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Abstract—It is notable that localization accuracy using received
signal strength (RSS) fingerprints solely is very vulnerable to
dynamic environments. Utilizing multiple fingerprints gleaned
from RSS for localization is a propitious strategy to overcome
the RSS susceptibility. Brimful utilization via fusing multiple
fingerprint functions which supplement each other are not
harnessed by existing fusion-based techniques, resulting in low
localization accuracy. This paper presents a novel and robust
WiFi localization modus operandi by fusing DerIvative Finger-
prints of RSS with MultIple Classifiers (DIFMIC). DIFMIC first
constructs a multiple fingerprints group by gleaning hyperbolic
location fingerprint (HLF) and signal strength differences finger-
print (DIFF) from RSS fingerprints. Then, it obtains Multiple
Fingerprints Trained Classifiers (MFTCs) via training each basic
classifier with each fingerprint. To fully leverage the inherent
supplementation among fingerprints and classifiers, a two-layer
fusion profiles (weights) joint optimization algorithm with mul-
tiple constraints is proposed. We also propose a Fusion Profile
Selection (FPS) algorithm to intelligently choose fusion weights
from the two-layer fusion profile for a more accurate localization.
DIFMIC shows more leverage in combining multiple information,
thus exhibiting better robustness in WiFi positioning. Results
from our experiments reflect that DIFMIC performs better than
other existing methods in real environments.

Index Terms—Indoor Localization, WiFi, Two-layer Fusion
Profile, Received Signal Strength (RSS), Fingerprints.

I. INTRODUCTION

LOCATION-Based Services (LBSs) are one of the promi-
nent technologies playing salient roles recently. GPS is

applicably used for outdoor positioning and cannot be used in
indoor environments due to the obstruction of GPS signals by
objects like trees, walls, buildings, leading to an imprecise
prediction of device’s location and thus triggering further
research in indoor positioning [1], [2].

Most of existing WiFi indoor localization methods focused
on the single received signal strength (RSS)-based fingerprints
because they can be readily derived from some common WiFi
devices [3], [4]. However, the inherent drawback of RSS
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is its sensitivity to changing environment and heterogeneous
hardwares. Channel state impulse (CSI) [5], angle-of-arrival
(AOA) [6], time-of-arrival (TOA) [7], and time-difference-of-
arrival (TDOA) [8] can also be used for indoor localization,
but they all require special hardware support, and are thus
not cost-effective. Note that the single fingerprint captures an
indoor environment from its own stance, and thus utilizing
the single fingerprints is not robust with respect to changing
environments.

Machine learning is a propitious strategy to mitigate the
drawbacks of the single fingerprint-based localization ap-
proaches [6], [9]–[12]. However, most of existing machine-
learning-based indoor positioning methods only use single
machine learning algorithm as a classifier or regressor, which
cannot maximize the merits of machine learning for high
accuracy indoor positioning.

To address the above problem, in this paper, we present
a novel and robust WiFi localization modus operandi by
fusing DerIvative Fingerprints of RSS with MultIple Clas-
sifiers (DIFMIC), in which a two-layer fusion profile joint
optimization algorithm with multiple constraints is proposed.
DIFMIC can be deployed on any wireless fingerprints based
localization systems without the need for additional sensors
like gyroscopes, accelerometers, and magnetometers as well
as hardware modifications. We summarize the contributions
of this paper as follows:

1) A two-layer fusion profile joint optimization algorithm
with multiple constraints is proposed in this study. How
to choose the related parameters is also addressed to
guide DIFMIC implementation. The proposed algorithm
can fully leverage the complementarity among Multiple
Fingerprints Trained Classifiers (MFTCs). To the best of
our knowledge, this is the first work to discuss how to ef-
fectively combine multiple sources and multiple machine
learning methods simultaneously in a joint optimization
framework for indoor positioning.

2) Although DIFMIC is validated only by three fingerprints
(RSS, hyperbolic location fingerprinting (HLF), and dif-
ference fingerprints (DIFF)) and four machine learning
methods (K-nearest neighbor (KNN), Random Forest,
Naive bayes, and AdaBoost) in this study. It is a gen-
eralized fingerprint-based indoor positioning framework
and can combine more fingerprints, such as CSI [5],
signal strength difference (SSD) [13], and spatial gradient
fingerprints [14], and more machine learning methods for
more accurate localization guided by ensemble learning
theory.
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3) A Fusion Profile Selection (FPS) algorithm, which fully
exploits MFTCs, is proposed. FPS selects weights from
the layers of the fusion network to estimate the final
location of a target.

This paper is structured as follows: We introduce some
related works in Section II. Our newly proposed DIFMIC
localization framework is discussed in Section III. Multiple
fingerprints group construction and MFTCs training are ana-
lyzed in Section IV. The two-layer fusion profile construction
and Fusion Profile Selection (FPS) algorithms in DIFMIC
together with the performance analysis of our fingerprints are
presented in Section V. Experimental setups and results in two
real environments are discussed in Section VI. We finally draw
conclusions in Section VII.

