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A B S T R A C T

With the increasing use of CFRP in aircraft and automotive industry, it has become necessary to monitor the
health of the composite structure during the manufacture and service process from flaws such as debond or
delamination by using optical pulsed thermography non-destructive testing (OPTNDT) techniques. However,
current OPTNDT methods cannot efficiently tackle the influence from the strong noise, and the resolution en-
hancement of the defects detection remains as a critical challenge. To alleviate this problem, this paper proposes
the sparse ensemble matrix factorization approach to remove the noise and enhance the resolution for the defects
detection. Specifically, the algorithm is based on the sparse representation and noise is modeled as a mixture of
Gaussian (MoG) distribution. It provides a projection from the raw data onto the sparse and low dimensional
sub-space while the defects information is significantly enhanced with the layer decomposed approach in the low
dimensional space. Not withstand above, a Gaussian low pass filtering and non-linear enhancement is conducted
for further enhancement. The proposed method is coupled with several comparison studies to verify the efficacy.

1. Introduction

The use of CFRP as the composite material is increasing sharply in
the aerospace industry [1]. This is due to its unique advantage over
other materials such as high strength, high fatigue resistance, low
thermal expansion and good resistance to corrosive damages [2].Thus,
it becomes necessary for the industry manufacturers to inspect and
check the health and quality to avoid any unwanted disaster. General
types of defects in the CFRP are delamination and debond. These type
of defects usually occur during the manufacturing and acquisition
process. Apart from the manual inspection nowadays non-destructive
testing (NDT) techniques have been used for its inspection.

In [3,4], the researchers have emphasized the importance of NDT
technology to evaluate and quantize the quality and structural health of
the composite material after production, repair and in monitoring
phase. In the literature, different NDT methods have been applied to
evaluate the defects in the composite materials. These methods include
eddy current method, ultrasonic method, magnetic resonance imaging
method and so on [5]. With the recent advances in optical technology,
infrared thermography has been widely used for the inspection of the
specimen. It has the advantage of non-contact, wide area and fast in-
spection. In [6], Cramer et al. proposed flash infrared thermography to

analyze and evaluate the structural health of the composites at NASA.
In [7], R. Yang et al. gave a concise survey of the existing NDT tech-
niques and methods for composite structures. In [8], Ryu et al. have
demonstrated various external heat sources that can be used in active
IRT. The optical source for IRT has been successfully used for the in-
spection of the specimen at hand. In [9], Chulkov et al. have demon-
strated the use of various optical sources such as xenon and halogen
lamps. In general, the process of infrared thermography involves the
application of external heating on the specimen under test. If there are
defects available on the specimen, non-uniform thermal distribution
will occur. These distributions can then be recorded by infrared camera
[10,11]. In [12], Maierhofer et al. have put some light on the use of
flash thermography for CFRP materials i.e. limitations and accuracy.
Currently, available OPT based feature extraction and defect detection
methods are subject to poor resolution of the thermal images. In ad-
dition, the background and thermal noise are two components that are
affecting the performance of the algorithms. Many authors in the lit-
erature have tried different methods and techniques to resolve this
problem. But still, current methods and techniques are far from being
implemented in the real scenario. In [13], Zhang et al. have used the
optical pulse thermography for analyzing the defect in the dry carbon
pre-forms. The comparative analysis was carried out by applying
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different image processing techniques and use the optical thermo-
graphy for the CFRP composites along with its hybrid composite called
basalt-carbon fiber polymer for impact loading [14]. The evaluations
were carried out by using different pulse thermography techniques.

