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ABSTRACT In this paper, a numerical short-open calibration (SOC) technique is presented to numerically
model and de-embed a variety of non-planar periodic guided-wave structures based on the 3-D full-wave
finite element method (FEM). A simple current source or lumped-port model is introduced in formulation of
a determinant FEM algorithm. By incorporating the SOC in the FEM solver, the intrinsic port discontinuity
caused by this port model is then fully removed or calibrated out of the core non-planar periodic guided-wave
structure during the calibration process. Because of the 3-D nature of FEM, the effective per-unit-length
parameters of the core periodic guided-wave structure, i.e., effective propagation constant and effective
characteristic impedance, are extracted successfully. Two numerical examples, including microstrip line
with periodical loading of shorting pins and metal–insulator–metal composite right/left handed structure,
are numerically modeled for demonstration and verification. Extracted results have validated the feasibility
and accuracy of the presented FEM-SOC, thereby exhibiting its advanced capability in numerical modeling
and de-embedding of non-planar structures with complicated configurations.

INDEX TERMS Periodic guided-wave structure, characteristic impedance, propagation constant, short-open
calibration, finite element method.

I. INTRODUCTION
As a basic configuration, periodic structures exhibit the
guided-wave propagating behaviors and desirable properties,
which have been employed in various applications, such
as the electromagnetic bandgap (EBG) [1], artificial struc-
tures [2], [3], and leaky-wave antennas [4]–[7]. Numerical
extraction or de-embedding of their effective per-unit-length
parameters, including the complex characteristic impedances
and propagation constant, has been becoming an important
and indispensable procedure for efficient and effective design
of advanced microwave circuits with periodic structures.
In order to achieve the accurate results and high performance,
numerical calibration method in full-wave algorithms is often
demanded in obtaining the equivalent circuit models of these
periodic structures with high degree of complexity.

According to the well-known Floquet theory, an infinite
periodic structure can be characterized by solving an eigen-
value problem of a minimal periodic element, which is so-
called unit cell [8]. On the one hand, various numerical
methods, such as method of moment (MoM) [9], [10], finite

difference frequency domain algorithm (FDTD) [11], and
finite elementmethod (FEM) [12] have been applied so far for
modeling of these unit cells. However, solving an eigenvalue
problem is usually time-consuming and has low efficiency,
especially when more propagation modes are concerned. On
the other hand, the commercial 3-D full-wave simulators,
such as Ansys HFSS [13] and CST Microwave Studio [14],
can provide the eigenmode solver with periodic boundary
condition to directly derive the dispersion diagram of only a
phase constant.With the help of the quality factor of the struc-
tures, the attenuation constant could be deduced with addi-
tional numerical efforts as descripted in [15]. Since the closed
electric and magnetic boundary conditions are enforced, it
always fails to directly extract the attenuation constant [15],
[16], which is important for modeling of radiating structures
or antennas.

As an alternative approach, the unit cell can be considered
as a two-port network, where the incident and reflected waves
are defined at two terminal planes and S-parameters can
then be obtained. However, there exists an undesired port
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discontinuity in two- or three-dimensional (2D/3D) modeling
algorithms, due to the approximate source model [17]–[22]
and reflected wave from the core periodic structure [23], [24].
As reported in the literature, different numerical calibration
methods have been proposed to calibrate out the port discon-
tinues and construct accurate equivalent model of the core
section under modeling. By solving the eigenvalue problems
of the T-matrix, the thru line (TL) calibration method was
developed to extract the phase constant and attenuation con-
stant of substrate integrated waveguide (SIW) with periodic
vias [25]–[27]. Alternatively, the thru-reflect-line (TRL) was
studied to characterize the SIW [28], [29]. However, this
method has its fundamental limitation in its de-embedding
process due to the unavoidable frequency-dependent property
of the line standard. Since both the TL and TRL methods
can hardly extract the Bloch-wave impedance of a periodic
structure. Later on, the short-open load (SOL) [30], [31]
and thru-thru (TT) [32] calibration were proposed to extract
the characteristic parameters of SIW, including the Bloch-
wave impedance and propagation constant. Note that the
detailed information at port source should be at first defined
for the SOL and TT methods. By making the even-odd-
mode excitations at the electric and magnetic boundaries, the
Bloch-wave impedance was extracted [16]. In this context,
the port discontinuity is pre-defined as an equivalent lumped
series inductance, and it needs to be estimated by simulating
periodic structures with different numbers of periodic cells.