II. RELATED WORKS
A. Fingerprints-based WiFi Positioning Techniques

RSS is the most popular fingerprint in WiFi positioning, but
it shows severe fluctuation in complex indoor environments.
Most recent works like [5], [15] extract CSI to help mitigate
the multi-path snag, but they require specialized interface cards
(Intel 5300 WiFi cards) which are not readily available in
most commodity WiFis. Hossain et al. [13] and Kjrgaard et al.
[16] proposed the signal strength difference (SSD) and HLF
fingerprints [16] to overcome the snag of RSS instability from
different perspectives. As an alternative to HLF, DIFF [17] was
extrapolated from RSS from pairs of APs to solve the variance
in signal strengths among heterogeneous devices. Delta-fused
principle strength (DFPS) fingerprint was proposed to amal-
gamate the caliber of fingerprints via combining RSS with
delta signal strength (∆RSS) to revamp positioning accuracy
[18]. The spatial gradient fingerprints [14] is also an effective
strategy to alleviate the influence of RSS fluctuation without
any hardware modification. All the above fingerprints in WiFi
positioning can alleviate the fluctuation to some extent from
different perspectives. To validate the DIFMIC framework, we
use RSS, HLF, and DIFF for simplicity.

B. Fusion-based WiFi Positioning Techniques

Fusion-based WiFi positioning techniques can be cate-
gorized into two groups: single measurement-based fusion
and multiple measurements-based fusion. Comparatively, the
single measurement-based fusion methods mainly resort to
the post-processing technology to improve the performance
of positioning systems, which is cost-effective. For example,
Wang et al. [19] proposed a Best Linear Unbiased Esti-
mate (BLUE) method for WiFi localization by fusing the
positioning results from distance-based method and machine
learning methods only using RSS measurements. Fang et al.
[9] combined the positioning results from Bayesian approach
and neural network model. Fang et al. [10] combined the
multiple conventional methods, such as Least squares (LS),
Multidimensional scaling (MDS), and gradient-based methods,
for high accurate localization. Selective Fusion Location Es-
timation (SELFLOC) [11] can fuse the sources from multiple
sources and/or multiple algorithms, but the weights are fixed
for positioning environment, and SELFLOC is thus not robust

to changing environments. To overcome the drawbacks, we
recently proposed multiple algorithms fusion [20] and multiple
measurements fusion [21] methods for WiFi positioning.

In fact, our proposed DIFMIC is a generalized fusion frame-
work which can combine any aforementioned fingerprints and
positioning approaches. Furthermore, the WiFi environment
is just an application scenario of DIFMIC; DIFMIC can also
combine different kinds of fingerprints from the same receivers
[6] or different heterogeneous networks [18] with different
positioning methods regardless of the adopted machine learn-
ing algorithm or traditional method. This paper puts forth
essential enhancement by using only RSS fingerprints of WiFi,
but additional sensor information from accelerometers and
gyroscopes [15], [22]–[24] can be readily incorporated for
further improvement.

III. DIFMIC LOCALIZATION FRAMEWORK

A real-world location such as an intramural of a building
surrounded by L WiFi APs, is prorated into K grid points.
The grids are assigned a unique label. We extract HLF and
DIFF from the collected offline RSS samples to obtain our
multiple fingerprints group, G, comprising of RSS, HLF, and
DIFF, i.e., M = 3. G can be divided into two groups, namely,
G′ = [G′1,G

′
2, · · · ,G′M ] = [D′RSS ,D

′
HLF ,D

′
DIFF ] and

G′′ = [G′′1 ,G
′′
2 , · · · ,G′′M ] = [D′′RSS ,D

′′
HLF ,D

′′
DIFF ], for

training classifiers and constructing our fusion profile, re-
spectively. Here, D′RSS,, D

′
HLF,, D

′
DIFF , D′′RSS,, D

′′
HLF,,

and D′′DIFF denote the corresponding RSS, HLF and DIFF
fingerprints, respectively.