In [15] Zhang et al., propose a combined spectral-spatial domain
feature extraction algorithm. The proposed algorithm is evaluated on a
set of publically available hyperspectral images. In [16] Zhang et al.,
proposed an ensemble manifold regularized sparse low rank approx-
imation for multi-view feature embedding. To directly remove the noise
component a group sparsity approach is introduced. In [17], Yuanlin
et al. proposed a novel fitting the time derivative coefficient algorithms
(FCA) for defect detection. Further, they employed ant colony algo-
rithm (ACA) to detect the defect edges. In [18], Yousefi et al. proposed a
new Eigen decomposition approach for principal component thermo-
graphy (PCT) called candid-covariance free incremental principal
component thermography (CCIPCT). They developed a new approach
to reduce the computational cost. In [19], Maldauge et al. have em-
ployed the discrete Fourier transform (DFT) for the estimation and
defect depths by using the frequency analysis. In [20], Marinetti et al.
have used the pulse phase thermography (PPT) for defect detection.
They used the amplitude and frequency information from the Fourier
transform and mapped the temperature changes onto the frequency
domain for defect detection. The principal component analysis (PCA)
[21,1,22] is used for defect detection. It is based on singular value
decomposition (SVD) for feature extraction. In [23], Liang et al. have
employed wavelet processing along with the PCA to detect defects that
are shallow and deep. In [24,25], thermal signal reconstruction (TSR) is
proposed. It is based on polynomial representation and fitting the data.
In [26], Sripragash et al. employed TSR for defect depth estimation and
characterization. In [27], Lopez et al. proposed the use of partial least
square thermography for defect detection. In [28], Peng et al. proposed
a seeded region growing method with TSR for debond detection in
CFRP. In [29], Zauner et al. used wavelet processing for NDT of wood
plastic. The divergence feature was used by Ren et al. [30] to solve the
NDT problem in CFPR. In [31], Junyan et al. used the simulation an-
nealing method for defect detection in the CFRP specimen. In [32],
independent component analysis (ICA) algorithm has been used for
detecting defects in specimen under test. In [33], Zhao et al. proposed a
variational bayes tensor factorization (VBTF) to extract useful in-
formation from the image sequence. In [34], Lu et al. provided ex-
tended variational bayes approach by layering the algorithms in [33]
for the problem of debond detection in CFRP. Their algorithm provides
reasonable results under comparison using the F-score parameter. In
[35], Yong et al. provided a low-rank matrix factorization approach by
modeling the noise using mixture of Gaussian distribution and con-
sidering a separate distribution for each frame under consideration. The
model developed is robust and provides good results.

However, the algorithms proposed so far are still limited in de-
tecting defects at deeper depths as well as a challenge issue of the poor
resolution of the defects. In addition, the noise component is still in-
herent and needs to be tackled. Due to these reasons, current techniques
are still not completely applicable. To contribute in this area, we pro-
pose the sparse representation based approach. Orthogonal Matching
Pursuit (OMP) [36] is used as the sparse representation technique. As
OMP projects the data onto a low dimensional space, the noise com-
ponent present in the higher dimension is inherently removed. Fur-
thermore, this sparse data is processed using MoG low-rank matrix
factorization algorithm. As the defect information is mostly present in
the low-rank matrix [34], we can extract this low-frequency informa-
tion from the thermal sequence. The algorithm of [34] assumes the
noise has Gaussian distribution, however, this assumption is not always
true and in some cases deviates from real cases where noise has more
complex distributions. To tackle this problem, the MoG distribution is
proposed [35]. For general noise distribution, the MoG has good ap-
proximation properties [37]. Along with the sparse representation and
MoG noise distribution, we propose a multi-layered structure of the

sparse matrix decomposition algorithm. The layer decomposition is
evaluated by running several tests on different datasets. Particular, we
propose an alternate mechanism which avoids the layering structure by
using the Gaussian low pass filtering as well as the non-linear en-
hancement. As the layering structure is avoided, the overall computa-
tional cost of the algorithm is reduced in comparison to [34] which use
a 4 layer structure. In [34], the authors process the raw data for their
experiment and in our experiment we process the sparse data. This step
accounts for overall computational cost reduction as the data processed
by the MoG algorithm. The inclusion of the sparse representation and
Gaussian filtering completely removes the noise and quantifies the
defects information.

The proposed algorithm emphasis the sparse and deep layer de-
composition for matrix factorization which helps remove the noise but
in turn induces slight increase the additional computational cost. The
proposed algorithm is coupled with Gaussian filtering and non-linear
enhancement approach to further enhance the defect resolution which
can be accounted as the advantage for defect detection. The main weak
point with respect to the algorithm of [35] can be the additional
computational cost when a three layered structure is constructed.

The proposed algorithm is tested for subsurface debond detection in
the CFRP material. Initially, the CFRP sheets are processed by the OPT
system to get the time series thermographic images. Later defect in-
formation is extracted by applying the proposed algorithm. The pro-
posed algorithm is compared with general OPTNDT algorithms and the
results are evaluated on the basis of event F-score [34]. Results indicate
our algorithm performs better in comparison with other algorithms.

The rest of the paper is organized as; Section 2 gives the details of
the proposed algorithms. Section 3 gives the details about the experi-
mental setup and specimen under test. Section 4 gives the experimental
results and discussion. Section 5 gives the conclusion of the paper.

