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Online Noisy Single-Channel Source Separation
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Abstract—A novel single-channel source separation method
is presented to recover the original signals given only a single
observed mixture in noisy environment. The proposed separa-
tion method is an online adaptive process and independent of
parameters initialization. In this paper, a noisy pseudo-stereo
mixing model is developed by formulating an artificial mixture
from the observed mixture where the signals are modeled by the
autoregressive process. The proposed demixing process composes
of two steps: First, the noisy mixing model is enhanced by selecting
the time-frequency (TF) units of signal presence and computing
the mixture spectral amplitude, and second, an adaptive estima-
tion of the parameters associated with each source is computed
frame-by-frame, which is then used to construct a TF mask for
the separation process. To assess the performance of the proposed
method, noisy mixtures of real-audio sources with nonstationary
noise have been conducted under various SNRs. Experiments
show that the proposed algorithm has yielded superior separation
performance especially in low input SNR compared with existing
methods.
Index Terms—Blind source separation, masking, noise reduc-

tion, single-channel separation, underdetermined mixture.

I. INTRODUCTION

S INGLE-CHANNEL blind source separation (SCBSS) is
the process of recovering underlying source signals from

an unknown mixing given only a single sensor without any
prior information of source signals. SCBSS has interested many
researchers during the last decade. In the field of biomedical
signal processing, SCBSS is used in several different areas. Ap-
plications of ECG/EEG recordings given by the electromyog-
raphy (EMG) signal have been developed to distinguish heart-
beat signal from an observed recording based on diverse ap-
proaches, i.e., independent component analysis (ICA), nonneg-
ative matrix factorization (NMF), singular spectrum analysis

Manuscript receivedAugust 12, 2013; revisedAugust 11, 2014 andMarch 26,
2015; accepted May 13, 2015. Date of publication September 07, 2015; date of
current version February 22, 2016. The associate editor coordinating the review
of this manuscript and approving it for publication was Prof. Raviv Raich.
N. Tengtrairat is with Department of Software Engineering, PayapUniversity,

Chiang Mai, Thailand.
W. L. Woo and S. S. Dlay are with School of Electrical and Electronic Engi-

neering, Newcastle University, England NE1 7RU, U.K. (e-mail: w.l.woo@ncl.
ac.uk).
B. Gao is with School of Automation, University of Electronic Science and

Technology of China, Chengdu 610054, China.
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TSP.2015.2477059

(SSA) [1]–[3]. Conventional ICA approach cannot be directly
applied to a single-channel source separation. Thus, modified
ICA methods were proposed. Single-channel independent com-
ponent analysis (SCICA) approach in [4] applies the standard
ICA to separate the independent signals from a single mixture.
The special structure induced by mapping the observed mixture
into a multi-channel model. The algorithm has certain limita-
tions. For example, signals are assumed to be statistically inde-
pendent. Secondly mixtures compose of non-overlapping spec-
trum-density signals. SCBSS of EEG recoding based on sin-
gular spectrum analysis (SSA)was proposed in [5]. SSA decom-
poses a time series into a number of interpretable components
with distinct subspaces and selects the subgroup of eigenvalues
to reconstruct the original source. Another recent application of
the SCBSS is image separation in the field of non-destructive
test and evaluation (NDT&E) [6]–[8]. In NDT&E, researchers
are interested with the study of defects. Imaging technique is
used usually to image the target object when excited by an ex-
ternal signal. The captured image is a result of a superposition of
several independent events where each event is associated with
a particular physics phenomenon. The aim is to estimate these
independent events and monitor the associated physical features
in order to detect and monitor defects.
In general, SCBSS can be categorized into two groups, i.e.,