In 1997, a numerical calibration technique, namely, short-
open calibration (SOC), was first proposed in [18]. With the
help of two ideal open and short calibration standards in the
method ofmoments (MoM), the de-embedding procedure can
be implemented by defining the core circuit network, and two
respective error boxes at two ports. Each port discontinuity
and its respective feeding line are considered as an entire error
box, while the effective per-unit-length parameters of the
periodic structures can be accurately extracted based on the
simple transmission network theory. Recently, to explore
the 3D capability of the numerical de-embedding procedure,
the SOC technique was implemented in the full-wave FEM
algorithm [33]. By defining the reference plane along each
feeding line as the perfect electric and magnetic conduc-
tors, i.e., PEC and PMC, the FEM-SOC was successfully
developed without needing to take separate consideration into
parasitic port errors.

In this paper, this FEM-SOC technique is further applied
for numerical modeling and de-embedding of a variety of 3D
periodic guided-wave structures with metallic vias. The
major contribution of this work is to show the extendible
capability of FEM-SOC for modeling of 3D complicated
structures, which becomes important and useful for the
emerging multi-layer configurations in modern microwave
circuits. Especially for the metamaterial-concepted periodic
structures, the extraction of effective propagation parame-
ters including the propagation constant and characteristic
impedance is absolutely necessary. As demonstration and
verification, two non-planar periodic guided-wave structures,

FIGURE 1. A generalized 3D non-planar periodic structure fed by an
impressed current source at two ports for executing the SOC-FEM
procedure. (a) Physical layout. (b) Equivalent circuit model.

i.e., microstrip line with periodical loading of shorting pins
andmetal-insulator-metal (MIM) composite right/left handed
(CRLH) structure, are shown here. The results have evidently
verified that the achieved full-wave calibration-based prop-
agation parameters are accurate and reliable over a wide
frequency range

II. FEM-SOC TECHNIQUE
Fig. 1(a) shows the physical layout for FEM–SOC modeling
and de-embedding of a generalized 3D non-planar periodic
guided-wave structure with metallic vias or pins, which is
driven by two uniform feeding lines and impressed current
sources. In the established electric-field differential equation,
the unknown electric fields of the two ports can be directly
solved by the FEM method as detailed in [33]. Since all the
high-order modes excited by non-ideal current sources should
vanish at the two reference planes, a certain distance should
be properly selected between port and reference planes.

Fig. 1(b) depicts the relevant equivalent-circuit network in
which the core periodic structure is equivalently perceived as
the uniform dispersive and loss transmission line section [31],
and the two additional sections are fed by current sourced
at the two sides. Two error boxes indicate the electrical
behavior of their respective current source-driven feeding
lines, including all the discontinuity effects caused by the
non-ideal current sources with the PMC boundary conditions
at these two ports. Here, the SOC technique is used in the
consistent FEM to independently characterize these two error
boxes via two calibration standards, i.e., short- and open-end
circuits, without predefining the equivalent network of the
port discontinuity as reported in [16]. As introduced in [33]
for the 2D/3D cases, these two standards are ideally real-
ized by terminating the reference plane of each feeding line
with perfect electric and magnetic walls in the FEM method,
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respectively, thereby effectively constructing the ideal short-
and open-end circuit standards.

In this way, the network parameters of these error boxes
can be modeled in terms of the FEM-calculated equivalent
voltages at the port according to the impressed current [33].

