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Abstract—This paper proposes a new system for the
unsupervised diagnostic and monitoring of defects in
waveguide imaging. The proposed method is automatic and
does not require manual selection of specific frequencies
for defect diagnostics. The core of the method is a com-
putational intelligent machine learning algorithm based on
sparse non-negative matrix factorization. An internal func-
tionality is built into the machine learning algorithm to
adaptively learn and control the sparsity of the factoriza-
tion, and to render better accuracy in detecting defects.
This is achieved by using Bayesian statistics methodol-
ogy. The proposed method is demonstrated on automatic
detection of defect in metals. In addition, we show that
the extraction of the spectrum signature corresponding
to the defect is significantly more efficient with the pro-
posed optimal sparsity, which subsequently led to better
detection performance. Experimental tests and compar-
isons with other sparse factorization methods have been
conducted to verify the efficacy of the proposed method.

Index Terms—Computational intelligence, diagnosis and
monitoring, instrumentation, machine learning, signal pro-
cessing and analysis, waveguide imaging.

I. INTRODUCTION

I N RECENT years, many unsupervised machine learning
algorithms have been developed for industrial diagnostic
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imaging system applications [1], [2]. This includes inspection
of electronic chips in semiconductor production lines [3], use of
unsupervised learning features and multilayer neural networks
for defect detection on solder joints [4], defect inspection sys-
tem of solar modules in electroluminescence (EL) images [5],
and machine learning-based fuzzy spectral and spatial feature
integration method for classification of nonferrous materials
in hyperspectral data [6]. All of these methods recognize that
machine learning and pattern-based diagnostic system is a
wide group of analysis techniques used in science and indus-
try to evaluate the properties of materials, components, or
systems without causing damage [7], [8]. Common machine
and pattern feature learning methods consist of principal com-
ponent analysis (PCA) [9], independent component analysis
(ICA) [10], and non-negative matrix factorization (NMF) [11],
[12]. In comparison with PCA and ICA, NMF concentrates
on the part-based decomposition and it is not necessary to
have the constraints of orthogonality and independence. Thus,
NMF attracts lots of research applications, such as feature
extraction, pattern recognition, machine learning, object detec-
tion, and dimensionality reduction [13]–[20]. In this paper,
we propose a new NMF-based method for solving the feature
extraction problem. In a conventional NMF, given a data matrix
Y = [y1, . . . ,yL] ∈ �K×L

+ with Yk,l > 0, NMF factorizes
non-negative input matrix into a product of two non-negative
matrices

Y ≈ DH. (1)

In (1), D ∈ �K×�
+ and H ∈ ��×L

+ where K and L represent
the total number of rows and columns in matrix Y, respec-
tively. It is expected that � < L, since D can be compressed
and reduced to its integral components, such as DK×� is a rep-
resentation as a set of dictionary vectors. H�×L is an active
matrix that controls the amplitude of each dictionary vector
at every time or space point. A common method using multi-
plicative update algorithm as well as families of parameterized
cost functions to solve the NMF optimization problem has
been introduced in [19] and [20]. The sparse NMF (SNMF)
[21] has gained popularity since it enables the decomposition
to be made more unique. Specifically, the term “sparseness”
denotes a representational scheme where only a few units are
effectively employed to represent data vectors. This implies
most units taking values close to zero, while only few take
significantly nonzero values. The different prior distribution
has been incorporated to the update cost function [22]–[24],
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[35]. These include exponential density, inverse gamma density,
and Gaussian distributions. The parameters and hyperparam-
eters of these prior models are adapted by ether using the
Markov chain Monte Carlo or maximum a posterior probability
approaches. The benefit of this is that these approaches increase
the accuracy of matrix factorization; however, the computa-
tional complexity increases significantly due to the adaptation
of the parameters and its hyperparameters in every iteration.

Waveguide-based nondestructive diagnosis (ND) system for
defect evaluation benefits both the science and practice of mea-
suring the status of material properties without compromising
its function. From an industrial point of view, the demands of
ND system include low-cost, noncontact, automatic, accuracy
detecting and imaging defects [25]. To achieve this, postsignal
processing for defects analysis plays a critical role in waveg-
uide imaging system. Many research studies have already been
explored for spectral estimation and image reconstruction of
defects by using such methods as Fourier-based, correlation-
based, and super-resolution methods [26]. However, all these
methods are limited by manual selection of the proper con-
trast components. Although the results are tolerable, they are
generally not predictable and repeatable. This ambiguous case
prevents the use of waveguide-based nondestructive testing and
evaluation (NDT&E) in automated environments.

In this paper, an optimal sparse representation is proposed
to extract the anomalous patterns in a waveguide imaging sys-
tem. This method can automatically identify the defects in the
spatial-frequency domain. The link between the physics model
and signal processing has been developed with the aim of
realizing an automated process of defect identification. The pro-
posed algorithm will be derived from fundamental principles.
Experimental tests on man-made metal defects have shown
that our proposed method has resulted in superior detection
performance.