model-based and data-driven methodologies. In this study,
we focus on data-driven SCBSS. A popular method is the
computational auditory scene analysis (CASA). CASA has
been proposed for the isolation of speech from noise by using
the ideal binary masking (IBM) in time-frequency domain.
A binary masking approach has been introduced to suppress
noise from the noisy input and also maintain speech intelli-
gibility. In [9], this method consists of two phases: Firstly,
training phase evaluates an ideal binary masking (IBM) by
using a Gaussian mixture model (GMM) to label each TF
unit whether speech-dominant or noise-dominant. Secondly,
an enhancement phase is to construct a binary masking by
using the IBM. Later in [10], a new binary-masking algorithm
trained using deep neural networks (DNNs) with unsupervised
restricted Boltzmann machines (RBMs) is proposed to improve
the intelligibility of hearing-impaired listeners by separation of
speech from noise through IBM estimation. Extension of GMM
with user-generated exemplar source is proposed in [11]. This
work uses an exemplar source provided from an external user
to estimate the sources. Data-driven methods such as the sparse
non-negative matrix factorization (SNMF) [12], [13] determine
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a set of basis for each speaker and a mixture is mapped onto
the joint bases of the speakers. It requires no assumption on
sources such as statistical independence or grammatical model.
However, the SNMF method does not model the temporal
structure [14] and it requires large amount of computation to
determine the speaker independent basis. The SNMF2D [15]
was proposed which used a double convolution to model both
spreading of spectral basis and variation of temporal structure
inherent in the sources. Some successes have already been
reported in recent literature [16]–[19] to show the validity of
SNMF2D in separating single channel mixture. The SNMF has
regained interest recently where the domain of interest lies in
the complex spectrogram which gives rise to the complex NMF
(CNMF). Some promising results have recently been reported
in [20] with adaptive sparseness. On the other hand, binaural
source separation method generally delivers better separation
performance than a single recorder in the underdetermined
scenario. The Degenerate Unmixing Estimation Technique
(DUET) [21] and its variants [22], [23] have been proposed as a
separating method using binary time-frequency (TF) masks. A
major advantage of DUET is that the estimates from two chan-
nels are combined inherently as part of the clustering process.
The DUET algorithm has been demonstrated to recover the
underlying sparse sources given two anechoic mixtures in
the TF domain. Recently, DUET has been extended to the
single-channel mixture and the algorithm was termed as the
Single Observation Likelihood estimatiOn (SOLO) [24], [25].
The SOLO constructs an artificial stereo mixture which is then
used to form a binary mask for separation.
All of the above SCBSS algorithms are derived for noise-

free condition which lacks the potential and robust to solve the
problem in noisy environments. Since the presence of noise seri-
ously degrades the performance, many algorithms for handling
background noise have been developed. In a realistic situation
of audio applications, desired signals will be corrupted by an ad-
ditive background noise. Mathematically, noisy single-channel
blind source separation (NSCBSS) can be expressed as:

(1)

where denotes time index, is unknown
noise signal and the goal is to estimate the sources

of length when only the observation signal is avail-
able. A well-known approach to improve intelligibility and per-
ceptual quality of degraded speech is a speech enhancement ap-
proach. The speech enhancement approach is to remove back-
ground noise in a noisy speech. Most of the common enhance-
ment techniques operate in the frequency domain which can
generally be expressed as

(2)

where is an observed noisy mixture at the th fre-
quency bin of the th frame, is a sum
of the source signals (i.e., mixture signal without noise), and

denotes the noise. An enhanced spectrum of mixture
signal is given as where

is a spectral gain. Hence, speech-enhancement perfor-
mance depends solely on the spectral gain by applying a fre-
quency-dependent gain function to the spectral components of

the noisy speech, in an effort to suppress the noise components
to higher quality of speech components. Many approaches have
been established in recent decades, for example the spectral sub-
traction method, minimum-mean square error (MMSE) estima-
tion, and a maximum a posteriori (MAP) estimation. The spec-
tral subtraction method [26] achieves noise reduction by sub-
tracting estimated noise spectral amplitude from the observed
spectral amplitude without concern of speech spectral compo-
nents. Secondly, the MMSE estimator [27] and its more recent
versions [28] apply a frequency dependent gain function to the
spectral components of the noisy speech. Its solution is fea-
tured by the noise variance, a priori SNR, and a posteriori SNR
where the noise variance is known or can be estimated. Lastly,
the speech enhancement method using a maximum a posteriori
(MAP) estimation [29], [30] modeled the speech probability
density function (PDF) by a parametric super-Gaussian func-
tion developed from a histogram. This method has an effective
noise reduction capability especially in low SNR environments
which is superior among the three methods.
In the paper, we consider the NSCBSS problem as one noisy

mixture of unknown sources signals. The contributions of the
paper are summarized below: 1) It is an online adaptive separa-
tion methodwhere the observedmixture is segmented into small
frames. The separation process is executed adaptively frame-by-
frame. Hence, the robustness of the proposed algorithm can ben-
efit for real-time signal processing applications. 2) It is an adap-
tive parameters estimation method. The parameters are adap-
tively estimated from two consecutive frames. The self-adaptive
property is preferred for time-varying signals especially speech
and highly nonstationary noise. 3) It is independent of parame-
ters initialization, i.e., no need for random initial inputs or any
predetermined structure on the sensors. This renders robustness
to the proposed method. 4) It has computational simplicity and
does not exploit high-order statistic. Hence this yields the ben-
efit of ease of implementation. To achieve the above, the pro-
posed method requires the following assumptions: the source
signals are characterized as AR processes, the sources satisfy
the windowed-disjoint orthogonality (WDO) and the local sta-
tionary of the time-frequency representation.
The overview of the proposed method is illustrated in

Fig. 1 which is organized as follows: Section II introduces the
noisy pseudo-stereo mixture model. Section III proposes an
online demixing method, i.e., the mixture enhancement and
the separation process. Section IV presents the separability of
the pseudo-stereo model. Experimental results with a series
of performance comparison with other SCBSS methods are
conducted and discussed in Section V. Finally, Section VI con-
cludes the paper.

