase the resolution of spatial estimation. In our simulation,
we find that

Mt ≈ 2.5κR (24)

is enough. Moreover, we have the following symmetry proper-
ties

[C]M −k1,M −k2 = ([C]M +k1,M +k2)
∗

[C]M +k1,M −k2
= (−1)k1 [C]M +k1,M +k2

[C]M −k1,M +k2
= (−1)k1 ([C]M +k1,M +k2)

∗ (25)

where (·)∗ denotes the complex conjugate. The proof of the
above can be found in Appendix A. This property suggests
that computing a quarter coefficients (i.e., [C]M +k1,M +k2 for
0 ≤ k1, k2 ≤ Mt) is sufficient to find the coefficients of interest.

B. Partial 2D DFT

Typically, 2D DFTs are implemented in a row-column (RC)
decomposition manner. For instance, the column-wise 1D DFTs
are executed for all columns and then followed by the row-wise
1D DFTs for all rows. However, such traditional manner may
cause high latency for our case. This is because the DFT point
number, denoted by N , is required to be relatively large for the
purpose of reducing grid error. Next, we will introduce a partial
2D DFT algorithm which is highly parallel and requires a small
number of memory accesses. Different than the partial DFT
presented in [18], [19] (where irregularly-structured zoom-FFT
is used), our proposed method is regular and scalable.

Let us pad the (2Mt + 1) × (2Mt + 1) coefficient matrix
Ct with zeros to create a r × r matrix Cr where the number
r, no less than (2Mt + 1), takes the value of a power of 2.
This means r = 2�log2(2Mt +1)� where �·� represents the ceiling
function. Then we construct an N × N coefficient matrix CN

CN =

⎡

⎢

⎢

⎢

⎣

Cr 0 · · · 0
0 0 · · · 0
...

...
. . . 0

0 0 · · · 0

⎤

⎥

⎥

⎥

⎦

N ×N

(26)

where only the top-left corner contains non-zero elements. Fol-
lowing the work of [20], the 2D DFT in (12) can be represented
in matrix form as follows:

CDFT = FN CN FT
N (27)

where (·)T denotes the transpose operation and FN stands for
the N × N Fourier transform matrix whose (m,n)-th entry is
[FN ]m,n = ωmn

N with ωN = e−j 2π
N . Moreover, we can factorize

the Fourier transform matrix into a product of sparse matrices
as follows [21]

FN = (Fr ⊗ Ip)TN,p (Ir ⊗ Fp)PN,r (28)

where p = N/r. The matrix TN,p is an N × N diagonal matrix
of twiddle factors whose (n, n)-th entry is given by

[TN,p ]n,n = ω
((n−1 mod p) n −1

p �)
N (29)

where mod denotes the modulus operation and ·� represents
the floor function. The matrix PN,r is the stride-by-r permuta-
tion matrix whose (m,n)-th entry is given by

[PN,r ]m,n =
{

1, iff n − 1 = (m − 1)r mod N +  (m−1)r
N �

0, otherwise.
(30)

Note that multiplying by the stride permutation matrix does not
cause any computation complexity since only the column or row
order is rearranged.

Now inserting (28) into (27), we obtain (35). By exploiting
the fact that only r × r elements at the top-left corner of CN are
non-zero, the matrix C1 defined in (35) can be obtained without
any multiplication or addition operations. More specifically, we
simply duplicate the elements of Cr to obtain C1 as follows

C1 =

⎡

⎢

⎢

⎢

⎣

c1,11p×p c1,21p×p · · · c1,r1p×p

c2,11p×p c2,21p×p · · · c2,r1p×p

...
...