2. The proposed methodology

2.1. Optical pulse thermography

Generally, this technology is applied in NDT because of its useful-
ness and owing to these properties such as fast inspection of a large area
of specimen under test and it works on the heating and cooling prin-
ciple of the pulse heating. This type of thermographic technique falls
under the surface heating thermography (SHT) class [38]. The excita-
tion sources are the halogen lamps and the reflection mode configura-
tion is used where the infrared camera and the excitation source are
kept facing the same direction. Suitable duration of the pulse excitation
is chosen based on the specimen thickness and thermal behavior
(conductivity and diffusivity of the specimen). In the heating and
cooling phase the temperature of the surface of the specimen under test
changes. However, if there are defects present in the specimen such as
debonds, they change the thermal diffusion rate of the specimen. If any
defect found inside the structure it can be identified by the difference of
this temperature from the normal case (see Fig. 1).

The thermal sequence obtained by the infrared camera is usually
processed by some image processing algorithms. Most of these signal
processing algorithms work on the pixels of the images. Generally, these
algorithms process the time series of each pixel separately. Here, series
represents the general temperature variation of surface with respect to
time. The thermal diffusion of the surface which is the change in
temperature for the lateral direction can be discarded as compared to
the normal direction. The single dimensional heat transfer equation can
be expressed as;

∂
∂

=
Temp

y β
dTemp

dt
12

2 (1)

where Temp represents the temperature of the surface under test andβ
represents the thermal diffusivity, here t and y represent the time and
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depth of the specimen under test. For an ideal impulsive heat flux, the
response for a semi-infinite surface is given by;

= −T y t E
e πt

e( , )
y
βt4
2

(2)

where e is thermal effusivity of the material determined by the thermal
conductivity, mass density, and specific heat E is the quantity of the
energy absorbed by the surface. Since thermal imaging is only applic-
able to the surface temperature we take =y 0 in the above equation
and the equation for surface temperature becomes;

= = −T t E
e πt

E
e πt

tΔ ( ) 0.5
(3)

Here TΔ represents the change in temperature after the pulse
heating is applied. Taking the logarithmic transform the time-tem-
perature curve produces a decreasing linear slope of 0.5 and this can be
used for defect detection and characterization.

= ⎛
⎝

⎞
⎠

−T E
e πt

tln( ) ln 0.5ln( )
(4)

The heating style is the surface heating thermography with the re-
flection mode configuration. The pulse thermography analysis in the
time domain is made [38].

2.2. Sparse MoG low-rank matrix factorization

The given thermographic sequences are converted into the matrix
form representing their time series. Let = ⋯ ∈ ×X x x x R[ , , , ]n

m n
1 2 be the

data matrix containing noise and defect information, where m n, are
the dimension and number of the given data. Each columnxi has m
dimension. Matrix X contains the time series of the thermal images that
are vectorized in the matrix form. Now a general LRMF (Low Rank
Matrix Factorization) problem can be written as

∥ − ∥min M X DA·D A T, (5)

where ∈ ×D Rm p and ∈ ×A Rn p are the bases function and the coefficient
matrix with ≪p min m n( , ). M is the indicator matrix and T denotes
the L or L2 1 norm. Eq. (4) is first converted into a sparse representa-
tion problem as

∥ − ∥ <min M X DA s t A sarg · . || ||A 2 0 (6)

here s represents the sparsity parameter. The problem in Eq. (5) can be
solved by the sparse representation algorithm of [36] to get the sparse
data. This can be re-written under the MLE (Maximum Likelihood Es-
timation) as

= +x d a e( )ij i
T

j ij (7)

where ∈d a R,i j
p are the ith and jth row vectors of D and A. Where eij

represents the noise present in the data. Under the conventional MLE
setup, it is assumed that this noise term is supposed to have a Gaussian
or Laplacian distribution. However, in real case this is always not true
and this noise has been found to have more complicated configurations
[35]. To alleviate this problem in literature authors use MoG (Mixture
of Gaussian) to estimate this noise by using the parametric probability
distribution [35]. Under this assumption, it can be written as

∑
=

x π x d a δ( |( ) , )ij
l

K

k ij i
T

j k
1

2N
(8)

under the i.i.d distribution, the log-likelihood function can be written as

∑=
∊

L D A Φ X x Φ d a( , , Γ, | ) ln( |Γ, , , )
i j ϕ

ij i j
, (9)

where = =πΓ [ ]k k
K

1 and = =Φ δ[ ]k k
K2

1 are the mixture rates and variances.
The model in Eq. (8) is solved by EM Algorithm. This is a two step
algorithm. In (E step) the responsibility parameter is calculated as