II. PROPOSED SINGLE—CHANNEL NOISY MIXING MODEL

A. Proposed Pseudo-Stereo Noisy Mixture Model

In this paper, for simplicity we consider the case of a single-
channel noisy mixture of two sources and a noise in time domain
as

(3)
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Fig. 1. Overview of the proposed algorithm.

where is the single channel mixture, is an additive
uncorrelated noise that can be stationary or nonstationary, and

and are the original source signals which are as-
sumed to be modeled by the autoregressive (AR) process [31]:

(4)

where denotes the th order AR coefficient of the th
source at time , is the maximum AR order, and is an
independent identically distributed (i.i.d.) random signal with
zero mean and variance . This model enables us to formu-
late a virtual mixture by weighting and time-shifting the single
channel mixture as

(5)

where is the weight parameter, and is the time-
delay. The noisy mixture in (3) and (5) is termed as “pseudo-
stereo” because it has an artificial resemblance of a stereo signal
except that it is given by one location which results in the same
time-delay but different attenuation of the source signals. To
show this, we can express (5) in terms of the source signals,
AR coefficient and time-delay as

(6)

Defining the followings:

(7)

(8)

(9)

where and represent the mixing attenuation
and the residue of the th source, respectively, and
denotes noise obtained by weighting and time-shifting of the
additive noise . Using (7)–(9), the overall proposed noisy
mixing model can now be formulated in terms of the sources
and the noise as

(10)

B. Time-Frequency Representation

The TF representation of the noisy mixing model is obtained
using the Short-Time Fourier Transform (STFT) of ,
, 2 as

(11)

for . In (11), we have used the fact that ,
thus the TF of in (13) can be simplified to

(12)

To facilitate further analysis, we also define

(13)

which forms a part of without the contribution of the
source . Notice that factor is only uniquely spec-
ified if , otherwise this would cause phase-wrap [32].
Selecting improper time-delay will lead to phase-wrap if the
maximum frequency of the source is exceeded. In order to avoid
phase ambiguity, we must satisfy

(14)
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where , is the maximum time delay,
is the maximum frequency present in the sources and is

the sampling frequency. Hence, can be determined from
(14) according to

(15)

As long as the delay parameter is less than , there will not
be any phase ambiguity. This condition will be used to deter-
mine the range of in formulating the pseudo-stereo mixture.

III. PROPOSED ONLINE SINGLE—
CHANNEL NOISY DEMIXING METHOD

The proposed online single-channel noisy demixing method
mainly comprises of two steps: The first step is mixture en-
hancement which aims to reduce the additive noise and ex-
tracts the source information. The second step is the separa-
tion process which isolates the original signals by multiplying
a mask on the noise-reduced mixture. The mask is constructed
by evaluating the cost function given by each source-signature
estimator.

A. Proposed Single-Channel Mixture Enhancement

1) Audio Activity Detection: The audio activity detection
(AAD) method enhances the noisy mixture by selecting the TF
units that contain source signals and removing TF units without
source signals. To begin, the two statistical hypotheses are set,
i.e., and which denote the source absence
and presence at th frequency bin of the th frame, respectively.

(16)

where is a mixture given by or ,
is a sum of source signals, i.e.,
, and is the additive noise. The term

and are assumed to be complex Gaussian distributed.
Source presence at a particular unit is detected by com-
puting a local source absence probability (LSAP) and selecting
the unit that the LSAP is less than a local threshold
where can be set by the user. The LSAP can be expressed as

(17)

where denotes a probability density function (PDF),
is the ratio defined by , and and
are the prior probabilities of the respective hypotheses. The
term
is the likelihood ratio of the source presence and source
absence at units defined as:

and

, respectively. In the case of
, this particular unit constitutes as noise. In order

to update the noise power, a global source absence probability
(GSAP) is used to indicate whether there is a need of an
adjustment to the noise power or not. The GSAP computed at
the th frame can be expressed as (18), shown at the bottom
of the page. When the GSAP exceeds a global threshold , a
noise power estimate is updated. Otherwise, the noise power
estimate of the th frame remains the same as in the previous
frame. The noise power estimate can be computed as

(19)

where is a smoothing parameter of the noise power
estimate.
In traditional voice activity detection (VAD) method [33],

