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A Potential-Based Integral Equation Method for
Low-Frequency Electromagnetic Problems
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Abstract— In this paper, we propose a potential-based integral
equation solver for low-frequency electromagnetic (EM) prob-
lems. In this formulation, the scalar potential (�) equation is
solved in tandem with the vector potential (A) equation. The
resulting system is immune to low-frequency catastrophe and
accurate in capturing the electrostatic and magnetostatic physics.
The fast convergence of the new A-� system, which is a typical
symmetric saddle point problem, is made possible through the
design of an appropriate left constraint preconditioner. Numer-
ical examples validate the efficiency and stability of the novel
formulation in solving both EM scattering and circuit problems
over a wide frequency range up to very low frequencies.

Index Terms— Circuit problems, integral equation, low-
frequency catastrophe, scalar potential, scattering problems,
vector potential.

I. INTRODUCTION

MAXWELL’S equations formulated with E, H, D, and B
are widely accepted for the electromagnetic (EM)

physics from atomic length scale to galaxy length scale.
Inspired by the increasing development in quantum optics,
a wideband EM solution is desired from quantum physics
regime to classical physics regime. However, computa-
tional EM methods deriving from Maxwell’s equations, such
as the electric-field integral equation (EFIE) methods, are
usually susceptible to low-frequency catastrophe [1] and
ill-conditioning with dense discretization [2]. This is exactly
the difficulty in solving problems with small-size objects.

Various remedies to the low-frequency catastrophe of inte-
gral equations in EM problem have been well addressed
in the literature. The loop-tree/loop-star method has been
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popularized by doing a quasi-Helmholtz decomposition to
separate the vector and scalar potential parts [3]–[5]. The
Calderón preconditioned EFIE (CP-EFIE) preconditions itself
to obtain a well-conditioned second-kind operator with a
bounded spectrum [6]–[10]. Stabilized CP-EFIE formulations
with the loop-star decomposition are proposed at low fre-
quencies [11]–[13]. And as an extension, the low-frequency
nullspaces in multiconnected structures using the CP-EFIE are
well studied in [14] and [15]. Another EFIE low-frequency
breakdown remedy [16] transforms the EFIE into a generalized
eigenvalue problem, and an accurate eigenmodal superposition
of the current can be achieved after manually setting the small
eigenvalues to be zero.

In the literature, the idea of potential separation by consider-
ing the current and charge as unknowns has been investigated
for a stable formulation at low frequencies. The current and
charge integral equation (CCIE), which includes the charge as
extra unknowns in the combined field integral equation, is a
well-conditioned second-kind integral equation for scattering
problems with smooth closed objects [17]. Also, the partial
element equivalent circuit (PEEC) is applied to the EFIE to
obtain a separated potential integral equation [18]. Similar to
the CCIE, the PEEC method uses the current and charge basis
functions to separate the vector and scalar potentials. With the
incorporation of conductor resistive loss and material dielectric
loss, the system matrix is well behaved throughout a wide
frequency range. Alternatively, the augmented EFIE (A-EFIE)
is also a way to avoid the imbalance inherent in the EFIE
by separating the vector and scalar potential terms [19]. The
A-EFIE achieves low-frequency stability without searching for
loop-tree/loop-star basis and can be easily integrated into the
existing method of moments (MoM) solvers. Also, it inherits
the capability of the standard EFIE without the limitation of
basis type [20]–[22].

Note that in quantum physics, the formulations are better
described using the vector potential A and scalar potential �,
especially when the fields are zero and the potentials are
nonzero [23]. Thus, to better bridge the EM regime and
quantum regime, one can define the EM equations in the
form of potentials. Most of the related works done in the
literature are dealing with differential equations [24]–[28],
which are usually immune to low-frequency catastrophe from
which Maxwell’s equations suffer. In [29], an integral equation
system is constructed with the potentials as the unknowns
to solve dielectric scattering problems at middle frequencies.
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Recently, the decoupled potential integral equation was pre-
sented for scattering problems by solving the boundary
value problems [30]. The potential-based integral equations
have shown promise for a stabilized system for a wide
frequency regime. Also, in [31] and [32], a vector potential
integral equation is derived and implemented through the
generalized Green’s theorem and equivalence principle, where
the current and normal component n̂ · A (contribution of
charge) are considered as unknowns. To match the additional
number of unknowns, two equations are formulated from the
tangential and normal directions, respectively.

In this paper, the scalar potential formulation is proposed
and solved in tandem with the vector potential formulation
at low frequencies to capture the correct physics, since the
vector potential equation describes the magnetostatic world,
while the scalar potential equation controls the electrostatic
world. The new formulations are first presented in [33]. Here,
we will show the detailed understanding, derivation, as well as
the systematic spectrum analysis. The equation from the scalar
potential � is derived with Lorenz’s gauge. Combining with
the vector potential formulation, the resultant system becomes
symmetric. With the left constraint preconditioning based on
a symmetric saddle point problem, the new system achieves
excellent convergence for iterative solvers. It is verified in
this paper that the new A-� formulation is immune to low-
frequency catastrophe and achieves stable conditioning proper-
ties when the mesh discretization becomes denser. Numerical
results show that the new system works at a wide range of
frequency for both scattering and circuit problems. The fact
that the only integral kernel in the A-� formulation is the
scalar Green’s function ensures the easy integration of the fast
multipole algorithms (FMAs) based on existing techniques.
Then, naturally the proposed method can be easily adapted to
large-scale computations.