=
∑ =

γ
π x d a δ

π x d a δ

( |( ) , )

( |( ) , )ijk
k ij i

T
j k

k
K

k ij i
T

j k

2

1
2

N

N (10)

Thus, the MoG parameters are =
∑ =

πk
k

k
K

k1

N

N
and

= ∑δ γ x d a( |( ) )k i j ijk ij i
T

j
2 1

,
2

N
, where = ∑ γk i j ijk,N and the parameter D A,

areobtained by solving the L2-norm problem in [36], namely

∥ − ∥min M X DA·D A F, (11)

Instead of using a single MoG model for the entire thermal sequence,
separate MoG model for each thermal frame is used and adaptively
learning the model from the previous frame gets good results. The
model assuming separate MoG for each thermal frame can be given as;

∏
=

x x d a δ z Multi z( |( ) , ) , ( |Γ)i
t

k

K

i
t

i
T

k
z

i
t

i
t

1

2 ik
t

N
(12)

where xi
t is the ith pixel of the xt and Multi is the multinomial dis-

tribution. Here the natural conjugate priors δk
2 and Γ have the Inverse-

Gamma and Dirichlet distributions as follows;

− ⎛

⎝
⎜ − ⎞

⎠
⎟

− − −
δ Inv Gamma δ

δ
|

2
1,

2k k
k
t

k
t

k
t

2 2
1 1 12

N N

(13)

= + ⋯ +− − − −Gamma Dir a a π π(Γ| ), ( 1, , 1)t t t
k
t1

1
1 1 1N N (14)

where = ∑ =−
=

− −
−

−π,t
k
K

k
t

k
t1

1
1 1 k

t

t

1

1N N
N

N
. For the conjugate prior in the

above equations, there maximums are − −Φ and Γt t1 1. This proves the
fact that these prior learn the information from the previous data and
encode it into the current model which in turn helps to correct the
current MoG and other parameters. The subspaceD, assumes to follow a
Gaussian distribution prior and it can be given as

⎜ ⎟
⎛
⎝

⎞
⎠

− −D D D
ρ

B| , 1
i i i

t
i
t1 1N

(15)

where −Bρ i
t1 1 represents positive semi-definite matrix. This facilitates the

fact that current subspace variableD follows the previously learned −Dt 1

one. The full graphical model is shown in Fig. 2. The hyper parameters
are given by −Θt 1 and after the latent variable zt is marginalized then
the posterior distribution of Φ A D(Γ, , , ) can be given as

∝− − − −p Φ A D x Θ p x Φ A D p Φ Θ p Θ p D Θ

p A

(Γ, , , | , ) ( |Γ, , , ) ( | ) (Γ| ) ( | )

( )

t t t t t t1 1 1 1

(16)

According to the MAP principle, we can write the minimization
problem for Φ A D(Γ , , , )t t t t as follows

Fig. 1. Probabilistic model of the MoG-LRMF.
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= − + +L Φ A D p x Φ A D Φ D(Γ, , , ) ln ( |Γ, , , ) (Γ, ) ( )t t
F
t

B
tR R (17)

where

∑ ∑=
=( )p x Φ A D π x d a δln ( |Γ, , , ) ln ( |( ) , )t

i
k

K
k i

t
i

T
k1
2N

(18)

∑ ∑⎜ ⎟= ⎛

⎝
+ ⎞

⎠
−

=

−
−

−

=

−Φ δ
δ

δ π π(Γ, ) 1
2

ln lnF
t

k

K

k
t

t

k
k

t

k

K

k
t

k
1

1
1

2
1

1

1
2

N NR
(19)

∑= − −
=

− − − −D ρ d d B d d( ) ( )( ) ( )B
t

i

l

i i
t

i
t

i i
t

1

1 1 1 1R
(20)

The first term in the above equation represents the likelihood term,
it helps enforce the parameters under learning mechanism to adapt to
the current frame. The second term represents regularization term for
the noise distribution. The last term is the Mahalanobis distance be-
tween the D and −Dt 1, which helps update the current subspace based
on the previous learned one. To solve the problem in Eq. (16), (EM)
Algorithm is utilized. This is achieved by applying the E and M step on
each frame altogether.