[34], the likelihood of the presence of the sources requires the
source power spectral density which is unknown.
Additionally, In the case of low input SNR where source energy

is low compared with noise power , i.e.,
, the likelihood function of the source

presence will become which is
identical to the source absence likelihood. Consequently, a
value of is equal to 1. As a result, LSAP obtains a
value of the prior probability ratio. This case causes LSAP
and GSAP to be independent of the mixture. Therefore, LSAP
and GSAP cannot correctly identify units of weak source
energy in high noise power.
To remedy the ill conditioned LSAP and GSAP, we replace

by where is the proposed fixed a priori
SNR and denotes
the short-term spectrum of the noise. The term will be set
to emphasize the low source energy in high noise-power units
and to prevent the noise power estimates from increasing under
weak source activity. As the probability
differs from , LSAP can then indicate and
select the particular TF units which contain weak source com-
ponents in low input SNR. Hence, most if not all of the in-
formation-bearing source data can be preserved for the sepa-
ration process. The separation performance requires those es-
sential data for accurate estimating the sources’ signatures and
using it to evaluate the appropriate TF units that belong to the

(18)
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original signals. Additionally, using instead
will benefit the decoupling of the noise power estimator and the
source spectral amplitude estimator. In this way, both parame-
ters can be individually estimated with better consistency. In this
new light, the likelihood function of the observed signal under
source presence can be expressed as

(20)

The optimal is determined by minimizing the integrated
probability of error. The decision rule is based on the com-
parison of with the threshold : When

we decide or else we decide .
The probability of error can be expressed as

(21)

where denotes a threshold boundary between source
absence and presence, is the true input SNR of a noisy mixture,
and is a candidate of the optimal . The optimal can be
determined from

(22)

where denotes the optimal value of which selects that
yields the minimum value of .
The AAD method enables us to obtain the TF plane of the

source-presence mixing model, i.e., and .
The noise power estimator will be used to estimate source
spectral amplitude. In Section III-A-2, we will show how the
spectral amplitude of sources can be extracted from the mixing
model.
2) Mixture Spectral Amplitude Estimator: Let de-

notes the mixture with source present at units from the
AAD method. This consists of the sum of the source signals
and the residual noise , i.e.,

(23)

where , is the
sum of the sources (i.e., ), and
and are the complex exponential of the noisy phase and
source phase, respectively. The residual noise refers to
the remaining noise in the source-presence TF units only. This
sub-section focuses on the estimation of the spectrum
by using the proposed improved mean square error short-time
spectral amplitude (iMMSE-STSA) estimator . This es-
timator is solely required for estimating the spectral amplitude

from since it can be proven that the complex
exponential estimator is the complex exponential of the noisy
phase, i.e., [29]. The conventional MMSE-STSA es-
timator [29] is derived from mathematical derivation by mini-
mizing the mean-square error cost function based on statistical
independence assumption and models. The MMSE-STSA esti-
mator of is obtained as:

(24)

where , indicates the gamma function,
with , and indicates the modi-
fied Bessel functions of zeroth and first order, respectively.

is defined by ,
and denote the a

posteriori SNR and a priori SNR, respectively. The efficiency
of conventional MMSE-STSA estimator is based on the esti-
mates of and , i.e., and . ,
respectively. These two parameters significantly influence the
accuracy of the spectrum amplitude function (24). However,
under the case of weak source components and low input SNR,
the conventional estimator causes deterioration
of the weak source components. We can analyze this case as
follows:

Using the subadditivity properties of the absolute value, we
obtain

In the case of weak source components and low inputs SNR,
i.e., , we then have
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The estimation of can be shown to be given by

which comprises of two terms, i.e., the first term represents the
scaled a priori SNR estimator of its previous frame. The second
term is a maximum likelihood estimate of the a posteriori
SNR based entirely on the current frame. The term ,

, is a weighing factor that controls the trade-off
between the noise reduction and the transient distortion brought
into the signal. At a particular unit of weak source activity
and low input SNR where , this will cause

to be solely dominated by the first term, i.e.,
due to .

Thus, depends only on the scaling of its previous
frame without taking the scaled a posteriori SNR estimator
into account . The term

is important because it reacts to changes in the
signal energy. This property is naturally suited to nonstationary
signals such as audio signals. The term tends to be
stationary and smaller along time frames. The underestimation
of will cause the spectral amplitude estimator
to be more sensitive to errors. Additionally, will be
intolerably suppressed such that weak source components are
also removed as well. Therefore, this leads to the loss of infor-
mation-bearing source-data which will impact performance of
the separation process. To overcome this issue, we can improve
the estimation of by computing the a posteriori SNR
parameter from the source presence probability
(SPP) with fixed a priori to guarantee that . The
term denotes a SPP given by the Bayes’
theorem:

(25)

where . Eqn. (31) is solved for the a posteriori
SNR based on and as

(26)
Using the and , the a posteriori
SNR then satisfies . Hence, the term can
be obtained by computing both estimators of the previous and
current frames. Therefore, to extract source information even
when source components are weak in low input SNR, the pro-
posed iMMSE-STSA firstly estimate the a posteriori SNR using
(26) and then using this estimate for computing the spectral am-
plitude. Finally, the estimated spectra of the mixture can be for-
mulated as

(27)

In conclusion, the proposed mixture enhancement method
will benefit the source separation by providing the greater
degree of source information by attempting to select the TF
units of source presence and reject the TF units of solely
noise. The noise-reduced mixture can now be modeled as

which will then be separated
by a binary TF mask.