This paper is organized as follows. Section II introduces
some preliminaries of this paper and the formulation for
scalar potential is derived, which is solved in tandem with
the vector potential formulation. In Section III, we discuss
the recovery of conventional integral equations from the A-�
formulation. In Section IV, the equations are discretized and
implemented using the MoM. The spectrum and conditioning
analyses under different cases are discussed in this section.
Also in Section V, the incident potentials for different cases
are introduced. The large-scale computation issue is presented
in Section VI. Numerical results are shown in Section VII
for scattering problems, electrostatic problem, magnetostatic
problem, and large-scale computation. Then, this paper ends
with Section VIII for conclusion.

II. FORMULATIONS

From Maxwell’s equations, the vector potential A and scalar
potential � are defined as

B = ∇ × A (1)

E = iωA − ∇�. (2)

Based on the constitutive relations D = �E, B = μH, and the
Lorenz gauge ∇ · A = iωμ��, the vector and scalar potential

Fig. 1. Configuration of media and regions used to derive the scalar potential
equation.

equations are decoupled from each other [34]

∇2A + k2A = −μJ (3)

∇2� + k2� = −ρ/� (4)

where k is the wavenumber, � and μ are the permittivity and
permeability, respectively, and J and ρ are the current and
charge sources in the solvable region.

For a problem with two regions, as shown in Fig. 1,
the sources in region 1 are the current density J and the
produced charge density ρ. We consider region 2 to be a PEC
scatterer and region 1 to be the free space; then, based on (3),
the equivalence principle and extinction theorem for vector
potential integral equation with scalar Green’s function can be
derived as [31]

r ∈ V1, A1(r)

r ∈ V2, 0

}
= Ainc(r)

+
∫

S
d S′{μ1g1(r, r′)J1(r′) + n̂′ · A1(r′)∇′g1(r, r′)} (5)

where Ainc is the incident vector potential. Here, μ1 is the
permeability and A1(r) is the vector potential for field point
r in region 1. Also, J1 is the equivalent current on the PEC
surface, and g1(r, r′) is the free space scalar Green’s function
which is defined as

g1(r, r′) = eik1 |r−r′|

4π | r − r′ | (6)

where r′ is the source point location. Here, we denote the
unknown n̂ ·A with �. By applying the extinction theorem on
the surface S, the equation can be written as

0 = Ainc(r) +
∫

S
d S′{μ1g1(r, r′)J1(r′)

+ ∇′g1(r, r′)�1(r′)}, r ∈ S+. (7)

The scalar potential formulation can be simply derived
from the vector formulation (5) and the Lorenz gauge. The
governing potentials for regions 1 and 2 satisfy the scalar wave
equation (4), while in region 2, ρ2 = 0. Green’s function in
region 1 can be defined as

(∇2 + k2
1)g1(r, r′) = −δ(r − r′) (8)

where (6) is a possible choice of solution satisfying the
radiation condition.
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Taking the divergence of (7) and incorporating the Lorenz
gauge, it becomes

0 = iωμ1�1�inc(r) +
∫

S
d S′{μ1g1(r, r′)∇′ · J1(r′)

+ ∇′2g1(r, r′)�1((r′))
}
, r ∈ S+. (9)

Using (8), and that r �= r′, the scalar potential formulation for
PEC surface can be obtained as

−iωμ1�1�inc(r)

=
∫

S
d S′{μ1g1(r, r′)∇′ · J1(r′)+k2

1g1(r, r′)�1(r′)
}
, r ∈ S+.

(10)

It is important to notice that the physical meaning of (10),
as shown in the following, is the weak form of the current
continuity condition by using the scalar Green’s theorem,
which follows from the scalar wave equation (4).

By multiplying (4) by g1 and (8) by �1, subtracting
the resultant equations, and then integrating over the vol-
ume V1, the volume integral equation for scalar potential is
obtained [35]. With the help of Gauss’ theorem, the volume
integral can be written in the form of surface integral as
follows:
�1(r′) = �inc(r′) −

∫
S+Sinf

d Sn̂ · [g1(r, r′)∇�1(r)

− �1(r)∇g1(r, r′)], r′ ∈ V1 (11)

where �inc is the incident field generated by the charge source
ρ in V1

�inc(r′) = 1

�

∫
V1

dV g1(r, r′)ρ1(r). (12)

Due to the radiation boundary condition, the integral over Sinf
vanishes in (11). After swapping r and r′, the equation for the
whole space can be written as

r ∈ V1, �1(r)

r ∈ V2, 0

}
= �inc(r)