. . . 0
cr,11p×p cr,21p×p · · · cr,r1p×p

⎤

⎥

⎥

⎥

⎦

N ×N

(31)

where cm,n = [Cr ]m,n and 1p×p is a p × p matrix of ones. In
addition, we have

C2 � TN,pC1TT
N ,p

= C1 � ˜TN,p (32)

where � is the Schur-Hadamard product and the (m,n)-th entry
of ˜TN,p is given by

[˜TN,p ]m,n = [TN,p ]m,m [TN,p ]n,n . (33)

Note that the matrix ˜TN,p is no longer diagonal and it can be
found in a “once-and-for-all” fashion. Thus the 2D DFT in (35)
becomes

CDFT = (Fr ⊗ Ip)C2 (Fr ⊗ Ip)

= PN,r (Ip ⊗ Fr )PN,pC2PN,r
︸ ︷︷ ︸

�C3

(Ip ⊗ Fr )

︸ ︷︷ ︸

�C4

PN,p (34)

where the property Fr ⊗ Ip = PN,r (Ip ⊗ Fr )PN,p is uti-
lized in the above. To obtain the matrix C4 � (Ip ⊗ Fr )C3

(Ip ⊗ Fr ), we first divide the matrix C3 into p × p subblocks
each of which is a r × r matrix. Then we perform r-point 2D
DFT for each subblock. It is worth pointing out that such 2D
DFTs on all subblocks can be executed in parallel. Lastly, we
permute the matrix C4 to produce the final 2D spatial spectrum.
(35) shown at the bottom of the next page.
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Algorithm 1: FFT-based 2D MUSIC.
•Off-line process:

1) For the calibration purpose, measure the array response
at a number of locations and calculate the sampling
matrix G;

2) Compute (Mt + 1)2 matrices ˜Gi,q defined in (22) for all
i, q ∈ [M,M + Mt ];

3) Compute the matrix ˜TN,p in (33);
•Online process:

1) Estimate the covariance matrix ̂R via (4) and perform
eigen-decomposition to obtain the signal eigenvector
matrix ̂Es ;

2) Compute a quarter coefficients of the truncated matrix
Ct by (21) in parallel;

3) Apply partial 2D DFT operation:
a) Pad Ct with zeros to create Cr if needed and then

duplicate Cr to create C1 as (31);
b) Compute the matrix C2 by (32) and then permute

it to produce C3;
c) Perform r-point 2D FFT on p × p sub-blocks of

C3 simultaneously to yield C4 and then permute
C4 to obtain the final 2D spatial spectrum.

C. Summary of FFT-Based 2D MUSIC

In summary, we propose Algorithm 1 to compute the 2D
spatial spectrum. Note that the off-line process needs to be done
only once for a given antenna array.

Here we analyze the computational complexity of
Algorithm 1. Note that we mainly consider the multiplica-
tion operations which results in major computation in the es-
timators. The complexity to find the K-dimension ̂Es , using
the fast subspace decompositon technique [22], is given by
O(KL2). For each element of the matrix Ct , O(L2) com-
plex multiplications are needed [see (21)]. Thus the complexity
to compute the truncated matrix Ct is O(M 2

t L2). For Step
3.b, the complexity is O(N 2). In addition, the complexity
of Step 3.c is O(p × p × (r2 log r)) = O(N 2 log r) in which
each r-point FFT requires O( r

2 log r) complex multiplications.
Therefore, the overall complexity of the proposed algorithm is
O(KL2 + M 2

t L2 + N 2 + N 2 log r). In comparison, the com-
plexity of MUSIC is O(KL2 + NaNeKL) [5], [23] where Na

and Ne represent the numbers of searched spectral points along
the azimuth and elevation respectively. In order to achieve high
spectral resolution (or reduce grid error), we have to choose a
large number for the searched spectral points [23]. As a result,
computing spectral points dominates the complexity of MUSIC
methods.

In Table I, we compare the traditional 2D MUSIC with Algo-
rithm 1 in terms of the computational complexity. Note that the
common term O(KL2) (required by the eigen-decomposition)
is not considered here. The parameter Mt ≈ 2.5κR is used for
the truncated coefficient matrix. The array aperture is assumed
to be (L − 1) half-wavelengths, and thus the array radius is
R = (L − 1)/4 in units of wavelengths. The signal number
K = 3 is taken. The search point numbers are N = Na = 4096
and Ne = 2048 (since we care the elevation φ ∈ [0, π] only).
The comparison is also illustrated in Fig. 1. We can see that
the impact on the term O(N 2 + N 2 log r) due to the antenna
increase is quite moderate. Despite of the fact that the term
O(M 2

t L2) increases quadratically with the antenna number L
and becomes significant when L is over 30, the overall com-
plexity of our method is much less than that of the traditional
MUSIC. It is worthwhile to point out that the complexity of
our method is almost unaffected by the signal number whereas
that of the traditional MUSIC increases linearly with the signal
number.