1) Offline phase: In the offline phase, we can train the
classifiers fn (G′m) by selecting N basic classifiers fn (·)
(n = 1, 2, · · · , N) from machine learning methods using
G′, as shown in the upper part of Fig. 1. We refer to a
collection of basic classifiers trained with multiple finger-
prints as Multiple Fingerprints Trained Classifiers (MFTCs),
i.e., f (G′) = [f1 (G′) , · · · ,fN (G′)]

T with fn (G′) =
[fn (G′1) , fn (G′2) , fn (G′3)]

T . Hence, the number of MFTCs
are MN(= 3N). Additionally, we also need to train the two-
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Fig. 1: Architecture of our proposed DIFMIC framework.

layer fusion profile W k and βk using G′′ for each grid point
via joint optimization, which will be detailed in Section V.
Given the trained MFTCs fn (G′m), the fusion profile W k of
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the first layer at the k-th grid point in our proposed two-layer
fusion framework can be written as

W k =
[
wk

1 ,w
k
2 , · · · ,wk

N

]
, (1)

in which wk
n =

[
wk1n, w

k
2n, · · · , wkMn

]T
is the weights of

different classifiers for the n-th fingerprint and [·]T is the
transpose. The fusion profile of the first layer for all K grid
points is

W =
[
W 1,W 2, · · · ,WK

]
. (2)

Similarly, we denote the fusion profile of the second layer at
the k-th grid point as

βk =
[
βk1 , β

k
2 , · · · , βkN

]T
. (3)

The fusion profile of the second layer for all K grid points is

β =
[
β1,β2, · · · ,βK

]
. (4)

2) Online phase: Given an online testing RSS vector r̃
with unknown position, as shown in the lower part of Fig.
1, we first glean HLF η̃ and DIFF ∆r̃ from r̃, and obtain

the input matrix Θ̃ =
[
θ̃1, θ̃2, · · · , θ̃M

]T
= [r,η,∆r]

T ,

we can obtain the multiple predictions ŝ = f
(
Θ̃,G′

)
=[

f1

(
Θ̃,G′

)
, f2

(
Θ̃,G′

)
, · · · , fN

(
Θ̃,G′

)]
from MFTCs

with fn

(
Θ̃,G′

)
being the M × 1 prediction vector of the

n-th classifier given the input vector Θ̃.

Secondly, based on the predictions of MFTC ŝ, we need
to estimate the grid point k̂ from which we can determine
the fusion profile W k̂ and βk̂ for further accurate fusion
localization by using our proposed fusion profile selection
(FPS) algorithm. After having obtained the fusion profilesW k̂

and βk̂ of the two-layer fusion network, the outputs of the first
layer can be expressed as;

H k̂ =
[
hk̂1 ,h

k̂
2 , · · · ,hk̂N

]
= 1T ·W k̂ � c (ŝ) , (5)

where � denotes the Hadamard product. 1 is an M×1 vector
of ones. c (·) : R1 → R2 maps a label to a 2-D coordinate.
H k̂ is an 2×N matrix with hk̂n = [xn, yn]

T being the location
estimate of the n-th classifier.

The final location estimate ẑ can be obtained by weighing
the fusion profile βk̂ of the second layer as

ẑ = H k̂βk̂, (6)

where βk̂ =
[
βk̂1 , β

k̂
2 , · · · , βk̂N

]T
.

The key issue for DIFMIC involves: (1) constructing
MFTCs fn (G′m); (2) constructing two-layer fusion profiles
W and β when several fingerprint functions and fingerprints
are given; (3) selecting the optimum fusion profiles W k̂ and
βk̂ in the online testing phase. The intricacies of these three
key problems are analyzed in Section V.

IV. MULTIPLE FINGERPRINTS GROUP

A. RSS

Let rlk(t) denote the value of RSS from the l-th AP at time
index t, and at the k-th grid point. Let D′RSS (k) denote the
U samples of RSS collected at the k-th grid point for basic
classifiers training, expressed as:

D′RSS (k) = [rk (1) , rk (2) , · · · , rk (U)] , (7)

where rk (u) =
[
r1
k (u) , r2

k (u) , · · · , rLk (u)
]T

,
(u = 1, 2, · · · , U, k = 1, 2, · · · ,K). At all the grid points,
The RSS fingerprints for MFTCs training can be expressed
as D′RSS = [D′RSS (1) ,D′RSS (2) , · · · ,D′RSS (K)] ∈
RL×U×K .

Similarly, let D′′RSS (k) denote V RSS samples collected at
the k-th grid point for the two-layer fusion profiles construc-
tion, expressed as:

D′′RSS (k) = [rk (U + 1) , rk (U + 2) , · · · , rk (U + V )] ,
(8)

where rk (v) =
[
r1
k (v) , r2

k (v) , · · · , rLk (v)
]T

, v = U +
1, U + 2, · · · , U + V . So, the RSS fingerprints for fu-
sion profile construction can be expressed as D′′RSS =
[D′′RSS (1) ,D′′RSS (2) , · · · ,D′′RSS (K)] ∈ RL×V×K .