This paper is organized as follows. In Section II, the back-
ground of waveguide imaging and how the NMF relates to
the system is described. Section III presents the automatic
sparse NMF model. Experimental results coupled with a series
of performance comparison against conventional methods are
presented in Section IV. Finally, Section V concludes this
paper.

II. BACKGROUND OF WAVEGUIDE IMAGING

Fine defects and fatigue defects detection on the surface of
metal have gained an increasing interest in using microwave
and millimeter-wave ND imaging systems since waves at micro
or millimeter frequencies can penetrate the low-loss dielectric
coating materials. In addition, these techniques with smaller
wavelength can render high-spatial resolution images of the
interior of various complexes, thick, and layered composite
structures [27]–[29].

A. Principle of Waveguide Imaging

Open-ended rectangular waveguide probes are usually used
at frequencies which allow only the dominant mode to

propagate. The complex reflection coefficient at the aperture of
the waveguide is expressed as [28]

Γ = |Γ| ejφ =
1−Υ

1 +Υ
(2)

where Γ is related to the terminating admittance of the waveg-
uide Υ. The complex reflection coefficient for both phase and
magnitude variations can be measured and calculated using a
vector network analyzer. The higher the pronounced shift in the
phase and magnitude of the reflection coefficient, the easier the
defect can be detected. As this near-field open-ended waveguide
for defect detection is based on surface current distribution,
when there is a defect, this defect will cause perturbation of
the induced surface current density on the metal plate. The
dimensions information of defect is rendered by the presence
of perturbation.

B. Frequency Spectrum of Defect and Nondefect Areas

Experiments have been conducted by moving the aperture of
the open-ended waveguide over the metal surface and the probe
is automatically controlled by stepping motor with an X–Y
Scanner. In theory, when the defect is parallel to the waveg-
uide (orthogonal to the electric field of the dominant TE10

mode), the frequency spectrum experiences a pronounced shift
in location. When the defect is exposed to the aperture of the
waveguide compared to when the defect is outside the aperture
(nondefect area), this shift indicates changes in the reflection
coefficient property of the metal surface perturbed by the defect.
Thus, both the phase and amplitude of frequency spectrum at
the defect area are different from that of the nondefect area.
It was also observed that this shift is highly dependent on the
relative location of the defect within the waveguide aperture.

There are two main challenges faced by traditional waveg-
uide measurements. First, accurate detection and evaluation of
defects is highly dependent on the types of waveguide system
(operation frequency) and the interface due to the environment
and the surface condition of material. Second, as the resolu-
tion of detection is determined by λ0/

√
ε where λ0 is the

wavelength in free space, and ε is the permittivity of material,
the high-resolution results can be achieved by using high-
frequency excitation at millimeter wavelength. However, the
overall system becomes complicated, expensive, and may not
be robust to noise or random perturbation. Thus, the demands
of advanced signal processing algorithm become crucial when
using low-frequency waveguide system.

In this case, when the aperture or part of aperture scans the
defect edge, the reflected signal consists of both defective and
nondefective information. The pattern to be extracted is the
defective area when the aperture aligns at the start of the defect
edge region extending to the aperture out of the defect region.
Since NMF is an “addition model” which describes the positive
contributions of each possible factor rather than a “net model”
which consists of positive as well as negative contributions
and the final result is a net value of these two contributions,
the NMF is interpretable and directly models the physical
phenomenon. These attributes are not shared by well-known
models such as PCA and ICA which belong to the “net model”
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Fig. 1. Waveguide imaging C-scan.

categories. In addition, NMF is computationally more efficient
than other sparse representations through the use of multiplica-
tive update algorithm in which its theory shares similarity with
the second-order optimization but with a carefully optimized
step size leading to a multiplicative update parameter estima-
tion rather than an additive update. This enables the algorithm
to have fast convergence and yet computationally simple.

III. PROPOSED METHODOLOGY

A raster-like relative motion of waveguide ND imaging scan
procedure is shown in Fig. 1.

The observation of Fig. 1 can be mathematically mod-
eled as a three-dimensional representation (or a tensor)
of the mixing spatial-frequency spectrum Y′ which con-
tains both nondefect and defect spatial-frequency spectrum
sources. In Y′, the frequencies are given by f = 1, 2, . . . , F
where F represents the total frequency units. The ten-
sor Y′ can be converted into a two-dimensional matrix as
Y = [vec(Y′(1))vec(Y′(2)) · · · vec(Y′(F ))]T where Y′(f)
denotes the spatial-frequency spectrum matrix with dimensions
Nx ×Ny of the f th slice of Y′. The mixing spatial-frequency
spectrum observation at each frequency-spatial point becomes

Y(f, l) = Xdefect (f, l) +Xnondefect (f, l) (3)

Where Y(f, l) is the mixed spatial-frequency spectrum com-
ponent. The terms Xdefect(f, l) and Xnondefect (f, l) denote
the defect and nondefect spatial-frequency spectrum compo-
nents, respectively. Here, the space slots are given by l =
1, 2, . . . , lmax where lmax = Nx ×Ny . Note that in (3), each
component is a function of f and l. Given above, we define the
spatial-frequency “power spectrum” as