B. Proposed Single—Channel Source Separation

1) Adaptive Mixing Parameter Estimator: The sources
are assumed to satisfy the local stationarity of the time-fre-
quency representation. This refers to the approximation of

where is the maximum time-delay (shift)
associated with the Short-Time Fourier Transform (STFT)

with an appropriate window function . If is small
compared with the length of then .
Hence, the Fourier transform of a windowed function with shift
yields approximately the same Fourier transform without .

For the proposed method, the pseudo-stereo mixture is shifted
by and by invoking the local stationarity this leads to

(28)

Thus, the STFT of where is approximately
according to the local stationarity. Secondly, as-

suming that the sources satisfy the windowed-disjoint orthogo-
nality (WDO) condition:

(29)

where and are the STFT of and .
Hence, the th source is dominant at a particular unit, the
noise-reduced mixture can be more specifically expressed as:

(30)

for and . The term
is given by (13)

and is the th source presence area defined as
. The estimate of

associated with the th source
can be determined as
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and can be assumed to be small after the
mixture enhancement step (as shown in Section V-B). In this
case, we can expressed as

(31)

where and

are the real and imaginary parts of ,
respectively, and . We propose to adaptively esti-
mate frame-by-frame. Firstly, a power weighted TF
histogram will be used to estimate for each frame
and the TF units are then clustered into a number of groups
corresponding to the number of sources in the mixture. The
power weighted histogram is a function of with the
weight therefore the real and imaginary
parts of for each frame basis can be estimated as

(32)

The above can then be combined to form the estimate of (32) as

(33)

Relating (33) with (31), we can use similar idea to express
where and are the power

weighted estimation of and , respectively.
Secondly, the adaptive mixing attenuation estimator is
obtained by smoothing and :

(34)

where is a smoothing parameter of the adaptive
mixing attenuation estimator.
2) Construction of Masks: The binary TF masks can be

constructed by labeling each TF unit with the argument
through maximizing the instantaneous likelihood function. The
instantaneous likelihood function is derived from the maximum
likelihood (ML) method by first formulating the Gaussian like-
lihood function
using (30), maximizing the likelihood function with respect
to and then substituting the obtained result into the

Gaussian likelihood function. The resulting instantaneous
likelihood function assumes the following form:

(35)

The function clusters every unit to the th dom-
inating source for . This process
is equivalent to the following minimization problem:

(36)

Using (30), the term can be expressed as:

By invoking the local stationarity, we then obtain

(37)
for . The derivation of in the source domain in
(37) allows us to express in the mixture domain as:

(38)

In this light, the proposed cost function can be formu-
lated based on the single mixture by substituting this
expression into (36) which leads to

(39)

(40)

Since , the term is negli-
gible. Hence, . Using (39)
and (40), in the instance when the th source dominates at

, the function will correctly identify the
source if and only if . To elucidate
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TABLE I
OVERVIEW PROPOSED ALGORITHM

this condition, firstly, the case when is considered by
setting :

(41)

When , following the above step leads to

(42)

To guarantee that is always satisfied,
then wemust specified a condition for . Starting with (41) and
(42), we have

(43)

Eq. (43) is bounded by

and therefore we obtain

(44)

for . As has small energy compared with source
energy they can be treated as negligible. Hence, (44) can be
simplified to

(45)

If the condition in (45) is satisfied across , the function (39),
(40) will then correctly assign the unit to the th source.
Once the TF plane of the mixtures are assigned into groups of

units, the binary TF mask for the th source can then be
constructed as

.
(46)

The proposed algorithm is summarized in Table I.
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IV. ANALYSIS OF SEPARABILITY OF THE PROPOSED
PSEUDO-STEREO MIXTURE MODEL

The separability of the noise-free mixing model can be exam-
ined from the noise-free pseudo-stereo mixture by considering

and in the following three cases. Case 1
refers to identical sources mixed in the single channel, Case 2
represents different sources but setting and for the pseudo-
stereo mixture such that , and Case 3
corresponds to the most general case where the sources are dis-
tinct, and and are selected arbitrarily such that the mixing
attenuations and residues are also different. The above cases are
demonstrated by using the functions and from
Section III-B-2). These function are recapped here as:

(48)

(49)

For each TF unit, the th argument that gives the minimum cost
will be assigned to the th source. We may analyze (49) further
by assuming that the th source dominates at a particular TF
unit. In this case, the observed mixture in TF domain reduces to

and therefore, (49) becomes

(50)

We consider the following three cases:
Case 1: If and

, then
.