B. HLF

We denote γlk (t) as the converted value of rlk (t) to represent
the HLF [16] value of a particular time index t, which can be
expressed as:

γlk (t) = 255 + rlk (t) . (9)

Eq. (10) shows the HLF value ηijk (t) at the k-th grid point
between the i-th and j-th APs:

ηijk (t) = log

(
γik (t)

γjk (t)

)
− log

(
1

γmax

)
, (10)

where γmax = max
{
γ1
k (t) , γ2

k (t) , · · · , γLk (t)
}

, i ∈
[1, L− 1] , j ∈ [2, L] , i < j. According to Eq. (10), the
submatrix D′HLF (k) can be written as:

D′HLF (k) = [ηk (1) ,ηk (2) , · · · ,ηk (U)] , (11)

where ηk (u) =
[
η12
k (u) , η13

k (u) · · · , η(L−1)L
k (u)

]T
,

(u = 1, 2, · · · , U). At all grid points, the HLF fingerprints
for MFTCs training are expressed as D′HLF =
[D′HLF (1) ,D′HLF (2) , · · · ,D′HLF (K)] ∈ RY×U×K ,
where Y = CL2 .

Similarly, we can obtain D′′HLF as:

D′′HLF (k) = [ηk (U + 1) , · · · ,ηk (U + V )] , (12)

where ηk (v) =
[
η12
k (v) , η13

k (v) , · · · , η(L−1)L
k (v)

]T
.

So, the HLF fingerprints for the two-layer fusion
profiles construction are expressed as D′′HLF =
[D′′HLF (1) ,D′′HLF (2) , · · · ,D′′HLF (K)] ∈ RY×V×K .
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C. DIFF

DIFF [17] is defined for L unique AP pairs at time index t
as follows:

∆rijk (t) = rik (t)− rjk (t) , 1 ≤ i < j ≤ L. (13)

According to Eq. (13), the submatrix D′DIFF (k) can be
expressed for the k-th grid as:

D′DIFF (k) = [∆rk (1) ,∆rk (2) , · · · ,∆rk (U)] (14)

with ∆rk (u) =
[
∆r12

k (u) ,∆r13
k (u) , · · · ,∆r(L−1)L

k (u)
]T

,
(u = 1, 2, · · · , U). The DIFF fingerprints for
MFTCs training are expressed as D′DIFF =
[D′DIFF (1) ,D′DIFF (2) , · · · ,D′DIFF (K)] ∈ RY×U×K at
all grid points .

Similarly, we can obtain D′′DIFF (k) as:

D′′DIFF (k) = [∆rk (U + 1) , · · · ,∆rk (U + V )] (15)

with ∆rk (v) =
[
∆r12

k (v) ,∆r13
k (v) , · · · ,∆r(L−1)L

k (v)
]T

.
So, the DIFF fingerprints for the two-layer fusion
profiles construction can be written as D′′DIFF =
[D′′DIFF (1) ,D′′DIFF (2) , · · · ,D′′DIFF (K)] ∈ RY×V×K .

Now we write our multiple fingerprints group
for MFTCs training and fusion profile training
as G′ = [D′RSS ,D

′
HLF ,D

′
DIFF ] and G′′ =

[D′′RSS ,D
′′
HLF ,D

′′
DIFF ], respectively. For simplicity,

we denote G′1 = D′RSS , G′2 = D′HLF , and G′3 = D′
DIFF ,

G′′1 = D′′RSS , G′′2 = D′′HLF , and G′′3 = D′′DIFF .

D. Multiple Fingerpints Trained Classifiers (MFTCs)

Explicitly, succinctly and contextually, classifiers map a
fingerprint to a corresponding label or grid point. Let fn (G′)
represent the n-th classifier (n = 1, 2, · · · , N ) trained with G′

to map a fingerprint vector to a corresponding label. There are
many variants of fn (·), and any of them can be selected from
probabilistic and machine learning models [3], [25]–[27]. In
this paper, we select N = 4 classifiers, namely, KNN, Random
Forest, Naive bayes and AdaBoost to implement DIFMIC.
Note that any number and choice of classifiers can be selected
to implement DIFMIC.

V. PROPOSED ALGORITHM

A. Two-Layer Fusion Profiles Construction

Our proposed DIFMIC contains two fusion profiles, as
illustrated in Fig. 2. The profile of the first layer is designed
for the predictions of MFTCs. The outputs of the first layer,
denoted as H , are the temporary positioning results, which
will be combined by the fusion profile of the second layer,
i.e., β, to estimate the final location. As compared with the
existing fusion frameworks using only multiple fingerprints
[21] or multiple classifiers [20], the main advantage of our
newly proposed two-layer fusion profile is its ability to obtain
optimum weights among the MFTCs to achieve better posi-
tioning results.