∣∣Y (f, l)
∣∣2 � Y (f, l)Y

∗
(f, l) (4a)

where “∗” denotes complex conjugate. The test object for a
given scanned location l is either defective or nondefective
since these regions are mutually exclusive. Hence, when
Xdefect (f, l) is active, Xnondefect (f, l) becomes inactive, and vice
versa. Additionally, both the phase and amplitude of frequency
spectrum corresponding to a defect are different from that of

the nondefect. Thus, Xdefect (f, l)×Xnondefect (f, l) ∼= 0 for a
given location l and frequency f . Therefore, (4a) reduces to∣∣Y (f, l)

∣∣2 =
∣∣Xdefect (f, l)

∣∣2 + ∣∣Xnondefect (f, l)
∣∣2

+ 2Re
[
Xdefect (f, l)×Xnondefect (f, l)

]
∼=
∣∣Xdefect (f, l)

∣∣2 + ∣∣Xnondefect (f, l)
∣∣2 (4b)

where Re [·] means extracting the real component. In matrix
representation, (4b) is expressed as

Y ∼=
2∑

i=1

Xi (4c)

where X1 = |Xdefect (f, l)|2, X2 = |Xnondefect (f, l)|2, and

Y = |Y (f,l)|2(for all f = 1, 2, . . . , F, l = 1, 2, . . . , lmax) are
matrices (column and row vectors represent the frequency and
spatial slots, respectively) denoting the spatial-frequency power
spectrum representation of (3). Equation (4) is a generation
equation since it describes how Y is generated as a mixing of
Xi. As there are differences in terms of the spatial-frequency
power spectrum between defect and nondefect area, the NMF
is an efficient tool for extracting these spatial-frequency
characteristics. In this paper, we present an optimally sparse
NMF where the sparsity parameter is learnt online from the
data. The model is given by

Y = DH+V =

dmax∑
d=1

DdHd +V (5a)

where Y ∈ �F×lmax
+ , D ∈ �F×dmax

+ , H ∈ �dmax×lmax
+ , and

V ∈ �F×lmax
+ are noise terms and H is considered sparsely

distributed by

p (H|λ) =
dmax∏
d=1

lmax∏
l=1

λd,l exp (−λd,lHd,l). (5b)

Comparing with a typical prior model, it is worth noting that
in (5b), each individual element in H is constrained to an expo-
nential distribution with independent decay sparsity parameter
λd,l, which will be adaptively learnt to yield the optimal sparse
solution. The matrix Dd is the dth column of D, Hd is the dth
row of H, and V is assumed to be independently and iden-
tically distributed (i.i.d.) as Gaussian distribution with noise
having variance σ2. The terms dmax and lmax are the maximum
number of columns in D and column length in Y, respectively.
This is in contrast with the typical SNMF where λd,l is man-
ually set to a fixed constant, i.e., λd,l = λ for all d, l. This
setting directly imposes uniform constant sparsity on all activa-
tion basis matrix H which enforces each element to be identical
to a fixed distribution due to the constant sparsity parameter.
This will lead to under- and oversparse decomposition during
the optimization procedure. In Section III, we will present the
details of the sparsity analysis for defect detection and evalu-
ate its performance against with other existing methods. Given
only the observed spatial-frequency spectrum Y, the aim of the
proposed algorithm is to determine the optimum parameters
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D, H, and λd,l such that the defect spatial-frequency power
spectrum components can be estimated accurately. Note that
the proposed algorithm does not require prior information or
“supervisory knowledge” of the defect and nondefect sources
from the system. Thus, the proposed system for the diagnosis
and monitoring of defects is unsupervised and fully automated.

A. Development of Proposed L1-Optimal Sparse NMF

To investigate spectral basis with sparse activation, we
choose a prior distribution p (D,H) over the factors {D,H}.
The posterior can be estimated by employing the Bayes’ theo-
rem as

p
(
D,H

∣∣Y, σ2, λ
)
=

p
(
Y
∣∣D,H, σ2

)
p (D,H |λ )

P (Y)
. (6)

Hence, the negative log likelihood serves as the cost function
defined as

L ∝ 1

2σ2

∥∥∥∥∥Y −
∑
d

D̃dHd

∥∥∥∥∥
2

F

+ f (H)

=
1

2σ2

∥∥∥∥∥Y −
∑
d

D̃dHd

∥∥∥∥∥
2

F

+
∑
d,l

λd,lHd,l. (7)

The sparsity term f (H) represents the L1-norm regulariza-
tion and resolve the ambiguity by forcing all structure in H
onto D. Thus, the sparseness of the solution in (7) is highly
dependent on the regularization sparse parameter λd,l.

1) Estimation of the Spectral and Activation Basis
Matrix: With the normalization in D, the spectral dictionary
and activation basis can now be represented as Z̃ =

∑
d D̃dHd.

By applying the multiplicative learning rules [12], [22], the
updates become

H← H · D̃TY

D̃TZ̃+ λ
, here f(H) =

∑
d,l

λd,lHd,l (8)

D← D̃ ·
YHT + D̃ diag

(∑
τ 1
((

Z̃HT
)
· D̃
))

Z̃HT + D̃ diag
(∑

τ 1
(
(YHT) · D̃

)) . (9)

In (9), D̃ ∈ �F×dmax
+ , Z̃ ∈ �F×lmax

+ , 1 is the vector of

[1, . . . , 1]
T, “T” denotes matrix transpose, “·” is the element-

wise product, and diag (·) represents a matrix with the argument
on the diagonal.