−
∫

S
d S′n̂′ · [g1(r, r′)∇′�1(r′) − �1(r′)∇′g1(r, r′)]. (13)

In V2, ∇�1(r) and �1(r) actually act as the equivalent
impressed surface sources. They generate a field in V2 that
exactly cancels with the incident field, which is the extinction
theorem. The scalar Green’s theorem (13), where g(r, r′) and
n̂ · ∇g(r, r′) are the integral kernels, includes the unknowns
for � and n̂ ·∇�. According to (2), the surface charge density
can be written as

σ = n̂ · �E = iω�(n̂ · A) − n̂ · �∇� (14)

from which it shows that n̂ · ∇� is part of the contribution
to the surface charge and the formerly defined � = n̂ · A is
actually the other part of contribution.

As a PEC boundary condition, � = 0 on the surface. Thus,
the surface equation of the scalar Green’s theorem (13) can
be reduced to

�inc(r) =
∫

S
d S′n̂′ · [g1(r, r′)∇′�1(r′)] r ∈ S+. (15)

Substituting (15) into (10) and considering the fact of (14),
we can obtain∫

S
d S′g1(r, r′){∇′ · J(r′) − iωσ(r′)} = 0. (16)

This is a weak form of the current continuity condition with
Green’s function as the weighting kernel. It implies that the
current continuity condition is implicitly imposed in the vector
and scalar potential formulations through the Lorenz gauge.
A similar conclusion with that in (16) can also been found
in [36] and [37], where Green’s function is manually applied
as the integral kernel on the current continuity condition in the
field-based formulations in order to improve the conditioning
of the system.

III. RECOVERY OF EFIE AND MFIE FORMULATIONS

Based on (1) and (2), the conventional field-based integral
equations can be derived from the potential-based integral
equations. Similarly, taking the gradient of (15) together
with (7), the EFIE can be obtained as

−Einc(r) = −iωAinc(r) + ∇�inc(r)

= iω
∫

S
d S′[μ1g1(r, r′)J1(r′) + ∇′g1(r, r′)�1(r′)]

− ∇
∫

S
d S′g1(r, r′)n̂′ · ∇′�1(r′). (17)

Note that the first term in (17) is the vector potential term in
the original EFIE with the scalar Green’s function. The second
term and the third term can be deduced to be

iω
∫

S
d S′∇′g1(r, r′)�1(r′) − ∇

∫
S

d S′g1(r, r′)n̂′ · ∇′�1(r′)

= −
∫

S
d S′∇g1(r, r′)σ1(r′)

�
(18)

which is the scalar potential term in the EFIE with σ1
denoting the surface charge. It is interesting to notice that
the vector potential formulation in fact contributes the EFIE
vector potential term and one part of the scalar potential term,
while the scalar potential formulation contributes to the other
part of the EFIE scalar potential term. As ω approaching to
zero, the only component in the electric field is from the scalar
potential, which is the contribution from part of the surface
charge.

On the other hand, the magnetic-field integral equa-
tion (MFIE) can be directly obtained from (7) by taking the
curl of both sides of the equation. Considering the constitutive
relation B = μH and the fact that ∇ × ∇g(r, r′) = 0, it can
be derived as

−Hinc(r) = ∇ ×
∫

S
d S′g1(r, r′)J1(r′) (19)

which is just the well-known MFIE for the scalar Green’s
function.

IV. DISCRETIZATION AND IMPLEMENTATION

A. Formulation Discretization

Now, we have arrived at the A-� formulation for a PEC
object as (7) and (10). The excitations are the incident vector
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potential and scalar potential, and the unknowns are the
current J1 and the normal vector potential component �1.
By discretizing J1 with the RWG basis function fn and �1
with the pulse basis function hn , and then testing (7) with the
RWG function and (10) with the pulse function, the matrix
representation of the A-� system can be written as[

μ1�11 �12

�21 ω2�1�22

] [
j1
ψ1

]
=

[ −αinc
−iω�1φinc

]
(20)

where j1 and ψ1 denote the basis coefficients for J1 and �1,
respectively. The matrix elements are

[�11]mn = 〈fm, g1, fn〉, [�12]mn = 〈∇ · fm, g1, hn〉
[�21]mn = 〈hm , g1,∇ · fn〉, [�22]mn = 〈hm , g1, hn〉 (21)

and the right-hand side vector elements are

[αinc]m = 〈fm , Ainc〉, [φinc]m = 〈hm ,�inc〉. (22)

Here, the second equation is divided by μ1 in the matrix
formulation, so that the matrix system presented in (20)
becomes symmetric, since [�12]mn = [�21]nm. The notations
αinc and φinc are the right-hand side excitation vector of Ainc
and �inc tested with the RWG function and pulse function,
respectively. Furthermore, the inner product in the angle
brackets is defined as

〈f(r), h(r)〉 =
∫

S
d Sf(r) · h(r) (23)

〈f(r), g1(r, r′), h(r′)〉 =
∫

S
d Sf(r) ·

∫
S

d S′g1(r, r′)h(r′) (24)

where f(r) and h(r) can be replaced by scalar functions.
Obviously, no frequency normalization is needed as what

one does for loop-tree/loop-star method, since no frequency
term outside the integral is involved except for the bottom-
right block in the new A-� formulation after separating the
vector and scalar potentials.