Before closing this section, we would like to point out the
main advantages of our proposed algorithm: 1) the complexity
to compute the search points appears almost unaffected by the
signal number; 2) our algorithm is highly parallel and therefore
we can reduce further the complexities of Step 2 and 3.c of
the online process to as little as O(L2) and O(r2 log r) using
multiple simple processors; 3) our method can be implemented
on embedded systems where resources and memory are limited
because the sizes of matrix operations (including the coefficient
computation and partial 2D DFT) are relatively small.

IV. MULTIDIMENSIONAL SUBSPACE FITTING USING THE

FIRST-ORDER TAYLOR EXPANSION

A. Initial Angle Estimates

By searching the K minima of the 2D MUSIC spectrum,
we can obtain an initial estimate of the azimuth and elevation
angles. When the signals are closely spaced, however, the MU-
SIC methods may fail to distinguish them. Assume that K0

estimates are found by searching the MUSIC spatial spectrum
where K0 ≤ K. In order to find the remaining DOAs, we em-
ploy the iterative method presented in [24]. At each iteration,
we find the angular estimates of a single source by maximizing

(̂θk+1, ̂φk+1) = arg max
θ,φ

Tr
{

Π[Ak , a(θ,φ)]
̂R
}

(36)

where Ak represents the available signal steering vectors before
iteration. The notation ΠA stands for the projection operator
onto the subspace spanned by A, which can be given by

ΠA = AA† (37)

CDFT = (Fr ⊗ Ip)TN,p (Ir ⊗ Fp)PN,rCN PT
N ,r (Ir ⊗ Fp)

︸ ︷︷ ︸

�C1

TT
N ,p

︸ ︷︷ ︸

�C2

(Fr ⊗ Ip) (35)
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TABLE I
COMPARISONS OF COMPUTATIONAL COMPLEXITY

Antenna Number L = 10 L = 20 L = 30 L = 40 L = 50

Traditional MUSIC 2.5 × 108 5.0 × 108 7.5 × 108 1.0 × 109 1.3 × 109

Proposed O(M 2
t L2) 1.3 × 105 2.3 × 106 1.2 × 107 3.8 × 107 9.3 × 107

O(N 2 + N 2 log r) 1.3 × 108 1.5 × 108 1.5 × 108 1.6 × 108 1.7 × 108

Total 1.3 × 108 1.5 × 108 1.6 × 108 2.0 × 108 2.6 × 108

Fig. 1. Comparison of computational complexities where the proposed Algo-
rithm 1 includes two terms: O(M 2

t L2) and O(N 2 + N 2 log r).

where the notation A† = (AH A)−1AH denotes the Moore-
Penrose pseudo-inverse. In addition, the projection matrix to
the orthogonal complement of A is given by

Π⊥
A = IL − ΠA . (38)

The projection matrix Π[Ak , a(θ,φ)] can be decomposed as [24]

Π[Ak , a(θ,φ)] = ΠAk
+ Π(

Π⊥
A k

a(θ,φ)
) . (39)

Applying the above to (36), we have

(̂θk+1, ̂φk+1) = arg max
θ,φ

aH (θ, φ)Π⊥
Ak

̂RΠ⊥
Ak

a(θ, φ)
aH (θ, φ)Π⊥

Ak
a(θ, φ)

. (40)

Obviously, we can conduct the previously proposed FFT-based
algorithm twice to compute the numerator and denominator of
(40) for different azimuths and elevations.