2) Estimation of the Sparsity Parameter: Equation (7)
can be rewritten as

F (H) =
1

2σ2

∥∥∥vec (Y)−
(
I⊗ D̃

)
vec (H)

∥∥∥2
F
+ λTvec (H)

(10)

where vec(·) is the column vectorization, “⊗” denotes the
Kronecker product, and I is the identity matrix. Defining the
following terms:

y= vec(Y), D=
[
I⊗ D̃

]
, λ = [vec(λ)] , and h= [vec(H)] .

(11)

λ is matrix form of [λd,l]with all elements l = 1, 2, . . . , lmax

and d = 1, 2, . . . , dmax. Thus, (10) can be rewritten in terms of
h as

F (h) =
1

2σ2

∥∥y −Dh
∥∥2
F
+ λTh (12)

where y ∈ �S×1
+ , S = F × lmax, the h and λ are vectors of

dimension R× 1 where R = dmax × lmax and D ∈ �S×R
+ .

To determine λ, the expectation-maximization (EM) algorithm
[30] is used and h is considered as the hidden variable. The
log-likelihood function can be optimized with respect to λ
through the Jensen’s inequality. For any distribution Q(h), the
log-likelihood function satisfies the following equation:

ln p(y|λ,D, σ2)≥
∫

Q (h) ln

(
p
(
y,h|λ,D, σ2

)
Q (h)

)
dh. (13)

It is easily evident that the distribution that maximizes∫
Q(h) ln(

p(y,h|λ,D,σ2)
Q(h) )dh is given by Q (h) = p(h|y,λ,

D, σ2), which is the posterior distribution of h. In this paper,
the posterior distribution is represented as Gibbs distribution,
namely

Q (h) =
1

Zh
exp [−F (h)] , where Zh =

∫
exp [−F (h)] dh.

(14)

The functional form of the Gibbs distribution in (14) is
expressed in terms of F (h) and it enables us to simplify
the variational optimization of λ. The maximum likelihood
estimation of λ can be expressed as

λML = argmax
λ

ln p
(
y|λ,D, σ2

)
= argmax

λ

∫
Q (h) ln p (h|λ) dh. (15)

By the same token,

σ2
ML = argmax

σ2

∫
Q (h)

(
ln p
(
y|h, σ2,D

)
+ ln p (h|λ)) dh

= argmax
σ2

∫
Q (h) ln p

(
y|h, σ2,D

)
dh. (16)

From (5b), each element in H is constrained to be expo-
nentially distributed with independent decay parameter. This
gives p (h|λ) =∏p λp exp (−λphp) and the update of λ is
expressed as

λp =
1∫

hpQ (h) dh
for p = 1, 2, . . . , R (17)

where λp is the pth element of λ. Similarly, the update for
σ2
ML is given by

σ2
ML = argmax

σ2

∫
Q (h)

(
−N0

2
ln
(
2πσ2

)
− 1

2σ2

∥∥y −Dh
∥∥2) dh

=
1

N0

∫
Q (h)

(∥∥y −Dh
∥∥2) dh. (18)
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The integral in (17) and (18) is difficult to solve analyti-
cally and as such, we seek an approximation to Q (h). The
solution h naturally partitions its elements into distinct sub-
sets hP and hM where components ∀p ∈ P such that hp = 0,
and components ∀m ∈M such that hm > 0. Given the behav-
ior, F (h) can be approximated as F (h) ≈ F (hM ) + F (hP ).
Thus, Q (h) can be factorized as

Q(h) =
1

Zh
exp [−F (h)]

≈ QP (hP )QM (hM ).

(19)

Since hP = 0 is on the boundary of the distribution, it is
natural to invoke the Taylor series expansion about the MAP
estimate hMAP

QP (hP ≥ 0) ∝ exp

⎧⎨
⎩−
[(

∂F

∂h

)∣∣∣∣
hMAP

]T
P

hP − 1

2
hT
PΛPhP

⎫⎬
⎭

= exp

[
−
(
ΛhMAP − 1

σ2
D

T
y + λ

)T
P
hP − 1

2
hT
PΛPhP

]
(20)

where ΛP = 1
σ2D

T

PDP , ΛP ∈ �R×R
+ , and Λ = 1

σ2D
T
D,

Λ ∈ �R×R
+ . The variational approximation to QP (hP ) can be

achieved by using the exponential distribution

Q̂P (hP ≥ 0) =
∏
p∈P

1

up
exp (−hp/up). (21)

The parameters u = {up} for ∀p ∈ P are obtained by
minimizing the Kullback–Leibler divergence [31] between
QP and Q̂P

u = argmin
u

∫
Q̂P (hP ) ln

Q̂P (hP )

QP (hP )
dhP

= argmin
u

∫
Q̂P (hP )

[
ln Q̂P (hP )− lnQP (hP )