In this case, there is no benefit achieved at all. The second
mixture is simply formulated as a time-delayed of the first
mixture multiply by a scalar plus the redundant residue
the separability of this case is presented by substituting the
pseudo-stereo mixture of Case 1 into the cost function. Since
both residues are equal, then

. For Case 1, the function
given by (50) becomes:

Invoking the local stationarity of the sources
for , the above leads to

As a result, the function is zero for all arguments,
i.e., . In this case, the function cannot
distinguish the arguments, the mixture is not separable.
Case 2: If and

, then
.

This case remains almost similar to the previous case and dif-
fers only in terms of . As each residue

is related to the th source via , the separa-
bility of this mixture can be analyzed using and (50) as

It can be deduced from above that the cost function yields a
zero value for , and nonzero value for . Despite the
mixing attenuation for both sources are identical, the function

is still able to distinguish the arguments by using only
the difference of residues. Therefore, the mixture of Case 2 is
separable.
Case 3: and

(or ) then

We first treat the situation of . Since
the mixing attenuations and correspond respec-
tively to and then the function given by (50)
can be expressed as

This cost function yields a nonzero value only for . In this
case, the function can separate the arguments due to
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the difference of and . The case of
follows similar line of argument as above where the function

becomes

This cost function yields a nonzero value only for ; thus
the function is able to distinguish the arguments. In
summary, by considering and with respect
to above three cases, only Case 2 and Case 3 are separable.

V. RESULTS AND ANALYSIS

A noisy mixture is generated by adding two sources and an
uncorrelated nonstationary noise with various input SNRs. 20
speech, 20 music signals and noise signals are selected from
TIMIT, RWC, and Noisex databases, respectively. Additionally,
we have conducted experiments to determine the optimal
and the choice of . All experiments are conducted under the
same conditions as follows: The sources are mixed with normal-
ized power over the duration of the signals. All mixed signals
are sampled at 16 kHz sampling rate. The TF representation is
computed by using the STFT of 1024-point Hamming window
with 50% overlap. The parameters are set as follows: for the
pseudo-stereo noisy mixture and for the smoothing
parameter of the noise power and the a priori SNR estimates

and , respectively, and
. The separation performance is evaluated by measuring the

distortion between the original source and the estimated one
according to the signal-to-distortion (SDR) ratio [35] defined
as
where , , and represent the interference from
other sources, noise and artifact signals. MATLAB is used as the
programming platform. All simulations and analyses are per-
formed using a PCwith Intel Core 2 CPU 3GHz and 3GBRAM.

A. Determination of Optimal for Mixture Enhancement

The optimal is determined by minimizing the proposed in-
tegrated probability of error in (21) and (22) in Section III-A-1.
The term varies from 0 dB to 30 dB by 5 dB increment.
The candidate is converted from linear scale to dB (i.e.,

) with various from 0 dB to 50 dB
by 5 dB increment.
Fig. 2 on the left-hand side shows the plot of for var-

ious values. As a result of individual , the minimum
is obtained at . Therefore, the optimal is then
set by . However in realistic scenario, the term is unknown.
Thus, the optimal in (22) is determined by approximating the
above integral in (22) by discretely evaluating the term at var-
ious values and taking the average. The result is shown on the
right-hand side of Fig. 2. It can be seen that the range of that
yields the minimum error is between 10 dB and 15 dB. Based on
this result, the optimal can be set at
for all experiments.

Fig. 2. Probability of error of individual value (left) and integrated
probability of error for various (right).

B. Mixture Enhancement Performance

To verify the proposed mixture enhancement method, a test
has been conducted and compared the mixture enhancement
methodwith the originalMMSE and the recentmodifiedMMSE
[36] by using segmental SNR (SegSNR, in dB) and the percep-
tual evaluation of speech quality (PESQ) measures [38]. The
experiments have been assessed on three types of mixtures, i.e.,
music + music, speech + music, and speech + speech.
For the standard MMSE, the smoothing parameter was set

at 0.98 according to [27] which shows a strong correlation of
and corresponding previous enhanced spectral ampli-