E-Step: In this step the expectation of the posterior probability for
the latent variable zik

t is estimated. This is also called as responsibility
term γik

t . The equation can be given as

= =
∑ =

E z γ
π x d a δ

π x d a δ
( )

( |( ) , )

( |( ) , )
ik
t

ik
t k ij i

T
j k

k
K

k ij i
T

j k

2

1
2

N

N (21)

M-Step: On updating the MoG parameters ΦΓ and . The following
sub-problem is solved

= − +L Φ E p x z Φ a d Φ(Γ, ) ln ( , |Γ, , , ) (Γ, )t
z
t t t

F
t' R (22)

The closed form solution is

= − − = − −− − − −π π π π δ δ δ δ‵ ( ‵ ); ‵ ( ‵ )k k
t

k
t

k k k
t

k
t

k
1 1 2 1 1 22 2N

N

N

N (23)

∑ ∑= = = = −

= + = +− −

l γ π δ γ x d a‵ ; ‵ ; ‵ ‵
‵

; ‵ 1
‵

( ( ) )

‵; ‵

k i

l
ik
t

k
k

k
k

i

l
ik
t

i
t

i
T

t
k k

t
k

2 2

1 1

N N
N

N N
N

N N N N N (24)

For solving the coefficient a, the following sub-problem of Eq. (16) is
solved with respect to a as

∥ − ∥min m x Da·( )a
t t

F
2 (25)

This is called a weighted least square problem and its closed form so-
lution can be given as

= −a d diag m d d diag m x( ( ) ) ( )T t T t t2 1 2 (26)

For the subspace parameter D, the following sub-problem from Eq. (16)
is solved, namely

Fig. 2. Flow graph of the proposed algorithm.
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′ = − + = ∥ − ∥ +L D E p x z Φ a d D m x Da D( ) ln ( , |Γ, , , ) ( ) ·( ) ( )t
z
t t t

D
t t t t

F B
t2R R

(27)

and it has closed form solution for each of the row vector as

= + +− − − − −d ρ B m a a ρ B d m x a( ( ) ( ) ( ) )( ( ) ( ) ( ) )i
t

i
t

i
t t t T

i
t

i
t

i
t

i
t t T1 1 2 1 1 1 2 (28)

In order to get the updating rule, namely

= + = +− − − − − −B ρ B m a a c ρ B d m x a( ) ( ) ( ) ( ) ; ( ( ) ( ) ( ) )i
t

i
t

i
t t t T

i
t

i
t

i
t

i
t

i
t t T1 1 1 2 1 1 1 2

(29)

We have =d B ci
t

i
t

i
t . By using the matrix inverse equation, the update

rules can be written as

= ⎛
⎝

− ⎞
⎠

= +−
+

−
− −

−B B c ρc m x a; ( )i
t

ρ i
t m B d d B

ρ m a B a i
t

i
t

i
t

i
t t1 1 ( ) ( )

( ) ( )
1 2i

t
i
t t t T

i
t

i
t t T

i
t t

2 1 1

2 1 (30)

It can be noted here that for updating the Dt in each step, we only
need to save the −

=B( )i
t

i
l1

1 and
−

=c( )i
t

i
l1

1 evaluated in the last step. Due to
this, only a fixed storage memory is used. It should also be noted that as
the matrix inverse is avoided in the computations we can say that ef-
ficiency of the algorithm will be good.

The model in [35] is a single layer model. As the model is proposed
for the case of natural images and provides good results and it can be
further decomposed to obtain the enhancement visualization. Thus, the
use of multilayer structure following the convention from Eq. (7) is
proposed, namely

= +X D A E1 1 1 1 (31)

Here X represents the data, D A, represents the sparse term and E re-
presents the noise. For layer two we can write the equation as

= + +X f X D A E( )2
1

1 2 2 2 (32)

and in general for n layers we can write

= + +−
−X f X D A E( )n

n
n n n n

1
1 (33)

Here f n represents the non-linear activation function used in the multi-
layer structure. By adopting this layering structure, we want to the
extract the deep defects information present in the infrared images. We
have tested this layering structure for many layers and from experi-
ments, the layer three provides good results as compared to the other
layers. For the initialization of the algorithm, a warm start is needed by
employing the PCA on a small sample from the data to get the algorithm
initializing parameters, the MoG parameters, and subspace learning
parameters [35]. The step by step description is provided in the Table 1
and Fig. 2.