[Xi] =


V̄ ′ioV̄is
V̄io − V̄is

−
V̄ ′ioV̄is
V̄io − V̄is

−
1

V̄ ′io

V̄ ′io
V̄ ′io

 (1)

By calibrating these error boxes out of the overall network
at two ports, the core network of the central periodic structure
can be extracted in a straightforward way via the cascaded
topology in Fig.1. Subsequently, the effective complex char-
acteristic impedance and propagation constant of such a non-
planar periodic structure can be explicitly calculated in terms
of the obtained ABCD matrix( with four elements ap, bp, cp,
dp), such that

cosh (γL) =
ap + dp

2
(2)

Z0 =

√
bp
cp

(3)

where L = N × T , T denotes the length of the unit cell, N is
the number of unit cells of the periodic structure.

III. MODELING OF PERIODIC PIN-LOADED
MICROSTRIP LINE
The pin-loaded microstrip line is a good candidate
for design of the EH0-mode microstrip leaky-wave
antennas (MLWAs) [6], [7]. Compared with the higher-order
EH1/EH2 modes, EH0-mode MLWA owns the advantages of
narrow line width, low cutoff frequency, and simple matching
network.

FIGURE 2. Layout of the microstrip line with periodical loading of
shorting pins. (a) 3D view. (b) Top view.

Fig. 2(a) and (b) show the periodic pin-loaded microstrip
line structure with N unit-cell of periodicity T. Herein,
d denotes the diameter of each pin,W and L denote the width
and length of the strip trace with periodical shorting pin,
respectively. In this work, the dielectric substrate with relative
permittivity of εr = 2.5 and height of h = 3 mm is used. In
numerical modeling, the core circuit of microstrip line with
periodical shorting pins is fed by the current source with the
PMC boundary condition. For the purpose of simplification,
the feeding line readily selects the same width as the periodic
structure. Then, the entire network can be decomposed as
two feed line sections with impressed current sources and
the core periodic structure. The port discontinuity of the non-
ideal current source with the PMC and the feed line are both
included in the error boxes, which can be effectively evalu-
ated and removed by employing the FEM-SOC. By using (2)
and (3), the concerned effective per-unit-length transmission

FIGURE 3. The propagation constants of pin-loaded mircrostrip line with
periodicity of d = 0.8 mm, strip widths W = 15 mm and varied periodicity
of T .

FIGURE 4. Real part of the complex characteristic impedance of the
pin-loaded mircrostrip line with varied periodicity of T .
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parameters of the core periodic structure can be accurately
and effectively de-embedded or extracted.

Fig.3 depicts the normalized propagation constants of this
non-planar periodic line with the fixed width ofW = 15 mm
and the pin’s diameter of d = 0.8 mm. The cutoff frequency,
when β = α, increases as T raises from 15 to 21 mm
with the interval of 2 mm. It exhibits a bandstop behavior
below the cutoff frequency, where α fades away and turns to
zero. Above the cutoff frequency, the pin-loaded microstrip
line exhibits the fast-wave behavior, when its phase constant
normalized by the free-space wavenumber is less than 1
(β/k0 < 1), so the leaky-wave mode is excited. Meanwhile,
the real part of characteristic impedance keeps near zero in the
bandstop region, and it increases quickly and then decreases
in the fast-wave region, as shown in Fig. 4. Afterwards,
it tends to decrease and become a relative stable value in the
slow-wave region above the cutoff frequency.

Fig. 5 shows the propagation constants of the pin-loaded
mircrostrip line versus frequency as the diameter of shorting

FIGURE 5. The propagation constants of pin-loaded microstrip line under
periodicity of T = 15.0 mm, strip widths of W = 15 mm and varied radii of
shorting pins.