]
dhP

(22)

which gives

min
up

b̂
T

Pu+
1

2
uTΛ̂u−

∑
p∈P

lnup (23)

where b̂P = (ΛhMAP − 1
σ2D

T
y + λ)P and Λ̂ = ΛP +

diag
(
ΛP

)
. Solving (23) for up leads to the following update

[32], [36]:

up ← up

−b̂p +
√

b̂2p + 4
(Λ̂u)

p

ũp

2
(
Λ̂u
)
p

(24)

where u ∈ �R×1
+ . As for components hM , as the non-negative

constraints are not active, QM (hM ) can be approximated as
unconstrained Gaussian with mean hMAP

M . By using the factor-
ized approximation Q (h) = Q̂P (hP )QM (hM ), this gives

λp =

⎧⎨
⎩

1
hMAP
p

, if p ∈M

1
up

, if p ∈ P
(25)

TABLE I
PROPOSED L1 -OPTIMAL SPARSE NMF

for p = 1, 2, . . . , R and hMAP
p refers to the pth element of sparse

code hP computed from (8) and its covariance C is given by

Cpm =

{(
Λ

−1

P

)
pm

, if p,m ∈M

u2
pδpm, otherwise.

(26)

The update rule for σ2 can be estimated as

σ2 =
1

N0

[(
y −D

�

h
)T (

y −D
�

h
)
+ Tr

(
D

T
DC
)]

(27)

where
�

hp =

{
hp

MAP, if p ∈M

up, if p ∈ P
. In order to test the efficacy

of our proposed method, we evaluate and compare the pro-
posed method with other existing sparse NMF methods. The
specific steps of the proposed method have been summarized in
Table I.

IV. MEASUREMENT SETUP

A. Experimental Platform and Sample Preparation

The experimental setup is shown in Fig. 2. An X-band
(frequency range 8.2–12.4 GHz) open-ended rectangular
waveguide is moved using an X–Y scanner. The type of
probe is WR-90 waveguide with the aperture dimensions of
22.86mm× 10.16mm (a× b) and the flange dimensions
are 42.2mm× 42.2mm. A vector network analyzer (Agilent
PNA E8363B) is used to provide signal source and obtain
the frequency spectrum of the reflected signal. A computer
is used to control and acquire the measurement data from the
vector network analyzer through IEEE-488 GPIB (general
purpose interface bus). In addition, the X–Y scanner is also
automatically controlled by PC.
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Fig. 2. (a) Waveguide system. (b) Controller and signal processing
platform. (c) Scanning platform.

During the measurement, the linear sweep is applied over the
X-band frequency range (frequency resolution is 0.02 GHz with
201 linear sweep points). The reflected frequency spectrum is
obtained using linear sweep frequency technology in the vector
network analyzer (i.e., measuring the reflection coefficient for
each operation frequency over whole sweep frequency range).
An aluminum sample with different defects as shown in Figs. 3
and 4 is used for testing. Fig. 4 shows the experimental architec-
ture of waveguide detection system based on waveguide probe
(a is broad dimension of the open-ended rectangular waveguide
aperture, b is narrow dimension of the open-ended rectangu-
lar waveguide aperture, W is the defect width, L is the defect
length, δ is location of the defect within waveguide aperture),
and all specific experiment setting and sample description is
summarized in Table II.

The resolution of the waveguide system can be found from
ρ = Lλ

Dx,y
where Dx,y denotes the length of the aperture in the

Fig. 3. Sample under test. (a) Plane view. (b) Side view.

Fig. 4. Schematic of the aluminum sample and probe scanning
direction.

TABLE II
TESTING SETUP PARAMETERS FOR MICROWAVE IMAGING

corresponding direction, λ is the wavelength (= c/f ), and L is
the lift-off. With 12.4 GHz and 1.5 mm lift-off, 1.58 mm (the
minimum defect should bigger than ρ/2) is the minimum defect
size, which can be detected with this waveguide in X-direction
(Dx = 10.16mm).

B. Probability of Defect Detection

To determine the probability of detection (POD) of the
proposed method, the following criteria have been defined.

1) The sample contains a defect and the diagnostic method
indicates a defect present [true positive (TP)].

2) The sample contains a defect and the diagnostic method
does not indicate a defect present [false negative (FN)].

Since we are interested with the detection of the presence
of defect, the POD can be defined as POD ∼= TP/(TP + FN).
This will be used to validate the proposed method. In order to
obtain ground true results, the test sample underwent human
annotation with three separate persons per sample to control
for any interannotator reliability issues. The basis of annota-
tion is as follows. When the scanning direction is normal to the
defect lips, the probe observes a non-normal reflection coeffi-
cient for a distance b+W (where b is the narrow dimension
of the open-ended rectangular waveguide aperture, W is the
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Fig. 5. Ground truth of defect location and size.

defect width) such that the received signal is not constant.
During measurement, the scanning direction of waveguide is
along the defect width, and the obtained width of the defect is
approximately b+W = 10.16mm + 4mm = 14.16mm. This
can manually locate and determine the size of the defect from
the raw data as shown in Fig. 6.