B. Coefficient Normalization

Observing the matrix in (20), the matrix elements
�i j (i, j = 1, 2) are of the same order. The existence of
the coefficients μ1, �1, and ω2 causes imbalanced diagonal
element values of the block matrix system (very small values
in the top-left block and very large values in the bottom-
right block), leading to the inefficient convergence when an
iterative solver is involved. Considering region 1 to be free
space, an appropriate coefficient normalization is applied in
the system presented as follows:[

�11 �12

�21 k2
0�22

] [
j1/c0
ψ1/η0

]
=

[ −αinc/η0
−ik0�1φinc

]
(25)

where c0, η0, and k0 are the light velocity, intrinsic impedance,
and wavenumber in vacuum, respectively. Here, an example
of the scattering of a unit PEC sphere at 10 MHz is used
to present the coefficient normalization effect. The sphere is
discretized into 867 edges and 578 patches. Fig. 2 shows
the eigenvalue spectrums before and after coefficient nor-
malization. Here, only the positive values are shown with
logarithmic coordinates. Before the coefficient normalization,

Fig. 2. Eigenvalue spectrum distribution of the A-� system. (a) Before
coefficient normalization. (b) After coefficient normalization.

the eigenvalues are largely divergently distributed with some
very small values accumulating around zero. Thus, the sys-
tem is ill-conditioned. With the appropriate normalization,
the spectrum is distributed within a small circle which is away
from zero. Later, we will show that the normalized system can
achieve stable convergence with a conventional iterative solver,
such as the restarted generalized minimal residual (GMRES),
especially for denser meshes.

The matrix system presented in (25) is still symmetric.
Since the frequency factor locates only in the bottom-right
block of the matrix, there will be no frequency imbalance
issue that causes the low-frequency breakdown problem in
the EFIE. Also, it is noted that (25) is actually a typical
symmetric saddle point problem, where the top-left block is
symmetric and the bottom-right block is approaching to zero
at low frequencies. It is favorable for one to solve such a
system for there are typical preconditioners in mathematics.
The symmetry of the whole system enables the simplicity of
the preconditioner and ensures the efficient convergence after
preconditioning.

C. Left Constraint Preconditioning

As it has been well addressed in [38], the left constraint
preconditioner P−1

c is applied here. Denote the block matrix
in (25) as �, thus the preconditioned system matrix now can
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Fig. 3. Eigenvalue spectrum distribution of the preconditioned A-� system.

be written as P−1
c · �, where

Pc =
[

G �
T
21

�21 k2
0�22

]
(26)

where G is an approximation of �11. For simplicity, G is
chosen as the diagonal of �11 and �

T
21 = �12. The inverse of

Pc can be easily obtained through

P−1
c =

[
I −G

−1
�

T
21

O I

]
·
[

G
−1

O

O S
−1

]
·
[

I O

−�21G
−1

I

]

(27)

where S = −(−k2
0 �22 + �21G

−1
�

T
21) is the Schur comple-

ment of �. The procedure is not expensive at all even when
S is completely dense. Techniques, such as approximate and
sparse factorization methods [38], can be used to efficiently
and approximately form and invert S. Later, it will be shown
in Section VI that a simple diagonal manner of the matrices
forming the Schur complement can be chosen for large-scale
computations. The preconditioner is specially efficient, while
the frequency is approaching zero and the bottom-right block
in (26) becomes zero.

The impedance matrices with and without the left constraint
preconditioner are built based on the same PEC sphere exam-
ple, as illustrated in Section IV-B. The eigenvalue spectrum
of the matrices is shown in Fig. 3. After preconditioning,
the system becomes quasi-positive definite. And the eigen-
values are almost real, since their imaginary parts are much
smaller than the real parts, which is more obvious as frequency
becomes lower. For a typical symmetric saddle point problem,
the matrix elements are assumed to be real, and the solved
eigenvalues are real accordingly. We can quasi-equivalently
apply the spectrum theory of the saddle point problem on
the preconditioned A-� formulation at low frequencies. The-
oretically, when with zero bottom-right block, after constraint
preconditioning, the eigenvalue 1 is with the multiplicity
of 2m, where m is the row dimension of the matrix �21 [39].
And obviously, the better G approximates �11, the more the
eigenvalues clustering around 1. Here, the matrix G is chosen

to be the diagonal of �11. A number of eigenvalues are shown
to accumulate around 1 in the zoomed-in figures in Fig. 3. As k
goes to zero, the bottom-right block of the original matrix goes
to zero. In the sphere example

�21 ∈ C
578×867 ⇒ 2 m = 1156. (28)

At the frequency of 10 MHz, there are 1152 eigenvalues
clustered around 1 within an error of 1%, while at 10 kHz,
the number is 1155 within a very small error of 10−6.
It implies that the diagonal approximation of G is appropriate
for an efficient preconditioning, especially at low frequen-
cies. Furthermore, the last m eigenvectors corresponding to
eigenvalues 1 is of the form [0, y]T , which is a pure eigenbasis
for the charge contribution.