FIGURE 6. Real part of the characteristic impedance of the pin-loaded
mircrostrip line under different radii of shorting pins.

pins decreases from 2.0 to 0.8 mm, under the periodicity
of T = 15.0 mm and the strip width of W = 15 mm.
Again, the cutoff frequency is shifted downward as d is
reduced. In the fast-wave propagating region, β/k0 increases
as the diameter of the pin increases, while α decreases
and gradually becomes zero at the cutoff frequency as the

FIGURE 7. Comparison between the results of the pin-loaded mircrostrip
line obtained by the FEM-SOC and HFSS-SOL/HFSS. (a) Extracted complex
propagation constants. (b) Extracted real part of the characteristic
impedance. (c) Calculated two-port S-parameters |S11| and |S21|.
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frequency increases. As shown in Fig. 6, the real part of
the characteristic impedance exhibits the similar behavior to
those of T to be varied. As the diameter of shorting pins
increases, the real part of the characteristic impedance beyond
the fast-wave region is shifted up, and becomes relatively sta-
ble at higher frequencies. According to these pin-determined
operation regions and values of the real part of character-
istic impedance, the desired matching mechanism for this
EH0-mode MLWA could be properly known and realized.
Next, in order to validate the accuracy of the above-

extracted parameters, the comparison between the results
from the FEM-SOC and HFSS-SOL is given. The pin-loaded
microstrip line under periodicity of T = 15 mm, strip widths
of W = 15 mm, and pin’s diameter of d = 0.8 mm
is considered here. As shown in Fig. 7(a), the propagation
constants are well matched with each other. The discrepancy
in cutoff frequency between them is less than 6%, as could
be seen in Fig. 7(b). This discrepancy could be attributed to
the errors in numerical discretization of 3D structure in FEM,
which may become undetectable for deriving the scattering
parameters, as shown in Fig. 7(c).

IV. MODELING OF MIM-BASED CRLH STRUCTURE
The MIM-based CRLH structure was proposed in [34]–[36]
for design of an alternative class of leaky-wave antennas.
It has the unique left-handed (LH) and right-handed (RH) fre-
quency regions, where the phase shift of per unit cell becomes
negative and positive, respectively. Fig. 8(a) illustrates the
perspective 3D view of the MIM CRLH periodic structure,
while Fig. 8 (b) and (c) show the top view and side view
of the MIM-based CRLH unit cell, respectively. It consists
of three substrate layers with three metallization layers, and
metallic pins or vias. The dimensions of the unit cell are
denoted as g = 0.51 mm, Wd = 1.1 mm, WT = 1.7 mm,
ls = 2.99 mm, and pin’s diameter of 0.6 mm. Fig 9 depicts
the frequency responses of phase constants and attenuation
constants under different periodicities of T = 3.6, 4.2, 4.8,
and 5.4 mm, respectively. For verification, the comparison in
numerical modeling between the results from FEM-SOC and
HFSS-SOL is provided in Fig. 9, where the periodic unit has
the size of d = 0.2 mm and T = 15 mm.
As depicted in Fig. 9(a), the phase shift of per unit cell,

βT , is increased from negative value in the LH region to
positive value in the RH region. There is a transition in a
stopband region from 7.8 to 9.5 GHz with a quasi-zero phase
shift β ≈0. In this region, the attenuation constant increases
and then decreases, and this stopband often disturbs the
continuous frequency scanning in application of leaky-wave
antennas. The real part of characteristic impedance is plotted
in Fig. 9(b). A rapid fluctuation is observed at about 9.6
GHz above this stopband, but it gradually keeps stable from
10 to 14 GHz. Next, a three-unit periodic structure without
matching network is implemented and its frequency response
is then calculation for verification. As shown in Fig. 9(c),
the simulated S-parameters from the FEM-SOC extracted
parameters and direct simulation based on the HFSS solver

FIGURE 8. Layout of the periodic MIM-based CRLH structure.
(a) Perspective view. (b) Top view of unit cell. (c) Left view of unit cell.

are in good agreement with each other, thus validating the
accuracy of the proposed FEM-SOC in modeling and de-
embedding of this 3D periodic structure.