2.3. Filtering approach

In the sparse representation and layering approach described in the
previous section, the layering techniques serve as a computationally

expensive step. As we are repeating the algorithm three times to get the
desired results, the computational cost also increases three times, which
is acceptable when compared with the algorithm in [34] which utilizes
4 layer mechanism to get the desired results. However, to make the
algorithm fast and robust, we propose a Gaussian index low pass fil-
tering and enhancement approach. Here, we avoid the layering me-
chanism and take the data processed up to only layer one.

Let A m n( , ) be the clean image obtained after the layer one of the
proposed algorithm in Table 1. The Gaussian low pass filtering function
can be given as

̃ = ∗A m n A m n H m n( , ) ( , ) ( , ) (34)

Here, ̃A m n( , ) is the filtered image and H m n( , ) is the filtering func-
tion. It should be noted here that the filtering is performed in the fre-
quency domain. So, the image A m n( , ) is transformed into the fre-
quency domain by the Fast Fourier Transform (FFT) and after filtering
converted back into the time domain by the Inverse Fast Fourier
Transform (I-FFT). The filtering function H m n( , ) can be described as

= ⎡
⎣⎢

− ⎤
⎦⎥

H m n D m n
D

( , ) exp ( , )
2·

2

0
2 (35)

where D0 represents the cutoff frequency and D m n( , ) is the distance
from the point m n( , ) in the image to the centre and it can be described
as

= ⎡
⎣⎢

⎛
⎝

− ⎞
⎠

+ ⎛
⎝

− ⎞
⎠

⎤
⎦⎥

D m n m M n N( , )
2 2

2 2

(36)

This Gaussian low pass filtering removes the unwanted noise in the
image and preserves the defect information present in the image. As we
know that the filtering is an average and add mechanism. In this me-
chanism by averaging most of the noise present in the background is
removed and the image becomes smooth. However, a small portion of
noise is still present. To completely remove this noise and improve the
spatial contrast of the image we propose a simple non-linear enhance-
ment approach and it can be given as

̃ ̃ ̃
̃= ⎧

⎨⎩

>
<

⎫
⎬⎭

= …A m n
k A m n T
k A m n T

for m n M N( , )
( , )
( , )

, 1, 2, 3, , .1

2 (37)

Here, ̃ ̃A m n( , ) is the enhanced image and T represents the threshold.
Where k k,1 2 are the weights used for the enhancement of the defects. In
our experiments with the given CFRP specimen T is chosen as

̃Max A m n[ ( , )] with the deviation of 10, 20 and 30 in the experi-
ments. Here k1 is chosen as 3 for the enhancement of the defect and k2 is
chosen as 0.25 to remove the background noise from the image. The
cutoff frequency is chosen based on the experimental analysis with
different values between [0, 1]. In this way this approach searches the
whole image for the defects in the filtered image and in the given pixel
position if the defect is present, it gets enhanced and it there is noise, it
gets removed. The flow chart of the proposed algorithm is shown in
Fig. 2. Further, the results are shown in the results and discussion
section.

3. Experimental setup

The OPT system is shown in Fig. 3. Generally, for the experiment,
we require the specimen for testing, the external heating source, the
infrared camera and a computer to store the thermal sequences. A
control unit is also required along with computer. For our experiment,
we have used halogen lamp as the source of excitation for the CFRP
specimen under test. The IR camera is A655sc which comes with an un-
cooled maintenance free Vanadium Oxide (VoX) microbolometer de-
tector. It produces very clear images. It has high quality and high ac-
curacy. The frame rate used in our experiment is 50 Hz. The IR camera
in our lab can distinguish temperature differences as low as 50mK

Table 1
Sparse ensemble MoG low rank matrix factorization.

Input: the MoG parameters: {Γt−1, Φt−1, Nt−1}, model variables: [ −
=B{ }i

t
i
l1

1],

[ −
=c{ }i

t
i
l1

1], [ −Dt 1] and data [xt].

Initialization: {Г, Φ}={ − −Φ aΓ , }, .t t t1 1

do for all layers;
1. Given the data [xt]; solve for sparse representation using Eq. (6).
2. Until convergence do;

3. Online E-Step: compute γik
t by Eq. (21)

4. Online M-Step: compute {Φ,Г,Ν} by Eq. (23) and {a} by Eq. (26).
5. end while.
6. for each {Di

t}, =i l1, 2, ..., . do,

7. compute [ −
=B{ }i

t
i
l1

1], [
−

=c{ }i
t

i
l1

1] by Eq. (30).

8. compute {Di
t} by =D B ci

t
i
t

i
t

9. end for.