B. Multidimensional Subspace Fitting

For notational simplicity, we use Πη to represent ΠA(η)
where η = [θ1, . . . , θK , φ1, . . . , φK ]T and

A(η) = G[v(θ1) ⊗ v(φ1), . . .v(θK ) ⊗ v(φK )]. (41)

Now let us consider the following multidimensional subspace
fitting problem

min
η

f � min
η

Tr
{

Π⊥
ηΨ

}

(42)

where Ψ = ̂R gives the maximum likelihood estimator (MLE)
[24] and Ψ = ̂Es(Λs − σ2

nIK )2
̂Λ−1

s
̂EH

s gives the weighted
subspace fitting algorithm [26], [27]. In [11], [27], a Modi-
fied Variable Projection (MVP) method has been presented to
solve (42) by iterating

η(i+1) = η(i) − μi(�2f)−1�f (43)

where μi < 1 ∈ R represents the stepsize, �2f ∈ R2K×2K and
�f ∈ R2K×1, respectively, stand for the Hessian matrix and gra-
dient of the cost function evaluated in η(i) . However, it is diffi-
cult to always properly choose the stepsize for such Newton-type
iteration. Moveover, in each iteration, both the Hessian matrix
and gradient have to be updated which increases the computa-
tional complexity. Next, we present a more convenient method
in which the problems of choosing stepsize and computing the
Hessian matrix are both circumvented.

Applying the first-order Taylor expansion to the projection
operator can result in [25]

Π(η0+Δη) ≈ Πη0
+

2K
∑

k=1

Δηk
∂Πη

∂ηk

∣

∣

∣

∣

η0

(44)

where the partial derivatives of the projector are provided in
Appendix B. If we insert the Taylor expansion of (44) into (42)
straightforwardly, we cannot find the solution for the vector Δη.
The trick in this paper is that we use the idempotent property of
projection operator to transform (42) equivalently to

min
η

f = min
η

Tr
{

(

Π⊥
η

)2
Ψ
}

. (45)

Then differentiating the above objective function with respect
to the i-th (i = 1, 2, . . . , 2K) element of Δη, we have

∂f

∂Δηi
= Tr

{

(

Π⊥
ηΨ + ΨΠ⊥

η

) ∂Π⊥
η

∂Δηi

}

= −Tr

{

(2Ψ − ΠηΨ − ΨΠη)
∂Πη

∂Δηi

}

(46)
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Algorithm 2: Proposed Multidimensional-Subspace-Fitting
Estimator.
1) Employ Algorithm 1 and search the 2D spatial spectrum

to obtain an initial estimate η0 = [̂θ1, . . . , ̂θK 0 ,
̂φ1, . . . ,

̂φK 0 ]
T ,

2) Compute the error vector Δη using (52) where H and r
are defined in (50) and (51),

3) Update η0 = η0 + Δη,
4) If K0 < K , for k = K0 to K − 1, do the follows

a) Form Ak by all the available signal steering vectors and
compute the orthogonal projector Π⊥

Ak
,

b) Compute the numerator and denominator of (40) using
the FFT-based method described in Section III,

c) Compute the fractions and search (̂θk+1, ̂φk+1)
corresponding to the maximal fraction.

d) Add (̂θk+1, ̂φk+1) to the vector η0 and set K0 = K0 + 1.
5) Repeat Step 2, 3 and 4 a few times.

where
∂Π⊥

η

∂Δηi
= − ∂Πη

∂Δηi
is used in the above. Setting (46) to

zero, we obtain

Tr

{

(ΠηΨ + ΨΠη)
∂Πη

∂Δηi

}

= Tr

{

2Ψ
∂Πη

∂Δηi

}

. (47)

Then replacing Πη with (44) and after some algebraic manipu-
lations, we get

2K
∑

k=1

Tr

{(

Ψ
∂Πη

∂Δηk

∣

∣

∣

∣

η0

+
∂Πη

∂Δηk

∣

∣

∣

∣

η0

Ψ

)

∂Πη

∂Δηi

∣

∣

∣

∣

η0

}

Δηk

= Tr

{

(

2Ψ − Πη0
Ψ − ΨΠη0

) ∂Πη

∂Δηi

∣

∣

∣

∣

η0

}

. (48)