Under varied periodicities of T , the extracted phase
shifts per unit are intrinsically varied. As can be seen
in Fig. 10(a) and (b), the transition point with β = 0 is
gradually reduced as the T is enlarged, while the attenua-
tion constant becomes more obvious as T increases from
3.6 to 5.4 mm, so this stopband increases as the T decreases.
The so-called balanced condition is satisfied at T = 3.6 mm,
where the stopband is completely eliminated. Fig. 11 shows
the real part of characteristic impedances of the MIM-based
CRLH periodic structure under T = 3.6, 4.2, 4.8, and
5.4 mm, respectively. The fluctuation of the real part of char-
acteristic impedances around the transition point is effectively
reduced as T decreases. The desired balanced condition at
T = 3.6 mm largely increases the LH values and oppositely
reduces the RH values, thus making the real part of charac-
teristic impedances slight varied in a wide region.
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FIGURE 9. Comparison between the results of the MIM CRLH structure in
Fig. 8, calculated from the FEM-SOC and HFSS-SOL/HFSS. (a) Dispersion
diagram. (b) Extracted real part of the characteristic impedance.
(c) Calculated two-port S-parameters |S11| and |S21|.

Next, the extracted characteristic parameters can be used
to design the matching network for the MIM-based CRLH
structure with finite cell units. The circuit model of theN -cell
MIM-basedCRLH structure in connectionwith twomatching
networks at two sides is displayed in Fig. 12. As can be
seen in Fig. 13(a), at T = 5.4 mm, effective characteristic

FIGURE 10. Dispersion diagram of the MIM-based CRLH structure under
different periodicities of T = 3.6, 4.2, 4.8, and 5.4 mm. (a) Phase shift of
per unit cell. (b) Attenuation constants.

impedances in LH andRH regions can be reasonablymatched
to 50 � by using these matching networks. Generally speak-
ing, it is difficult to simultaneously achieve the impedance

FIGURE 11. Real part of characteristic impedance of the MIM-based CRLH
structure under different periodicities of T = 3.6, 4.2, 4.8, and 5.4 mm.
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FIGURE 12. Equivalent circuit model of the MIM-based CRLH structures
with two impedance matching networks at two sides.

FIGURE 13. S-parameters of the MIM-based CRLH structures with
different matching networks. (a) T = 5.4mm. (b) T = 3.6 mm.

match in both of the two frequency regions to the feeding lines
with 50 �, because the characteristic impedance of a peri-
odic guided-wave structure is highly frequency-dependent as
shown in Fig. 11. However, when a balanced condition of
T = 3.6 mm is set, good impedance matching can be
achieved in both the LH and RH regions. Intrinsically, this
feature is primarily due to the almost same characteristic
impedances in the LH and RH regions of this MIM as illus-
trated in Fig. 11.

V. CONCLUSION
In this paper, numerical de-embedding and modeling
of 3D non-planar periodic guided-wave structures using the
FEM-SOC technique have been presented. By removing the
port discontinuities and feeding network parasitic effects,

effective propagation parameters of the core non-planar peri-
odic structures with finite unit cells have been accurately
determined. Through the two non-planar periodic examples,
the FEM-SOC has been demonstrated to have its attrac-
tive capacity in accurate, efficient and correct modeling and
de-embedding of various kinds of 3D non-planar periodic
guided-wave structures. Without needing to know the pre-
defined port discontinuity and feeding-line parasitic effect,
the core network parameters of these periodic structures could
be effectively de-embedded and extracted, thus it provides
physical insight into their working principle and provides an
effective design guideline for these 3D non-planar periodic
guided-wave structures. At last, the two MIM-based CRLH
structures have been modeled and designed by using the
extracted per-unit-length transmission parameters from the
FEM-SOC. The respective results have evidently demon-
strated that the effective per-unit-length parameters can be
extracted from the FEM-SOC to allow one to efficient and
effective design of high-performance microwave circuits
using these 3D non-planar periodic guided-wave structures.
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