In order to obtain a robust detection result, event-based tech-
nique [34] is used as postprocessing. We consider the signal
with window length of four samples as one event and choose the
maximum value among these samples which termed. The step
size is set to two with 50% overlap between adjacent frames.
Specifically, for manually event-based annotation as shown in
Fig. 5, the defect at that position is active when the state equals
“1.” The defect at that position is nonactive when the state
equals “0.” Once the event-based signal has been obtained, the
maximum value of the first 15 samples of data is calculated
(known as background nondefect signal), which is used as the
threshold to determine whether the further samples belong to a
defect or not. This selection is based on Monte Carlo approach
where the process is repeated over many realizations within the
range between the first 2 and 20 samples and the selection of the
first 15 samples to obtain the optimal POD results. The defect
activation point is considered when the signal peak value is 40%
larger than the variance of nondefect signal values. This selec-
tion is also based on Monte Carlo approach within the range
between 10% and 70%. Through experiment, we set 40% as
the threshold as this gives the best detection results. As for the
sparse factorization, the regions between the highest two peaks
are considered as the defect activation points.

V. RESULTS AND ANALYSIS

A. Aluminum Sample Under Test

Fig. 6 shows the spatial-frequency power spectrum that con-
tains both defect and nondefect areas. The challenging task for
waveguide imaging system is that it requires the processing
algorithm to not only precisely locate the defect position but
also accurately measure the size and depth of the defects. From
Fig. 6, however, it is difficult to detect the shallow defect (as
marked by the red dotted box) as well as measuring the width
and depth of defects. This indicates that the reflection spec-
trum is unable to provide specific measurements as to: 1) the
differences of the frequency spectrum characteristic between
nondefect and defect areas; and 2) how to precisely locate and

Fig. 6. Mixing spatial-frequency power spectrum of four defects in
aluminum plate with different depth (left to right: 2, 4, 6, and 8 mm).

Fig. 7. Simulation for aluminum sample with four different depth cracks
and the magnitude results of reflected coefficients and the selected
frequency point for defects under different depth situations.

estimate the width of the defect areas (especially for low depth
defects). In order to validate the proposed method, we use CST
Waveguide Studio 2012 software to simulate the attenuation of
the reflection coefficient when the signal meets different types
of defects. In addition, we use the standard method [31] to
manually select one frequency (whose magnitude attenuation
decreases the lowest which marked by triangular box) for com-
parison. Fig. 7 shows the simulation result of the magnitude of
reflected coefficients for both nondefect and defect situations.
Fig. 8 shows the experimental detection results by selecting
frequency spectrum according the results for different depth of
defect.

As shown in Fig. 8, if only a specific frequency is selected
for defect detection, it lacks the ability to mine the whole band
information and leads to poorer detection results (as none of
the selected frequency spectrum can display the detection of all
defects). This is clearly shown in the plot where each frequency
fails to detect one or two depth defects as marked with the red
boxes. By applying the proposed algorithm, it is now possible
to resolve these issues.

Fig. 9 shows the factorization results using the previous study
of Smooth Itakura-Saito NMF method [33]. The method factor-
izes the observation matrix into a product of the basis matrix
and activation matrix. This is shown in Fig. 8 which shows
the factorization results based on only one basis vector for the
spatial-frequency power spectrum of the defect area and another
one basis vector for the nondefect area (i.e., dmax = 2).
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Fig. 8. Experimental detection results by selecting frequency spectrum
according the simulation results for different depths of defect.
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Fig. 9. Results of an aluminum sample with four defects at 1.5 mm lift-
off. (a) Spectral basis of the nondefect area. (b) Spectral basis of the
defect area. (c) Activation basis of the nondefect area. (d) Activation
basis of the defect area.

The factorized basis matrix is used to characterize the spec-
tral basis between the defect and nondefect parts of the spec-
trum. Fig. 9(a) and (b) shows the factorized spectral basis
corresponding to the nondefect and defect spectrum, respec-
tively. Fig. 9(c) and (d) is the factorized activation matrices
which can be used further to estimate the defect location, width,
and inference of depth information. In particular, Fig. 9(c)
shows that when the activation peaks reduce in magnitude,
this indicates that the nondefect spectral basis at that spatial
position (this position actually refers to defect position) has a
lesser degree of being active. Conversely, the activation peaks
increase in magnitude at the same position and this is revealed
in Fig. 9(d). It is observed that the smooth IS NMF has success-
fully estimated both the defect location and the defect width
from the power spatial-frequency spectrum. In addition, the
estimated activation basis has indicated the trend of increas-
ing defects depth, according to attenuation except the last one,
which should be with the deepest depth. For the case of 2-mm
up to 6-mm defects, the trend of depth information can be pre-
dicted. However, for 8-mm depth defect, the peak is shorter
than 6-mm depth. The reason the 8-mm depth defect attenuates
less than the 6-mm depth defect can be attributed to the 8-mm
depth being too deep and is beyond the X-band waveguide

system range (8.20–12.40 GHz). Therefore, the waveguide sig-
nal is unable to accurately predict the 8-mm defect depth as
the attenuation of the reflected signal decreases less than that
of the 6-mm depth defect. This can be also validated in the
simulation results as shown in Fig. 7. An additional issue
of this method is computational complexity, which is mainly
attributed to the IS divergence and the extra smooth factor cal-
culation. The least-square cost function is significantly more
computationally efficient than the IS divergence. Hence, this is
advantageous from the practical point of view. The following
section will illustrate and compare the proposed method with
other factorization methods.