To construct the fusion profiles of the first and second layers
in the two-layer fusion localization framework, we input the

11w

1Mw

1Nw

MNw

1

N

 '1 1 1,f G

 ',N M Mf G

1h

Nh

ẑ

1st layer 

fusion profile

2nd layer 

fusion profile

Fig. 2: Two-layer fusion localization framework.

v-th sample from the m-th kind of fingerprint at the k-th grid
point, i.e., ∀θkm (v) ∈ G′′, to the MFCs, and we can obtain
the prediction from the MFTCs as follows

ŝkmn (v) = fn
(
θkm (v) ,G′m

)
, v = U + 1, . . . U + V , (16)

where ŝkmn (v) , n = 1, 2, · · · , N is the prediction of the n-
th basic classifier trained with the m-th fingerprint, θmk (v) ∈
G′′m. Note that at each grid point, we have V offline samples
with known location of grid point, so we can obtain V
positioning errors.

Given these positioning errors, we propose to construct the
fusion profiles of the first and second layers W k and βk by
jointly minimizing the mean localization error with weights
constraints over the space of all MFTCs as:

Ŵ k, β̂k =

arg min
W ,β

1
V

U+V∑
v=U+1

e(ẑk(v)|W ,β) + λ
V (||W ||p + ||β||p)

s.t. 1TWβ = 1
a ≤ wmn ≤ b,m = 1, 2, · · · ,M,
a ≤ βn ≤ b, n = 1, 2, · · · , N,

(17)

where 1 is an M ×1 vector of ones; ẑk is the estimated loca-
tion given W and β. The localization error e

(
ẑk (v) |W,β

)
is given as:

e
(
ẑk (v) |W,β

)
=
∥∥1TW � c

(
ŝk (v)

)
β − pk

∥∥
2
, (18)

where ‖·‖2 is the `2-norm, � and c (·) were defined in Eq. (5),
pk = [xk, yk]

T represents the ground truth or known location
of the k-th grid point. The prediction vector ŝk (v) is given
as:

ŝk (v) =
[
ŝk11 (v) , · · · , ŝkMN (v)

]T
(19)

with ŝkmn (v) being given by Eq. (16). Eq. (17) is a nonlinear
optimization problem and can be solved by utilizing the
quasi-Newton method. Note that the term λ

V (||W ||p + ||β||p)
is a regularization term to prevent over-fitting during the
weights training process. The constraint [a, b] helps to reduce
the weights training time and ‖·‖p refers to the `p-norm.
The supplementation among diverse kinds of fingerprints and
classifiers are explored and excavated by our proposed fusion
network. Algorithm 1 wraps up the procedure for constructing
our two-layer fusion profiles.

B. Fusion Profile Selection (FPS)

After having obtained the fusion profiles in the offline
phase, another hurdle for accurate fusion to ameliorate the
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Algorithm 1 Two-layer Fusion Profile Construction
Input: 1) Multiple fingerprints group for fusion profiles

construction, θmk (v) ∈ G′′m; 2) The number of grid points
K; 3) MFTCs, i.e., f (G′);

Output: Ŵ and β̂
1: for k = {1, 2, · · · ,K} do
2: for m = {1, 2, · · · ,M} do
3: for n = {1, 2, · · · , N} do
4: for v = {U + 1,M + 2, · · · , U + V } do
5: Compute the prediction label ŝkmn (v) uti-

lizing Eq. (16)
6: Calculate the localization error using Eq.

(18)
7: end for
8: Calculate Ŵ k and β̂k using Eq. (17)
9: end for

10: end for
11: end for
12: Ŵ =

[
Ŵ 1, Ŵ 2, · · · , ŴK

]
, β̂ =

[
β̂1, β̂2, · · · , β̂K

]
13: return Ŵ , β̂

localization accuracy is selecting the best weights from the
two-layer fusion profiles, W k̂ and βk̂ for fusion with the
outputs of the MFTCs, for a given online RSS testing sample
r̃. Most previous studies use RSS direct matching method
to map the online samples r̃ with the fingerprints used for
training G′1, which decreases localization accuracy in complex
environments. To overcome this flaw, FPS offers a fix for this
snag. In the offline phase, we select the optimal MFTC by
minimizing the localization errors over all K grid points as:

(m̂, n̂) =

arg min
(m,n)

K∑
k=1

U+V∑
v=U+1

∥∥1T ·W k � c
(
ŝkmn (v)

)
βk − pk

∥∥
2
,

(20)

where ŝkmn (v) is given by Eq. (16).
When given a testing RSS sample r̃ in the online phase, we

extract HLF η̃ and DIFF ∆r̃. For clarity, let θ̃1 = r̃, θ̃2 = η̃
and θ̃3 = ∆r̃. With the known index of the optimal MFTC
(m̂, n̂), we can obtain the matching grid point by:

k̂ = fn̂

(
θ̃m̂,G

′′
m̂

)
. (21)

After having obtained the estimated grid point k̂, we can select
the first and second fusion profiles Ŵk̂ and βk̂ for more
accurate fusion positioning. The final location estimate can
be given by Eqs. (5) and (6).