D. Conditioning With Dense Mesh Discretization

Further spectrum analysis on the preconditioned A-� for-
mulation system can be applied to discuss the conditioning
of the system if the mesh density becomes higher where the
EFIE formulation also breaks down.

Theoretically, referring to the theory in [38] and [42], for
a preconditioned symmetric saddle point matrix P−1

c · �,
where Pc is given by (26) (here G is the symmetric and
positive definite by being chosen as the diagonal of �11),
the eigenvalues are of the form

λ = γ + 1 (29)

where γ is defined by the generalized eigenvalue problem

γ

[
I B

T

B k2
0�22

][
ũ
v

]
=

[
E 0
0 0

] [
ũ
v

]
(30)

where B = �21G
−(1/2)

, E = G
−(1/2)

�11G
−(1/2) − I, and

ũ = G
(1/2)

u. Apparently, the above-mentioned generalized
eigenvalue problem has at least m zero eigenvalues. It is
validated that the generalized eigenvalue problem in (30) has a
zero eigenvalue solution with the multiplicity of m +q , where
q is the dimension of the nullspace of E. This conclusion is
easy to arrive at due to the fact that γ = 0 if and only if
Eũ = 0 and ũ �= 0.

When γ �= 0, here we assume that the matrix �22 is
invertible, the nonzero eigenvalues can be obtained from the
top equation in (30) as

γ = ũ∗Eũ

ũ∗ũ + ũ∗B
T

v
. (31)

What can be obtained from the bottom equation in (30) is that

γ Bũ = −γ k2
0�22v. (32)

Hence, since [ũ v]T is the normalized eigenvector, the ele-
ments of the term ũ∗B

T
in (31) should be of very small values

at low frequencies due to the existence of k2
0 factor in (32).

Thus, it can be deduced that

|γ | ≈
∣∣∣∣∣ ũ∗Eũ

ũ∗ũ

∣∣∣∣∣ ≤ ‖ũ∗‖‖E‖‖ũ‖
|ũ∗ũ| . (33)
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Fig. 4. Absolute eigenvalues of the A-� system and the matrix system E+ I
for different mesh densities. Frequency: 300 kHz.

Clearly, the nonzero eigenvalues are approximately bounded
by the spectrum of the matrix E at low frequencies. Thus,
the conditioning of the preconditioned A-� system is approx-
imately bounded by the conditioning of E + I. In fact, from
numerical observations of (31), at middle frequencies, the term
ũ∗B

T
v is still far smaller than 1. Thus, the above conclusion

can be valid even at middle frequencies.
Now, let h be the average discretization diameter. Under a

certain discretization h, the zeroth order RWG basis function
satisfies

fm = ±lm(r0 − r)

2A±
m

= O(1) (34)

where lm is the RWG edge length, r0 and Am are the vertex
and area of the triangle, and r is the field point. Thus, the
h-dependence of the interactions between different elements
in �11 is O(h4). This is obtained by using (34) and the
double surface integral over the triangle in the matrix element
evaluation in (21). Then, we have the h dependence for G

−1

as O(h−4). Therefore

E + I = G
− 1

2�11G
− 1

2 = O(1) (35)

which verifies that the elements in E + I are bounded when
the mesh discretization becomes denser. Actually, the spectrum
of G

−(1/2)
�11G

−(1/2)
resembles that of G

−1
�11. The multi-

plication of G
−1

is a normalization procedure of the matrix
elements in �11 with respect to the mesh density.

As claimed before, the matrix G is an approximation of �11.
The spectrum of G

−1
�11 is a continuous function between

two cases. For the best case, it clusters at 1 when G = �11.
And for the simplest case when G = diag(�11), G

−1
acts as

the diagonal preconditioner. Also, note that the only integral
kernel in �11 is Green’s function, which is a smooth term
and has substantial contribution from the self-interactions.
Thus, �11 is diagonal significant. In this way, even with G
being a diagonal matrix, the spectrum of the preconditioned
compact operator becomes much better. As presented in Fig. 4,

the spectra of the preconditioned A-� system are bounded by
those of the matrix system E + I within a finite range that is
away from zero. And the A-� system spectrum is shown to
be more compact comparing with that of E + I.

A similar conclusion can be drawn from the analysis using
Gershgorin’s disk theorem, whose applications in time domain
integral equation systems can be found in [40]. Gershgorin’s
disk theorem [41] says that, for a complex matrix V ∈ C

N×N

with elements vi j , the eigenvalues of V locate in the disks
union defined as⎧⎨

⎩
centers: vii , i = 1, . . . , N

radii:
∑

j∈N\i

| vi j |, i = 1, . . . , N. (36)

By using (27), the preconditioned A-� system actually can
be written into the form

V =
[

V11 V12

V21 V22

]
= P−1

c · �

=
[

G
−1[

�11− �
T
21S

−1
�21(I − G

−1
�11)

]
0

S
−1
�21(I − G

−1
�11) I.