Moreover, the equations [ ∂f
∂Δη1

, . . . , ∂f
∂Δη2K

]T = 0T can be writ-
ten more compactly as

HΔη = r (49)

where

[H]i,k = Tr

{(

Ψ
∂Πη

∂Δηk

∣

∣

∣

∣

η0

+
∂Πη

∂Δηk

∣

∣

∣

∣

η0

Ψ

)

∂Πη

∂Δηi

∣

∣

∣

∣

η0

}

(50)
and

[r]i = Tr

{

(

2Ψ − Πη0
Ψ − ΨΠη0

) ∂Πη

∂Δηi

∣

∣

∣

∣

η0

}

(51)

with i, k = 1, 2, . . . , 2K. Now the error vector can be readily
computed by

Δη = H−1r. (52)

If the matrix H is singular or ill-conditioned, we can replace its
inverse by pseudo-inverse.

In sum, we present the multidimensional-subspace-fitting
method in Algorithm 2. Interestingly, the idea of using the Tay-
lor expansion of the projection operator is used in [25] as well.

Fig. 2. Array geometry.

Fig. 3. DOA estimation RMSEs versus input SNR; uncorrelated signals; first
example: a) azimuth, b) elevation.
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Fig. 4. DOA estimation RMSEs versus input SNR; correlated signals; first
example: a) azimuth, b) elevation.

In comparison, the implementation of our method is more con-
venient. Additionally, it is found in the simulation part that the
average of iteration times of our method is less than ten.

V. SIMULATION RESULTS

In this section we evaluate the effectiveness of the proposed
2D DOA estimation approaches. Consider a nonuniform array
of L = 8 sensors with x-y Cartesian coordinates (measured
in half-wavelength) given by x = [−3.0,−2.2,−1.3,−0.4, 0.3,
1.2, 2.1, 3.0]T andy=[0,−0.2,−0.6,−0.2, 0.3,−0.1, 0.2, 0]T ,
which is depicted in Fig. 2. For the sampling matrix, we choose
the mode number M = 45 and truncated mode number
Mt = 25. The search-point numbers are N = Na = 4096 and
Ne = 2048 which implies that the resolution is 360◦/4096 ≈
0.088◦ for the proposed FFT-based and traditional MUSIC
methods. We also assume that the array operates in the
presence of K = 2 equally-powered signals. Throughout our

Fig. 5. DOA estimation RMSEs versus snapshot number; uncorrelated sig-
nals; second example: a) azimuth, b) elevation.

simulations, 300 independent Monte Carlo runs have been used
in each example. For reference, the Cramér-Rao bound (CRB)
is also plotted. In the following examples, we compare our
proposed algorithms with the traditional 2D MUSIC and the
MVP approach presented in [11] in terms of the DOA estima-
tion root-mean-square errors (RMSEs). Our proposed methods
include the FFT-based 2D MUSIC presented in Algorithm 1
and the multidimensional-subspace-fitting method described
in Algorithm 2 (in which Ψ = ̂Es(Λs − σ2

nIK )2
̂Λ−1

s
̂EH

s is
taken). The stepsize μ = 0.9 is chosen for the MVP. In addition,
the MVP method uses the same initial angles as the proposed
Algorithm 2.

In the first example, we compare the DOA estimation per-
formances of the methods tested when the input signal-to-noise
ratio (SNR) varies from 0 dB to 30 dB. The number of snapshots
to estimate the array covariance matrix is T = 100. The azimuth
and elevation of the first signal are randomly generated within
the area [10◦, 50◦] and the angles of the second signal are taken
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Fig. 6. DOA estimation RMSEs versus snapshot number; correlated signals;
second example: a) azimuth, b) elevation.

as θ2 = θ1 + 5◦ and φ2 = φ1 + 5◦. This means that the angular
separations between the two signals are 5◦ in both azimuth and
elevation. The DOA estimation RMSEs are plotted in Fig. 3 for
the case of uncorrelated signals, whereas Fig. 4 illustrates the
case of correlated signals. Here we assume that the signal co-
variance matrix is Rs = 10(0.1SNR) × [ 1

0.8
0.8
1 ] when the signals

are correlated. Said differently, the correlation = 0.8 is taken. As
expected, the performance of the proposed multidimensional-
subspace-fitting methods are better than the MUSIC-type meth-
ods. The performances of the traditional 2D MUSIC and the pro-
posed FFT-based MUSIC are very similar to each other. Com-
pared with the MVP, the proposed Algorithm 2 achieves almost
the same performance with less computational complexity.