To be laconic, FPS selects the optimal weights by resorting
to the optimal MFTC’s knowledge, and is thus superior to
other fusion-based methods. We summarize the procedure of
FPS in Algorithm 2.

C. Robustness of Fingerprints

RSS, DIFF, and HLF fingerprints show different intrinsic
characteristics. DIFF and HLF fingerprints adopt different
strategies to reduce the impact of hardware heterogeneity.
DIFF calculates the differences of the RSS values between

Algorithm 2 Fusion Profile Selection (FPS)

Input: 1) MFTCs, i.e., f
(
θ̃,G′

)
; 2) r̃; 3) The fusion profile

of the first layer, Ŵ ; 4) The fusion profile of the second
layer, β̂;

Output: The estimated fusion profiles Ŵ k̂ and β̂k̂
1: Extract ∆r̃ and η̃ from r̃
2: Find m̂ and n̂ by using Eq. (20)
3: Estimate the grid point k̂ using Eq. (21)
4: Retrieve Ŵ k̂ and β̂k̂ for the outputs of Algorithm 1
5: return Ŵ k̂ and β̂k̂

pairs of APs, while HLF uses ratios of the RSS values between
pairs of APs and then normalizes the ratios. Two key metrics,
namely, the percentage of standard deviation (PSD) Ψ, and
correlation coefficient Φ are defined to show the inherent
characteristics of the three fingerprints utilized in this paper.
PSD evaluates the ability of a fingerprint against dynamic
environment via presenting the statistics at different time index
v. The smaller the PSD value for a fingerprint, the more robust
the fingerprint. Also, the correlation coefficient evinces the
spatial discrimination among grid points. The bigger the Φ,
the poorer the spatial discrimination. We define the PSDs of
RSS, DIFF, and HLF as:

Ψl
k,RSS =

√
1
U

U∑
v=1

[rlk(v)−µr]
2

|µr| ×%

Ψij
k,DIFF =

√
1
U

U∑
v=1

[∆rijk (v)−µ∆r]
2

|µ∆r| ×%

Ψij
k,HLF =

√
1
U

U∑
v=1

[ηijk (v)−µη]
2

|µη| ×%

, (22)

where |·| is the absolute value operator. µr, µ∆r, and µη denote
the mean values of D′RSS (k), D′DIFF (k), and D′HLF (k),
respectively.

The correlation coefficient Φ (j) between the fingerprint
vectors at the k-th and (k + j)-th grid points is given as;

ΦRSS (j) =
rTk rk+j

‖rk‖2‖rk+j‖2
ΦDIFF (j) =

∆rTk ∆rk+j

‖∆rk‖2‖rk+j‖2
ΦHLF (j) =

ηTk ηk+j

‖ηk‖2‖ηk+j‖2

. (23)

Two different smartphones (Samsung galaxy S7 and Huawei
honor 7X) were used to conduct an experiment on how the
fingerprints utilized in this paper can handle the hardware het-
erogeneity problem in the experimental environment defined in
Section VI-A. We collected a total of 1750 RSS samples, i.e.,
10 samples per grid from the two devices. The mean PSDs of
RSS, DIFF and HLF of the two devices are 16.90%, 5.86% and
2.06% respectively. This shows that, DIFF and HLF are more
robust than RSS in handling harware heterogeneity and are
very robust to dynamic environments. The mean correlation
coefficient for RSS, DIFF and HLF are 0.57, 0.74, and 0.90,
respectively. This indicates that, DIFF and HLF performs
better than RSS. Table I summarizes the PSD and correlation
coefficient for our experiment.
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(a) RSS (b) HLF (c) DIFF

Fig. 3: The RSS, HLF, and DIFF values at the same grid point regarding hardware heterogeneity.
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Fig. 4: Floor plan of the office environment.

TABLE I: The percentage of standard deviations and correla-
tion coefficients of different kinds of fingerprints.

metrics RSS DIFF HLF
PSD (Ψ) 16.9% 5.86% 2.06%

correlation coefficient (Φ) 0.57 0.74 0.90

To attest further, we expound how HLF and DIFF finger-
prints handle the heterogeneous nature of devices by compar-
ing the mean values of the various fingerprints at the same grid
point. Figs. 3(a), 3(b) and 3(c) show the RSS, HLF, and DIFF
values at the same grid point. This means that HLF and DIFF
can handle the RSS differences among devices from different
manufacturers.

To summarize, RSS, HLF, and DIFF have their own pros
and cons regarding heterogeneous devices. So, the amalgama-
tion of them by using our proposed DIFMIC can ameliorate
positioning accuracy significantly.