tudes. As such, the term will be smoothness across time
where this property suits for stationary signals. Thus, the current
frame estimation inclines to be smaller than its previous
estimation . Consequently, the smooth will be
underestimated. This leads to over-suppression: not only noise
components but also the source signals; and the sensitive spec-
tral amplitude estimator . The modified MMSE gives
better noise suppression and the quality of reconstructed signals
than the standard MMSE method where for low input
SNR and for high input SNR as shown in Fig. 3. How-
ever, the modified MMSE demands higher computational time
consuming for the training step but still removes more source
components compared with the proposed mixture enhancement
method. In Fig. 3, the modified MMSE gives lower percep-
tual intelligibility and quality of the estimated signals than the
proposed mixture enhancement method even though the mod-
ified MMSE yields better SegSNR. Therefore, our proposed
mixture enhancement method retains the perceptual quality of
the sources and maintain a comparably high SegSNR while
being able to reduce noise. The proposed mixture enhancement
method yields the best PESQ performance where the average
PESQ improvement are 27% and 19% over the standard and
modified MMSE methods, respectively. In the interval of [0,
20] dB input SNR, the proposed mixture-enhancement method
is able to significantly remove noise from the noisy mixture
and also retain intelligible perception of the noise-reduced mix-
ture. As evidenced in Fig. 3, the proposed enhancement method
gains the average improvement over the noisy mixture at 3.0 dB
(76%) for SegSNR and 0.4 (12%) for PESQ.
The subjective testing of signal quality and intelligibility has

been conducted based on ITU-T standard (P.835). The signal
distortion (SIG) [43] has been used as the opinion test of intel-
ligibility. A five-category rating scale is used for each aspect of
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Fig. 3. SegSNR (top) and PESQ (bottom) on mixtures of two sources and ad-
ditive noises at different input SNRs.

Fig. 4. Comparison of average SIG testing for the noisy mixture, standard
MMSE, modified MMSE, and Proposed mixture enhancement.

the evaluation. A five-category rating scale is used for each as-
pect of the evaluation. For SIG, the corresponding scales are:
1) Very unnatural, very degraded, 2) Fairly unnatural, fairly de-
graded, 3) Somewhat natural, somewhat degraded, 4) Fairly nat-
ural, little degradation, 5) Very natural, no degradation. The SIG
results are shown in Fig. 4.
The proposed mixture enhancement method renders the best

quality and intelligibility of the enhanced mixture among the
three MMSE methods for across the range of input SNR. A vi-
sual test has also been conducted by using mixed real-audio
sources (speech + music) and an uncorrelated additive noise.
A clean mixture of speech and musical sources is shown in
Fig. 5(a). A noisy mixture consists of the two audio sources and
a white Gaussian noise with 5 dB SNR. The enhanced mixture is
obtained by applying the proposed enhancement method on the
noisy mixture. Visually, an enhanced mixture in Fig. 5(c) has
efficiently extracted the sources spectrum compared with the
noisy mixture in Fig. 5(b).

C. Choice of for estimating

The adaptive mixing attenuation estimator in (34), i.e.,
is weighted at every

two consecutive frame of through . To determine ,

Fig. 5. Spectrograms of original clean mixture, clean mixture and additive
white noise, noisy mixture enhanced using proposed iMMSE-STSA estimator.
(a) clean mixture; (b) noisy mixture; (c) enhanced mixture.

Fig. 6. Two original sources, noise-free mixture and two estimated sources
with .

100 experiments have been conducted on 100 noise-free mix-
tures by implementing the proposed algorithm but excluded
the enhancement step. Each noise-free mixture is simulated
by adding two synthetic nonstationary AR sources. The
nonstationary AR source is synthesized by using the model
(3) with 256 s length which divided into five sections, i.e.,

, , ,
, and , respectively.

The term and of have been changed section by
section. The samples of synthetic source signals are shown in
Fig. 6 in the top row.
Firstly, the term is tested on a range from 0.05 to 0.95 by

0.1 increment. As a result, from to , the
average SDR results have increased slightly. Between

, the average SDR rises sharply with the average
improvement of 3 dB per source. The term is then further
tested on [0.86,0.99] with 0.01 increments and its results are
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Fig. 7. Average SDR on the noise-free mixture of two synthetic AR sources
with various .

Fig. 8. Mixing coefficients of (true) and for , 0.95, 0.99.

illustrated in Fig. 7. The highest average SDR is within the in-
terval of from 0.91 to 0.98. Hence the optimal choice of
will be within [0.91,0.98].
We have plotted an example of against with

different values in Fig. 8. The term of
has highly oscillatory values. Conversely, varies slowly
and resembles a straight line when because
at the th frame depends 99% on its previous value. When

, tracks very closely with the true .
Hence, has a crucial role in tracking the behavior of .
Although is an estimate of , the separating perfor-
mance of yields the same SDR as at 14.7 dB and
14.9 dB for and , respectively. This is because the
condition has been satisfied when

according to (45). We have computed the condi-
tion for and 2 as shown in Fig. 9. For ,

,
thus the condition is satisfied. For , the
condition is also true. Therefore, the cost function has correctly
assigned all units to their respective original sources.
This is clearly evident by the same SDR results between the

and the . Therefore, we selected around 0.95
for all experiments.