]
. (37)

Now, the final system matrix is in the form of a lower
triangular matrix and the bottom-right block matrix is an
identity matrix.

Thus, according to Gershgorin’s disk theorem, the eigenval-
ues of the matrix V can be categorized into two groups. One
group belongs to the disk union made up of the first Ne rows
of V, where Ne denotes the number of edges. Since the top-
right block matrix V12 = 0, the eigenvalues in this group are
actually determined by the eigenvalues of V11. Since G is the
approximation of �11, then the spectrum of V11 resembles
that of G

−1
�11. The other group of eigenvalues locates in

the disk union associated with the remaining Np rows of V,
where Np denotes the number of triangular patches. Since
V22 = I, the associated disks center at 1 and the radii are
determined by V21, which vanishes as G approaching �11.
This agrees with the former analysis with the generalized
eigenvalue problem.

It can be concluded thereafter that the preconditioned A-�
system has an asymptotically bounded spectrum, which indi-
cates that the conditioning with the dense mesh discretization
has been much improved after the constraint preconditioning.

E. Charge Neutrality Issue

It is demonstrated in this section that an additional benefit
of the proposed constraint preconditioned A-� system is its
immunity to the charge neutrality issue, as illustrated in [19].
In the A-EFIE, the electric current and the charge are regarded
as separated unknowns, while the current continuity condition

∇ · J = iωσ (38)

is confined for the second equation. Typically, the charge
neutrality condition is automatically satisfied due to (38) and
the zero divergence of the total current by invoking Gauss’
integral theorem. But at very low frequencies, it can be
violated, since ω ≈ 0. Although we use (10) in the A-�
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Fig. 5. Singular value distributions for A-� formulation and A-EFIE at the
frequencies of 300 MHz and 100 kHz.

Fig. 6. Hertzian dipole with current I oriented along the z-axis.

formulation, our system matrix resembles that of the A-EFIE
and still has such an electrostatic nullspace.

Here, an example is used to present the singular value
distribution of the A-� system with and without left constraint
preconditioner. We use the same PEC sphere example as that
in IV-C. The singular value spectra are plotted at the frequency
of 300 MHz and 100 kHz, as shown in Fig. 5. For middle
frequency such as 300 MHz, no extremely small singular
values are found. When the frequency lowers, there exists
one very small singular value compared with others. It is
observed that after preconditioning, not only the spectrum is
smoothed but also the smallest singular value corresponding
to the nullspace disappears.

V. INCIDENT POTENTIALS

A. Hertzian Dipole and Plane-Wave Incident

For near-field excitation, as shown in Fig. 6, a Hertzian
dipole with current J(r) = I l �̂δ(r) is oriented along the z-axis
and placed as a point source near an object with coordinate
(r, θ,φ). Then, the incident vector potential is

Ainc = μI l �̂
eikr

4πr
. (39)

The incident scalar potential can be obtained from the Lorenz
gauge

iω��inc = ∇ · Ainc/μ

= I l
(−eikr + ikreikr) cos θ

4πr2 . (40)

Thus, the vector potential is only related to the distance from
the source, while the scalar potential is dependent on the
location with both r and θ . And the second term in (40) can
be omitted as r becomes small in the near field.

An incident plane wave can be defined from the spherical
wave of the Hertzian dipole radiating from the far field. The
incident vector potential can be approximated as

Ainc = μI l �̂
eik|R+r|

4π | R + r | ≈ μI l �̂
eikr

4πr
eiki ·r, | R || r | .

(41)

Subsequently, it can be written in terms of two components
with a⊥ perpendicular to the wave propagation direction and
a‖ the longitudinal component, namely

Ainc = (a⊥ + a‖)eiki ·r (42)

where ki is along the r direction. The two components indicate
the incident angle of the vector potential. The scalar potentials
can be derived accordingly as follows:

iω��inc = ∇ · Ainc/μ = i

μ
ki · a‖eiki ·r. (43)

The longitudinal component vanishes in the incident scalar
potential. Under the perpendicular incidence of the vector
potential, a‖ = 0. The incident scalar potential equals to zero,
which could happen in the broadside direction of a dipole.
This is also known as the � = 0 gauge or radiation gauge.
These incident potentials defined by the Hertzian dipole can
be proved to reveal the incident electric field of plane wave
as

Einc = iωAinc − ∇�inc = iωAinc − ∇∇ · Ainc

iωμ�

= − iki × (iki × Ainc)

iωμ�
= iωa⊥eiki ·r, (44)

and the magnetic field

Binc = ∇ × Ainc = iki × a⊥eiki ·r. (45)

The existence of the longitudinal component in Ainc indicates
that the potential still exists even if both Einc and Hinc are
zero.