VI. EXPERIMENTAL SETUP AND RESULTS

We juxtapose DIFMIC with other fusion-based methods like
MMSE [11], DFC [9], DFPS [28], MUCUS [6], WiFi-FAGOT
[12] and non-fusion or machine learning methods like KNN,
Random Forest, Naive Bayes, and AdaBoost. Two experimen-
tal environments are chosen for our test. The first environment
is on the 21st floor of the innovation building on the campus
of University of Electronic Science and Technology of China,
as shown in Fig. 4. The second environment is a university

library with the data collected over a period of 15 months
which is publicly available [29]. In each case, the RMSE as
defined in Eq. (24) is calculated.

RMSE =

√√√√ 1

G

G∑
g=1

[
(x̂g − x)

2
+ (ŷg − y)

2
]
, (24)

where [x, y]
T is the true location or the ground truth, [x̂g, ŷg]

T

denotes the g-th location estimate, and G is the number
fingerprint samples. We perform our simulations on an Intel
i5 processor, equipped with 12GB of RAM.

A. Office Environment

This area is 1460 m2, i.e., 73m × 20m surrounded by 9
AROCOV 6260 APs [30], with one corridor and 10 offices
as shown in Fig. 4. The area is divided into 175 grid points
with an interval of 0.8m between adjoining points . U = 20
and V = 10 RSS samples are collected for G′1 and G′′1 ,
respectively with an android smartphone at each grid point.
G′1 and G′′1 are utilized to obtain sets of fingerprints: HLF
(G′2 and G′′2 ) and DIFF (G′3 and G′′3 ). We then train each
of our classifiers (KNN, Random Forest, Naive Bayes, and
AdaBoost) with RSS and the fingerprints gleaned from RSS
to obtain our MFTCs. 975 RSS testing samples in total are
collected.

Fig. 5 shows the RMSEs of the various fusion-based algo-
rithms as compared with DIFMIC. The RMSE of MUCUS,
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DFC, MMSE, DFPS, KAAL, WIFI-FAGOT and DIFMIC are
6.59, 4.85, 3.59, 3.53, 3.43, 3.32 and 2.50 meters, respectively.
These results have validated DIFMIC to be superior over
existing fusion-based algorithms, by fully leveraging and sup-
plementing different fingerprint types to improve localization
accuracy.

Fig. 5: RMSEs of various fusion-based positioning approaches
in the office environment.

Fig. 6 shows the RMSEs of prominent machine learning
methods with successive combinations of fingerprints derived
from RSSs. It shows that DIFMIC outperforms all succes-
sive classifier-fingerprint combinations. The best among the
MFTCs is Random Forest with HLF (RF-HLF) pair with
RMSE of 3.95 meters followed by Random Forest with RSS
(RF- RSS) with RMSE of 3.99 meters. The worst among the
MFTCs is Naive Bayes with RSS (NB-RSS) with a RMSE
of 4.54 meters. Note that all the MFTCs are fused together
with our proposed fusion framework, DIFMIC. This elicits
that fusion-based methods yield far better results than utilizing
single machine learning algorithms for localization.

Fig. 7 shows the CDFs of the RMSE of DIFMIC juxta-
posed with fusion-based methods. It is notable that DIFMIC
reduces the 70-th percental of KAAL, DFC, MMSE, MUCUS,
DFPS and FAGOT by 24.67%, 37.37%, 23.89%, 49.35%,
18.90% and 18.47%, respectively, indicating that our proposed

Fig. 6: RMSEs of basic classifier-fingerprint combinations
compared with DIFMIC in the office environment.

DIFMIC is better than all previously proposed fusion-based
methods.

Fig. 7: CDFs of various fusion-based methods juxtaposed with
DIFMIC in the office environment.

W

(a) First layer fusion weights.

(b) Second layer fusion weights.

Fig. 8: Fusion weights of the first and second layers for the
first 10 grid points in the office environment.

To throw more light on the weight assignment strategy in the
fusion profile regarding fusing multiple classifiers and diverse
fingerprints, Fig. 8 shows two 3-D views of the first and
second layer weights of our proposed fusion network, for more
lucidity for the office testing environment.
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Fig. 9: Floor plan of the library environment. The black
asterisks represent the 3rd floor’s devices, and black asterisks
represent the 5th floor’s devices

Fig. 10: RMSEs of fusion-based localization methods in the
library environment.

B. Library Environment

The publicly available data in [29] were collected over a
period of 15 months, with the environment surrounded with
448 APs with 96 grids as indicated in Fig. 9, and can be
used as benchmark data for testing localization algorithms.
We sample one of the month’s training data set, extract HLF
and DIFF and use all the data to train our MFTCs. We utilize
all the data in another month’s test data to test our MFTCs and
also to obtain fusion weights. We use all th data in another
month’s test data for the online phase. We apply the same
principles for all the fusion based methods.