B. Learnt Sparsity Versus Manually Fixed Sparsity

In this implementation, we conducted several experiments to
compare the performance of the proposed method with smooth
IS NMF and least-square-based NMF or SNMF under differ-
ent sparsity regularization. To investigate the impact of sparsity
regularization on defect detection for least-square NMF, five
cases are conducted.

Case 1: Nonsparseness (NMF) [12], λd,l = λ = 0 for all
d, l.

Case 2: Uniform constant sparsity (SNMF) [21] with
improper sparseness setting, e.g., λd,l = λ = 0.01
for all d, l.

Case 3: Uniform constant sparsity (SNMF) [21] with
proper sparseness setting (the uniform regulariza-
tion is chosen as c = 0, 0.5, . . . , 10 for all sparsity
parameters, i.e., λd,l = λ = c. The best result is
retained), λd,l = λ = 7.5 for all d, l.

Case 4: Automatic relevance determination ARD-NMF
[15]

Case 5: Proposed learnt L1-sparsity.
1) Estimated Activation Basis: Since the dominant mode

of open-ended waveguide propagating in the z-direction is inci-
dent upon the waveguide aperture, defect detection is possible
by measuring the total electric field at the location in the inter-
rogating waveguide probe as the probe scans the metal surface.
When the defect is absent within the aperture of the probe, the
reflected signal remains at a constant level, relating to a short-
circuited waveguide. When the probe encounters the opening
of a defect, the reflection coefficient is changed, indicating the
existence of a crack within the probe aperture. This feature can
be used to determine the defect width and depth.

Figs. 10–14 show the matrix factorization results in terms
of the estimated activation basis Hdefect which corresponds
to the detect location and the prediction of the depth of
defects for cases 1–5, respectively. The red dashed lines are
the corresponding measurements of the true defect location
and width. Figs. 10 and 11 show the cases of “nonsparse”
and “improper-sparse” factorization, respectively, which clearly
depict the spreading of the estimated activation basis and there-
fore fail to detect the location and depth of the defects. Figs. 11
and 12 show the cases of uninformed sparse factorization
which requires manual setting of λ through conducting many
trial-and-error runs. The obtained results, however, are not
guaranteed optimal as ambiguities (several spikes as marked in
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Fig. 10. Estimated Hdefect for case 1.

Fig. 11. Estimated Hdefect for case 2.

Fig. 12. Estimated Hdefect for case 3.

Fig. 13. Estimated Hdefect for case 4.

the black box) still present in detecting the first defect. Also, it
fails to predict the depth of the last defect (as marked in green
box) which should be the largest spike. There is a significant
positive correlation in the reflected amplitude of the spec-
trum. The reflected scattering signal is more pronounced with
deeper defect. Figs. 13 and 14 show the respective “adaptive-
sparse” factorization based on the ARD-NMF and the proposed
algorithm. It is clearly seen that both methods have successfully
detected the defects location. However, the ARD-NMF works

Fig. 14. Estimated Hdefect for case 5.

TABLE III
PROBABILITY OF DETECTION

TABLE IV
DETECTION OF THE LOCATION OF THE DEFECTS

less than satisfactorily since the trend of peaks fails to predict
the depth of the defects. This is further evidenced in Table IV.
For the proposed method, both defect location and the trend
of the depth have been successfully estimated. The peaks indi-
cate “significant activation” at the boundary of defects, and the
“zero activation” inside the four spatial intervals corresponds
to the main lobe of the defect signal which is now represented
in V in (5a) as the background of the spatial-frequency power
spectrum. These defects can be detected when the probe scans
the defect along its width and the waveguide produces strong
inflections in the signal at the two locations of the defect entry
and exit. This brings the benefit of easy assessment of the width
of the defect. Similarly, when the probe scans the defect along
its length, the value of length can be readily determined by
measuring the region where the detected signal is changing.
The detection performance between the true location and depth
based on different cases are summarized in Tables III–V.

The POD has been calculated for defects at different depths,
respectively, as shown in Table III. The results for NMF and
SNMF of case 2 give the worst performance since POD falls
below 50%. A higher performance is attained by the smooth IS
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TABLE V
PREDICTION OF THE DEPTH OF THE DEFECTS

NMF with an average POD around 70%. The SNMF of case 3
gives mediocre performance with an average POD around 60%.
Both ARD-NMF and the proposed method have significantly
improved the POD rate for different defect depths, especially
for a defect which has a depth of 2 mm. In addition, the aver-
age improvement is more than 60% compared with the lowest
performance.