D. Separation Performance
The separation performance of the proposed method has

been assessed by using 150 mixtures. The noises have been
randomly selected from the NOISEX database which are:
pink.wav, destroyerops.wav and factory2.wav. These noises

Fig. 9. condition of on the left plot and on the plot
where the dot-dash line refers to and the continuous line refers to

, .

Fig. 10. Estimated coefficients of (left) and (right).

represent stationary, nonstationary and highly nonstationary
noises, respectively. The proposed approach will be compared
with the single-channel nonnegative matrix 2-dimensional
factorization (SNMF2D) and the single-channel independent
component analysis (SCICA) [4]. The SNMF2D parameters
are set as follows [4]: the number of factors is 2, sparsity
weight of 1.1, number of phase shift and time shift is 31 and
7, respectively for music. As for speech, both shifts are set to
4. Cost function of SNMF2D is based on the Kullback-Leibler
divergence. As for the SCICA, the number of block is 10 with
unity time delay.
In Fig. 10, and change from frame to frame (this

is natural as they correspond to speech and music signals, re-
spectively). Examples of two audio sources with equal power,
the additive noise, and the noisy mixture at 0 dB SNR are shown
in Fig. 11 at the top and the second row. Visually in Fig. 10, the
estimated sources (bottom) have been clearly separated when
compared with the original sources (top). On the other hand,
the estimated sources from SCICA and SNMF2D have not been
well separated as shown in Figs. 12 and 13, respectively. We
have also illustrated the average SDR results using the pro-
posed method for three mixing types with various inputs SNR
in Fig. 14. As expected, the mixture of music + music yields the
best separation performance followed by speech + music and
speech + speech, respectively. The reasons are firstly the dif-
ference of AR coefficients between music and music is more
distinct than the other two types. Secondly, the speech signals
are highly nonstationary thus it is more difficult to separate than
music. Additionally, the additive noise signals have similar fre-
quency components to speech components in which the spec-
trums of speech signal will be submerged by the noise signal.
Fig. 15 illustrates the separation performance of SCICA,

SNMF2D, and the proposed method based on three different
noises with various input SNRs. An error bar denotes a stan-
dard deviation of each method across input SNRs. From the
above it can be seen that the proposed method yields superior
separation performance with the average SDR at 6.14, 6.47,
and 6.24 dB per source for stationary, nonstationary, and highly
nonstationary noises, respectively. The average improvement
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Fig. 11. Two original sources, observed noisy mixture of 0 dB SNR, and two
estimated sources using the proposed method.

Fig. 12. Two estimated sources using SCICA method.

Fig. 13. Two estimated sources using SNMF2D method.

Fig. 14. Average SDR performance of three mixing types with various input
SNR using the proposed method.

SDR of the proposed method over the SCICA and SNMF2D
methods are 3.2 and 3.1 dB per source, respectively. The
proposed method can well separate the noisy mixture while
the SCICA and SNMF2D cannot when, in particular, the input
SNR is below 15 dB. This is because the proposed method
removes noise components and emphasizes the source compo-
nents through the mixture enhancement step. For the SCICA

Fig. 15. Comparison of average SDR performance among SCICA, SNMF2D
and the proposed method. (a) Stationary; (b) nonstationary noise; (c) highly
nonstationary noise.

and SNMF2D methods, their separation performances depend
critically on source information, given by the highly noisy
mixture, thus these two methods are hampered by interference
of noise.
Fig. 16 shows a comparison of SCICA, SNMF2D and the pro-

posed method based on the mixing types. The proposed method
renders the best separation performance of all mixture types
among the three methods. Particularly in low input SNR, i.e.,
below 15 dB, the proposed method performs far superior than
the SNMF2D and SCICA.

VI. CONCLUSION

In this paper, a novel noisy single channel source separation
algorithm has been presented. The proposed method constructs
a noisy pseudo-stereo mixture by time-delaying and weighting
the observed mixture. The method assumes that the source sig-
nals are characterized as AR processes and the separability anal-
ysis of the pseudo-stereo mixture has been derived. The pro-
posed method enhances the sources in the noisy mixing model
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Fig. 16. Comparison of average SDR performance of the three mixing types
with various input SNR between SNMF2D, SCICA, and the proposed method.
(a) music + music; (b) speech + music; (c) speech + speech.

and then separates the enhanced mixture. Furthermore, the con-
ditions required for unique mask construction from the max-
imum likelihood method have also been identified. The pro-
posed method has demonstrated a high level separation perfor-
mance for sources in nonstationary noisy environment. The pro-
posed method gains at least three advantages: Firstly, the pro-
posed approach is able to adapt the parameter estimated frame-
by-frame and separates the mixture given by small blocks. Sec-
ondly, it does not require a priori knowledge of the sources. Fi-
nally, neither iterative optimization nor parameter initialization
is required. Hence, these render the robustness to the proposed
method for implementation in practical scenarios.
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