B. Local Source Excitation

For circuit problems, a local excitation with delta-gap source
is desired. It is an approximation of an impressed uniform
electric field between the thin gaps. However, it is difficult
to directly compute the potentials from the impressed electric
field due to the discontinuity of the field. Actually, the circuit
can be excited by an arbitrary impressed field at the port area
and then gradually becomes stable. The electric field Einc =
iωAinc −∇�inc, where Ainc denotes the contribution from the
current, while �inc denotes the contribution from the charge.
A scalar potential-based excitation can be found in [43].

The physical meaning here for the delta-gap source
is different from that in [43]. As illustrated in Fig. 7,
a toroidal solenoid with slow-varying current provides a quasi-
magnetostatic field, which is trapped inside the solenoid.
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Fig. 7. Vector potential-based local excitation at the port area.

Outside the solenoid, B = 0, and however, the potential A still
exists. The magnetic dipole works as the primary winding in
a transformer. Due to the existence of the vector potential,
the electrical dipole gets excited as a secondary winding.
Similar to the definition of voltage delta-gap source [44],
in order to simplify the computation cost, a potential-based
delta-gap source approximation is defined here with

αinc(r) =
{
α0, r in the port area

0, otherwise
(46)

where one can attach each port to a given potential αinc = α0,
while the potentials for the rest of the edges are set to be 0.
If multiple ports are defined for a problem at different loca-
tions, one can even attach a constant potential to a given port
and grounding the others. By this way, the port information,
such as input impedance, can be easily obtained for each port,
respectively. The source does not have a �inc contribution,
since there is no charge accumulation.

Assuming the gap width of the delta-gap model to be �z,
the port voltage V then can be computed from the electric
field

V = Einc · �zẑ = iωAinc · �zẑ. (47)

Since the vector potential is originally generated by a current
in the toroidal solenoid, the source defined by A can be
understood as the voltage source generated by the currents.
The input impedance can be obtained accordingly after solving
the integral equation.

VI. LARGE-SCALE COMPUTATIONS

It is to be noted that the only integral kernel in the
A-� formulation is the scalar Green’s function, which enables
the easy integration of existing FMAs. Then, it is possible
for us to use the A-� formulation to solve real-world large-
scale problems efficiently. In this paper, we incorporate the
mixed-form FMA that expands the field with mutipoles at low
frequencies and with plane waves at middle frequencies [45].

On the other hand, the fast computation with respect to the
preconditioner is another important issue. As indicated in (27),
the computation cost for the preconditioner is determined by
the computation of S

−1
. The Schur complement S is originally

a dense matrix. There are mature mathematical techniques to
quickly obtain an inverse of a sparse matrix. Due to the scalar

Fig. 8. Far-field RCS result for a unit PEC sphere at 300 MHz.

Green’s function, the self-interactions are significant in all the
block matrices �i j , (i, j = 1, 2). Then, the fast approximate
inverse of S can be achieved by taking the sparse matrix as

S
′ = k2

0diag(�22) − diag(�21) · G
−1 · diag(�

T
21) (48)

where the notation “diag” denotes taking the diagonal ele-
ments. Here, �21 is not a square matrix, so the elements
in diag(�21) and diag(�

T
21) denote the self-interaction terms

between the patches and their edges. Here, we use the multi-
frontal method as a fast direct solver to obtain the approximate
inverse of the Schur complement. The diagonal scheme can
also be applied on the matrix �21 in (27).

Typically, the computational complexity of the A-� for-
mulation solver, including the preconditioner part, can be
achieved as proportional to N log N , where N is the number
of unknowns (N = Nedges + Npatches).

Some tradeoffs on the convergence are expected when
the sparse scheme is applied on the preconditioner. Here,
we apply the lease cost way to build the constraint precond-
tioner by taking the diagonals only to observe its perfor-
mance limit. For better clarification, we denote the system
with preconditioner (27) as “preconditioned A-�” and the
system with sparse approximation in the preconditioner as
“sparse preconditioned A-�.” The comparison between these
two preconditioning strategies will be given in the numerical
results.

VII. NUMERICAL RESULTS

A. Plane-Wave Scattering

1) PEC Sphere: The scattering of a unit PEC sphere is
shown here. When the unknown number is not large, the
A-� formulation can be solved using a direct method without
a preconditioner. The system can achieve good accuracy until
very low frequencies. Figs. 8 and 9 plot the scattering cross
section results for the PEC sphere at 300 MHz and 50 Hz,
respectively (�inc �= 0). The results solved by the A-�
formulation match well with the analytical solutions.
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Fig. 9. Far-field RCS result for a unit PEC sphere at 50 Hz.