Output: MoG Parameters { − −ΦΓ , ,t t1 1 Nt−1} and model variables a ,t [ −
=B{ }i

t
i
l1

1],

[ −
=c{ }i

t
i
l1

1] D, t .
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clearly visible. Four test samples are used in the experimental setup.
The information about their defect size and dimension can be seen in
Table 2. We have selected these CFRP sheets based on their different
characteristics.

4. Experimental results and discussion

The proposed algorithm is compared with other algorithms of PCA
[1], ICA [32], PPT [20] and TSR [25], EVBTF [34] and [35]. Both the
visual and quantitative comparisons are shown. For the quantitative
analysis, we have the event based F-score parameter. The F-score is
based on the precision and recall parameters and it's details can be
found in [30].Fig. 4 shows the comparative results of the specimen 1. In
Fig. 4, the results obtained from PPT and TSR algorithm, only 8 out of
the 16 defects are visible whereas they are still blurry and suffer from
noise. The PCA and ICA algorithms at some extend clearly detect a few
more defects. The results obtained from EVBTF [34,35] are blurry and
incomplete. However, the proposed algorithm is able to detect most of
the defects successfully and the background noise is removed as shown
in Fig. 4(h), it can be seen that the proposed filtering mechanism pro-
vides sharp and clear results and almost all the noise is removed. The
results of the specimen 2 are shown in Fig. 5. Looking at the results of
the PPT, TSR, PCA and ICA, all these algorithms are only able to detect
at most 6 out of the total 10 defects while the background noise is
strong. However, the proposed algorithm removes the background
noise completely and the defects are much clear. Fig. 6 shows the re-
sults of the specimen 3. Here, the defect diameters are large and also the

Fig. 3. The optical pulsed thermography system at our lab.

Table 2
Defect size and depth details.

Specimen number Dimension (mm) Defect information (mm) Picture

1
CFPR/honeycomb core

250×300×22.2 Depth: 1 or 1.2
Diameter: 3, 6, 10, 14, 18

2
CFPR/adhesive

250×250×24.2 Depth: 2 or 2.2
Diameter: 2, 4, 6, 8, 10, 12, 16, 20

3
CFPR/adhesive

450×300×22 Depth: 0.375 or 1
Diameter: 6, 10, 15

4
CFPR/metal

250×250×22.2 Depth: 2 or 2.2
Diameter: 2, 4, 6, 8

5
CFPR/metal

100×100×80 Depth: 2 or 2.5
Diamter: 6, 8

6
CFPR/metal

100×100×80 Depth: 2 or 2.5
Diamter: 9, 10
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depth of the defects is below 1mm. All proposed algorithms success-
fully detect almost all the defects. The results of specimen 4 are shown
in Fig. 7. It can be clearly seen that the performance of the proposed
algorithm is much better than the other algorithms in terms of detecting
defects that are much deeper and smaller. This proves the fact that

sparse representation based low dimensional projection onto a linear
and sparse subspace can be utilized efficiently in the debond detection
of the CFRP using the OPT. Table 3 shows the F-score [30] results. We
have shown the consumption time of different algorithms. The pro-
posed algorithm provides on average 27% increase in detection of

Fig. 4. Visual results for specimen 2 (a) PPT; (b) TSR; (c) PCA; (d) ICA; (e) [34]; (f) [35]; (g) Proposed Layering; (h) Proposed Filtering.

Fig. 5. Visual results for specimen 3 (a) PPT; (b) TSR; (c) PCA; (d) ICA; (e) [34]; (f) [35]; (g) Proposed Layering; (h) Proposed Filtering.

Fig. 6. Visual results for specimen 4 (a) PPT; (b) TSR; (c) PCA; (d) ICA; (e) [34]; (f) [35]; (g) Proposed Layering; (h) Proposed Filtering.
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defects based on the F-score over the PPT algorithm. The percent in-
crease of 19%, 10%, 10%, 22%, and 21% over the TSR, PCA, ICA, [34]
and [35] algorithms. Table 3 shows the consumption time for each
algorithm. From the Table, it can be seen that the ICA algorithm gives
the least consumption time with an average defect detection rate of
84% based on F-score. The average consumption time taken by the PPT,
TSR and ICA algorithms are 206 s, 396 s and 50 s. Their average defect
detection rates are 67%, 75% and 84%, respectively. The algorithm of
[34] gives the highest consumption time on average of 926 s with 72%
average defect detection rate. The average time taken by the proposed
algorithm is 140 s with 94% (highest) defect detection rate. The algo-
rithm of [35] takes the average time of 106 s with 73% defect detection
rate based on F-score. It can be concluded that, with some increase in
the computational cost, the proposed algorithm gives good defect de-
tection performance.