This is the results as shown in Fig. 8 which uses the non-
sparse NMF that exactly capture the feature of the main lobe
(the aperture directly reflecting the signal from the defect
areas). When the defect is near to the waveguide aperture, the
aperture causes both the electric (E) and magnetic (H) fields
to bend around the defect. The motivation of this study is to
show that besides using the main lobe of the reflected signal, the
sidelobe signal (part of aperture that corresponds to the defect
edge) also provides information which can be used to detect as
well as predicting the depth of the deep defects if the degree of
sparseness is correctly imposed on the activation basis.

2) Tuning Behavior of Learnt Sparsity Parameter: In
this section, the tuning behavior of the learnt sparsity param-
eters by using the proposed method will be demonstrated.
Several sparsity parameters have been selected to illustrate its
adaptive behavior. During the iteration, all sparsity parame-
ters are initialized as λd,l = 1 for all d, l and are subsequently
adapted. After 100 iterations, the above sparsity parameters are
significantly different for each sparsity parameter, e.g., λ1,1 =
96, λ1,5 = 120, λ1,10 = 99, and λ1,15 = 118 even though they
started at the identical initial condition. This shows that each
activation basis has its own sparsity. In addition, it is worth
noting that in the case of defect detection, all location and
trend of depth of defects have been successfully predicted
when λd,l is learnt adaptively. This represents a large improve-
ment over the case of uniform constant sparsity (where no
defects are detected). On the other hand, when sparsity is not
imposed onto the activation basis, the defect detection fails
as well. This extends through the manual selection of the
sparse parameter where the first defect location and the depth
of last defect fail to be predicted. Thus, the results indicate
that the performance of defect detection has been undermined
when the uniform constant sparsity scheme is used. On the
contrary, improved performance can be obtained by enabling
the sparsity parameters to be individually adapted for each ele-
ment activation basis. We have plotted the histogram of the all
adaptive sparsity parameters after 100 iterations in Fig. 15. The
plot shows that the histogram is not a unimodal distribution.

Fig. 15. Histogram of the learnt sparsity parameter.

Fig. 16. Correlation between true defect depths with mean value of
activation peaks.

We have used the Gaussian mixture model (GMM) to learn
the distribution of this histogram and the result produces three
Gaussian distributions with mean 98, 103, and 120. The global
mean of the GMM tends to 98.

Based on the above analysis, it is clear that the various
sparseness values are necessary for the attainment of optimally
sparse factorization. However, the uniform constant sparsity
matrix factorization raises a consequential issue since it is not
possible to determine a priori which of the particular activation
basis should be assigned the degree of sparseness. This poses
a difficult problem in conventional SNMF which requires man-
ual setting of the sparsity parameters. This therefore calls for
the need to impose adaptive sparseness on each element of the
activation basis so that they may be individually and adaptively
optimized. In addition, we have taken the mean value of acti-
vation peaks to measure the correlation between the true depths
of each defect with the estimated activation basis.

In Fig. 16, we have also calculated the correlation p-value
where p = 0.026 < 0.05 (if the p-value is less than 0.05, then
the two parameters are significantly correlated). This indi-
cates that the estimated activation basis using the proposed
learnt sparse NMF can be used to predict the defects depth in
waveguide imaging system.

3) Comparison of Convergence Study and
Computational Time: The convergence study and com-
putational time of each method have been compared. These
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Fig. 17. Convergence trajectory and computation time of the differ-
ent methods. (a) Proposed method. (b) ARD-NMF. (c) Smooth NMF.
(d) General NMF/SNMF.

include the proposed method, NMF-ARD, smooth NMF, and
general NMF/SNMF (cases 1–3) and are shown in Fig. 17.

Fig. 17 shows the convergence trajectory of each algorithm
as well as the computation time for 25 iterations. The thresh-
old for determine convergence is when the rate of change of
the cost value is less than 10−3. In terms of computation time,
the general NMF is the fastest since it does not require any
computation of hyperparameters. For the rest, hyperparameters
learning is required and yet the proposed method renders high
computation speed, while the ARD-NMF is the slowest.

VI. CONCLUSION

This paper presents a machine learning algorithm based
on structured NMF for automated diagnosis and monitoring
of defects. The proposed sparse representation is adaptively
learnt from the underlying data statistics without using prior
“supervisory knowledge” of the defect and nondefect spec-
tra. The regularization term is learnt online using the Bayesian
approach to yield the desired L1-optimal sparse decomposition,
thus enabling the activation basis to be estimated more effec-
tively in the spatial-frequency power spectrum domain. This has
been verified concretely based on our real test results. In addi-
tion, the proposed method has yielded significant improvements
in defect detection when compared with conventional matrix
factorization methods.

APPENDIX

A. Formulation of the Update Rule for up

The optimization of (23) can be accomplished be expanding
(23) as follows:

G (u, ũ) = b̂
T

Pu+
1

2

∑
p∈P

(
Λ̂ũ
)
p

ũp
u2
p −
∑
p∈P

lnup (A1)

Taking the derivative of G (u, ũ) in (A1) with respect to u
and setting it to be zero, we have(

Λ̂ũ
)
p

ũp
up + b̂p − 1

up
= 0. (A2)

The above equation is equivalent to the following quadratic
equations: (

Λ̂ũ
)
p

ũp
u2
p + b̂pup − 1 = 0. (A3)
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