Fig. 10 shows the RMSE of DIFMIC as compared to other
fusion-based techniques, and shows that DIFMIC outperforms
the other fusion based techniques by reporting a RMSE of
2.49m. WiFi-FAGOT, KAAL, MMSE, DFC, and MUCUS
incur a RMSE of 3.76m, 3.77m, 3.9m, 4.08m, and 4.79m,
respectively. Note that extracting DIFF and HLF increases the
dimensionality of the dataset, hence requiring more memory
and computational time with the dataset analyzed in the library
environment. The dimensions of HLF and DIFF are CL2 , where
L is the number of APs. With the amalgamation of these
high dimensional fingerprints, DIFMIC is still able to reduce
localization errors better than WiFi-FAGOT, which makes use
of RSS, SSD and HLF fingerprints. This shows that DIFMIC
performs very well regardless of the dimensionality of the
dataset.

Fig. 11: RMSEs of basic classifier-fingerprint pairs apposed
to DIFMIC in the library environment.

Fig. 12: CDFs of fusion-based methods compared with
DIFMIC in the library environment.

Fig. 11 shows the RMSE of DIFMIC apposed with
classifier-fingerprint pairs. KNN with HLF (KNN-HLF) has
the best RMSE with 4.3 m followed by Random Forest with
RSS (RF-RSS) which reports a RMSE of 4.5m. The worst
among the basic classifier-fingerprint pairs is AdaBoost with
HLF (ADB-HLF) with a RMSE of 5.05m. Note that Naive
Bayes was not used in this experiment because of the di-
mensions of HLF and DIFF fingerprints. It is computationally
expensive to train Naive Bayes with high dimensional data,
e.g., in this case, HLF and DIFF have dimensions of 576
× 100128. This means that any classifier of choice or any
number of classifiers can be selected and used to construct
DIFMIC with no curtailment. The RMSE of KNN-RSS, KNN-
DIFF, RF-RSS, RF-DIFF, RF-HLF, ADB-RSS, ADB-DIFF,
ADB-HLF, ELM-RSS, ELM-DIFF and ELM-HLF are 4.71m,
4.70m, 4.5m, 4.63m, 4.68m, 4.83m, 4.78m, 5.05m, 4.98m,
4.9m and 4.45m, respectively. Fig. 12 shows the CDFs of
the various fusion based techniques juxtaposed with DIFMIC.
DIFMIC reduces the 85th percentile of KAAL, DFC, MMSE,
MUCUS and WiFi-FAGOT by 33.27%, 36.73%, 32.44%,
62.04%, and 24.28%, respectively, demonstrating that DIFMIC
performs better than other fusion-based methods.

Fig.13 shows the effects of λ, p and the weight constraint
parameter, [a, b], during the weights training process and its
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(a) Effects of varying p in Eq. (17)

(b) Effects of varying λ in Eq. (17)

(c) Effects of varying the weights constraint parameters a and
b in Eq. (17)

Fig. 13: Varying p, λ and the weight constraint parameters,
[a, b] in Eq. (17) for the library environment.

effects on the final location estimate. We utilize the data from
the library environment. In Fig. 13(a), we vary p from 1 to
10 and set λ at 1. We set p to 2 and vary λ from 1 to 10 in
Fig. 13(b). In Fig. 13(c) , p is set to 2 with λ set to 1 whiles
varying the constraint parameter, [a, b]. From Fig. 13, we can
obtain an accurate location estimate when [a, b] = [0, 0.5] and
p ≥ 2; in this case, DIFMIC is robust to the value of λ.

VII. CONCLUSION

We have proposed DIFMIC, a robust WiFi-based position-
ing method by fusing multiple classifier with diverse finger-
prints, namely, RSS, HLF, and DIFF. We exploit the merits of
each fingerprint and each classifier for more accurate local-
ization. In the offline phase, we obtain a multiple fingerprints

group and then obtain our MFTCs via successive training of
each basic classifier with each fingerprint. The FPS algorithm
has also been proposed to intelligently choose fusion profiles
from our proposed two-layer fusion framework by minimizing
localization errors to achieve more robust localization results
in the online phase. DIFMIC is an auspicious positioning
framework and can be extended to any fingerprint-based posi-
tioning systems. This paper puts forth essential enhancement
using only RSS fingerprints of WiFi; additional sensor infor-
mation from accelerometers and gyroscopes can be readily
incorporated into DIFMIC for further improvement. This paper
puts forth essential enhancement using only RSS fingerprints
of WiFi; additional sensor information from accelerometers
and gyroscopes can be readily incorporated into DIFMIC for
further improvement. This paper puts forth essential enhance-
ment using only RSS fingerprints of WiFi; additional sensor in-
formation from accelerometers and gyroscopes can be readily
incorporated into DIFMIC for further improvement. This paper
puts forth essential enhancement using only RSS fingerprints
of WiFi; additional sensor information from accelerometers
and gyroscopes can be readily incorporated into DIFMIC for
further improvement. This paper puts forth essential
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