This justifies the fact that the proposed algorithm performs better in
removing the noise from the thermal images and is able to detect de-
fects clearly.

Figs. 7 and 8, give the layering comparison for specimen 1 and 2. We
have shown up to four layer comparison. Layering the algorithm further
provides over fitting of the data and hence results are not good. It can

be seen from the Fig. 7 that the defects are more sharp and clear at the
layer 3 and also the background noise is significantly removed.

Figs. 9 and 10 show the visual results for a new and more chal-
lenging CFRP sheets, respectively. Rather than the standard square or
rectangular sheet, this sample is an elbow-shaped as it can be seen in
Table. 2. The locations of defects in this specimen are at the angular
joint of the elbow and defects are difficult to be detected. The ad-
vantage of the proposed algorithm can be clearly illustrated. It provides
clear and enhanced image detecting for all the defects where the results
from the other algorithms suffer from poor resolution and noise.

To validate the capability of the MoG-LRMF algorithm for esti-
mating the complex noise, we show a simple experimental analysis.
Here we generate the synthetic data with rank 5 and add different types
of noises into it. The task is to recover the original data. For perfor-
mance evaluation we use the relative reconstruction error (RRE)
parameter along with the estimated rank (ER). For comparison other
low rank matrix factorization algorithms are chosen such as PCA [1],
RPCA [39], and BRPCA [40]. The results are shown in Table 4. The best
results are highlighted in bold. It can be seen in Table 1, when there is
no noise, the PCA gives the best RRE and the proposed algorithm gives
the second best RRE. In case of the sparse noise and Gaussian noise, the

Fig. 7. Layering results for specimen 1 (a) First Layer; (b) Second Layer; (c) Third Layer; (d) Fourth Layer.

Table 3
Performance comparison of F-score (Left) [34] and consumption time (Right in seconds).

Specimen Number PPT TSR PCA ICA [34] [35] Proposed layering Proposed filtering

1 0.66 564 0.66 642 0.85 153 0.85 212 0.30 1019 0.54 277 0.93 466 0.93 328
2 0.46 151 0.75 579 0.46 52 0.75 26 0.75 905 0.75 85 0.75 169 0.75 128
3 0.94 135 0.94 271 0.94 43 0.94 24 0.94 1342 0.75 89 0.94 173 1 137
4 0.66 130 0.66 319 0.80 21 0.66 9 0.66 838 0.66 73 1 120 1 102
5 0.66 129 0.85 241 1 15 1 7 0.85 766 0.85 53 0.66 86 1 74
6 0.66 105 0.66 322 1 15 0.85 7 0.85 686 0.85 57 1 91 1 76
Average 67% 206 75% 396 84% 50 84% 48 72% 926 73% 106 88% 184 94% 140

Fig. 8. Layering results for specimen 2 (a) First Layer; (b) Second Layer; (c) Third Layer; (d) Fourth Layer.
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proposed algorithm gives the best RRE of (9.58e-6 and 2.96e-3, re-
spectively). Thus, it recovers the data more accurately. In case of the
complex noise, the proposed algorithm gives the RRE of (2.11e-4)
which is better than other algorithms. It can be concluded here that
Sparse-MoG algorithm is able to model the complex noise more accu-
rately than other algorithms.

5. Conclusion and future work

A sparse ensemble MoG-LRMF approach for detecting the sub-sur-
face debond defects in the CFRP composite is presented. In addition, a

Gaussian filtering and enhancement approach is proposed. The sparse
and low-rank projection of the thermal data onto a layered decomposed
low dimensional subspace enables to remove the noise and improve its
contrast. Further, filtering and non-linear enhancement improved the
visual resolution of the defects. In the comparative analysis with other
algorithms F-score is used for evaluation. The results indicate that the
proposed algorithm is able to quantify the sub-surface debond defects in
the CFRP specimen that are both smaller and deeper. Regarding the
future work, the algorithm can be tested on more complicate sructure
specimen apart from CFRP i.e. GFRP, Plexiglas also for other kinds of
defects such as delaminations and cracks. In addition, it can be utilized
with other active thermography techniques apart from OPT i.e. elec-
tromagnetic thermography.
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