In the second example, we study the impact of the snapshot
number on the methods tested. In this example, the snapshot
number varies from 50 to 400, the input SNR = 10 dB is taken
and all other parameters are chosen as before. We also depict the
DOA estimation RMSEs versus the input SNR in Fig. 5 for un-
correlated signals and Fig. 6 for correlated signals. It is clear that

Fig. 7. DOA estimation RMSEs versus angular separation; uncorrelated sig-
nals; third example: a) azimuth, b) elevation.

the proposed multidimensional-subspace-fitting method outper-
forms MUSIC-type methods as before.

In our third example, we assume that the angular separation
between the two sources changes from 3◦ to 10◦. Here the input
SNR is 10 dB and all other parameters are chosen as in the first
example. Also, we examine the situations of uncorrelated and
correlated signals, which are displayed in Figs. 7 and 8 respec-
tively. As shown in these two figures, the proposed Algorithm 2
works consistently better than the traditional 2D MUSIC, with
most pronounced performance improvements achieved at small
source angular spacings for the uncorrelated signals.

In the last simulation experiment, we use different (randomly
generated) array geometries in each simulation run. In this ex-
ample, the locations of 30 array sensors are drawn uniformly
from the interior of a circle the radius of which varies from 2
to 5 half-wavelengths. For the sample matrix, the mode num-
bers M = [37, 41, 45, 51, 57, 63, 69] are chosen for the array
circle radii [2, 2.5, 3, 3.5, 4, 4.5, 5] half-wavelengths. The input
SNR is fixed at 10 dB and all other parameters are the same
as those in the first example. The truncated mode number is
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Fig. 8. DOA estimation RMSEs versus angular separation; correlated signals;
third example: a) azimuth, b) elevation.

Mt = ακR where the sampling factor α varies from 2 to 3.5
with step 0.5. We compare the normalized mean absolute errors

(MAE) of ‖CDFT−C ( t )
DFT‖

‖CDFT‖ in Fig. 9 where CDFT is the 2D spatial
spectrum computed by using the full coefficient matrix whereas
C(t)

DFT by the truncated coefficient matrix. It can be seen from
Fig. 9 that the normalized MAE of the 2D spatial spectrum can
reach the level of 10−4 when α is no less than 2.5. As shown in
the previous examples, we can achieve good performance when
Mt = 2.5κR is chosen.

VI. CONCLUSION

In order to reduce the computational complexity of joint
estimation of azimuth and elevation angles with arbitrary ar-
ray structures, we propose an MST-based framework. First we
compute a truncated coefficient matrix and then a partial 2D
FFT operation is employed to calculate the 2D spatial spec-
trum. This algorithm is inherently parallel and the complexity

Fig. 9. Normalized mean absolute errors of 2D spatial spectrum when using
different sampling factors; final example.

is almost independent of the signal number. Then we formu-
late a multidimensional-subspace-fitting estimator to improve
the DOA estimation. By means of the first-order Taylor ex-
pansion, we expand the projection operator around the initial
angular estimates. It is found that the estimation errors corre-
spond to the solution of a set of linear equations. Computer
simulations demonstrate that the two proposed algorithms can
achieve almost the same DOA estimation performance as their
counterparts while ours are with less computational complexity.

APPENDIX A
SYMMETRY PROPERTIES OF THE COEFFICIENTS

From (12), we have the corresponding inverse DFT form

[C]M +k1,M +k2 =
1

2M − 1

M −1
∑

m 1=−(M −1)

M −1
∑

m 2=−(M −1)
[

p(m1Δθ,m2Δφ)ejk1m 1Δθ ejk2m 2Δφ
]

(53)

where Δθ = Δφ = 2π
2M −1 . Since the noise projector (IL −

̂Es
̂EH

s ) is nonnegative-definite, the spatial spectrum p(θ, φ) is
always a nonnegative real number. Evaluating the complex con-
jugate of (53) and using the fact p(θ, φ) = p∗(θ, φ), we have

[C]∗M +k1,M +k2
=

1
2M − 1

M −1
∑

m 1=−(M −1)

M −1
∑

m 2=−(M −1)
[

p(m1Δθ,m2Δφ)e−jk1m 1Δθ e−jk2m 2Δφ
]

= [C]M −k1,M −k2
. (54)

Moreover, when we use the 2D Effective Aperture Distribution
Function (EADF) [15] method to calculate the sampling matrix
G, it is required that the manifold vector a(θ, φ) is periodic in
both azimuth and elevation with period 2π. In practice, however,
we measure the array responses within the area φ ∈ [0, π] only.
For periodic extension, we construct the periodic calibration
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[C]M +k1,M −k2
=

1
2M − 1

M −1
∑

m 1=−(M −1)

M −1
∑

m 2=−(M −1)

p(m1Δθ,m2Δφ)ejk1m 1Δθ e−jk2m 2Δφ

=
1

2M − 1

M −1
∑

m 1=−(M −1)

M −1
∑

m 2=−(M −1)

p(m1Δθ + π,−m2Δφ)e−jk1π ejk1(m 1Δθ+π )e−jk2m 2Δφ

=
(−1)k1

2M − 1

M −1
∑

m 1=−(M −1)

M −1
∑

m 2=−(M −1)

p(m1Δθ + π,−m2Δφ)ejk1(m 1Δθ+π )e−jk2m 2Δφ

=
(−1)k1

2M − 1

2M −1
∑

m 1=0

M −1
∑

m 2=−(M −1)

p(m1Δθ,m2Δφ)ejk1m 1Δθ ejk2m 2Δφ

=
(−1)k1

2M − 1

M −1
∑

m 1=−(M −1)

M −1
∑

m 2=−(M −1)

p(m1Δθ,m2Δφ)ejk1m 1Δθ ejk2m 2Δφ

= (−1)k1 [C]M +k1,M +k2
(58)

matrix from the measurements by a shift of 180◦ in azimuth and
a flip in elevation followed by discarding the first and last row
to avoid the redundancy at the poles (0◦ and 180◦ elevations)
[11]. This leads to

a(θ, φ) = a(θ + π, 2π − φ) = a(θ + π,−φ) (55)

and naturally

p(θ, φ) = p(θ + π,−φ). (56)

Let us now turn to the coefficient [C]M +k1,M −k2
which can

be expressed as (58), shown at the top of the page. Combining
(58) and (54), we have

[C]M −k1,M +k2
= (−1)k1 ([C]M +k1,M +k2)

∗ . (57)

APPENDIX B
DERIVATIVES OF THE PROJECTION OPERATOR MATRIX

The first derivative of the projection matrix with respect to
the azimuth angle θk is given by [26], [28]

∂Πη

∂θk
= Π⊥

η

∂A(η)
∂θk

A†(η) + (· · · )H

= Π⊥
ηG

[

0, . . . ,
∂v(θk )

∂θk
⊗ v(φk ), . . . , 0

]

A†(η)

+(· · · )H (59)

where the notation (· · · )H means that the same expression ap-
pears again with conjugate transpose and

∂v(θk )
∂θk

= v(θk ) �
[

j
M − 1

2
, . . . , 1, . . . ,−j

M − 1
2

]T

.

(60)

Similarly, we have

∂Πη

∂φk
= Π⊥

η

∂A(η)
∂φk

A†(η) + (· · · )H

= Π⊥
ηG

[

0, . . . ,v(θk ) ⊗ ∂v(φk )
∂φk

, . . . , 0

]

A†(η)

+(· · · )H (61)

where

∂v(φk )
∂φk

= v(φk ) �
[

j
M − 1

2
, . . . , 1, . . . ,−j

M − 1
2

]T

.

(62)
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