TABLE I

NUMBER OF ITERATIONS FOR A-EFIE AND A-� SYSTEMS FOR

A SPHERE MODEL WITH 867 UNKNOWNS. TOL = 10−7

TABLE II

NUMBER OF ITERATIONS FOR DIFFERENT METHODS FOR

A SPHERE MODEL WITH 2352 UNKNOWNS. TOL = 10−7

While the iterative solver is employed, Tables I and II
present the iteration numbers for different methods at dif-
ferent frequencies. Here, the restarted GMRES method with
a restart number of 50 (denoted as GMRES-50) is incorpo-
rated. The error tolerance for the iterative solver is 10−7.
In Table I, the sphere is discretized with 578 triangle patches
and 867 edges. It is shown that, without preconditioners,
the convergence of the A-� formulation is better than the
A-EFIE; however, it is unstable at higher or lower frequencies.
The system can be efficiently stabilized by the P−1

c precon-
ditioner, which is especially effective and converges much
faster than the A-EFIE at low frequencies. Here, the inverse of
the Schur complement is obtained by using the direct solver.
Table II describes the iteration information of the scattering
for a PEC sphere, which is discretized into 1568 triangle

Fig. 10. Number of iterations for different solvers with mesh densities at
different frequencies. (a) f = 100 MHz. (b) f = 10 kHz (a unit PEC cube).

patches and 2352 edges. From the results, it can be concluded
that the A-� formulation after preconditioning shows a better
performance over the original A-EFIE for denser meshes.
Although the system is not free from interior resonance
problem at high frequencies, it presents a fast and stable
convergence regardless of the increase of the unknown number
at low frequencies.

2) PEC Cube: Further results with various mesh densities
are computed with a PEC cube whose shape does not change
with different discretizations. The cube has a side length
of 1 m. Also, the comparison between the A-� formulation
with and without sparse preconditioning approximation is
given. Fig. 10(a) shows the iteration number of different
solvers with mesh densities at 100 MHz (with the total electri-
cal size of 0.33λ). Here, an iterative solver with GMRES-50 is
used, and h denotes the average discretized triangle edge
length. A standard loop-tree decomposition method (with
frequency normalization) is shown here for comparison, and
it fails to converge when the discretization becomes denser,
while the systems with A-EFIE and A-� formulation (both
with constraint preconditioner) achieve stable convergence.
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Fig. 11. Far-field results of a PEC torus computed from EFIE and A-�
formulation and the current distribution solved with the A-� formulation.
Frequency: 100 kHz.

The sparse preconditioned A-� formulation shows quite a
slower convergence compared with the original precondtioned
one. Also, it is noted that both of them show a better
performance over the A-EFIE on the convergence rate. The
advantage becomes more significant when the frequency is
lower, especially for the original precodntioned A-� formu-
lation, as shown in Fig. 10(b) with the frequency of 10 kHz
(with the total electrical size of 0.33 × 10−4λ).

3) Multiply-Connected Structure: The computation of
multiply-connected structures recently gains much attention
for the existence of magnetostatic nullspaces at the sta-
tic limit. EFIEs do not suffer from this problem. Physi-
cally, the potential-based integral equation is also immune
from this nullspace problem, because, as in the cases of
Aharonov–Bohm effect, the potentials still exist and describe
the physics even with a null magnetic field.

Here, a one-genus toroidal structure is presented to vali-
date the accuracy of A-� formulation in solving multiply-
connected problems. The total dimension of the object is
0.8 m × 0.8 m × 0.2 m, and the radius of the torus tube
is 0.1 m. The model is discretized into 1076 triangle patches
with 1614 edges. The working frequency is chosen to be a
low frequency at 100 kHz. Under a plane-wave excitation,
as shown in Fig. 11, the far-field scattering results of A-�
formulation agrees well with that computed with the EFIE.
The subfigure in Fig. 11 plots the current distribution on
the torus surface, which also matches well with that solved
from EFIE. With the constraint preconditioner, the A-� for-
mulation achieves a much better convergence (GMRES-50),
as shown in Fig. 12.

4) NASA Almond: We then consider a NASA almond with
the dimension of 3.37λ×1.30λ×0.43λ at 4 GHz. The structure
contains sharp edges and a pointed corner. It is discretized into
2907 edges and 1938 triangle patches, as shown in Fig. 13(a).
The simple EFIE is capable of handling the accuracy for
computing such a problem. Fig. 13(b) plots the far-field

Fig. 12. Convergence results of a PEC torus computed from the EFIE and
A-� formulation. Frequency: 100 kHz.

Fig. 13. (a) Geometry and discretization of the NASA almond model.
(b) Far-field result and the current distribution of the almond at 4 GHz.

scattering results for the A-� formulation and the diagonal
preconditioned EFIE, which match well with each other.
The image in the center of Fig. 13(b) shows the current
distribution on the almond surface. With the constraint pre-
conditioner, the A-� formulation can converge in 98 iteration
steps for a GMRES-100 iterative solver with an error tolerance
of 10−7, while the EFIE converges to the same error tolerance
after 5000 iteration steps.
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Fig. 14. (a) Geometry of the parallel-plate capacitor model. (b) Current
distribution of the capacitor at 10 MHz. Unit: 20 log10(A/m).

Fig. 15. Iteration information of the parallel-plate capacitor for differ-
ent meshes using the A-EFIE and A-� formulation (both with constraint
preconditioners).

B. Electrostatic Problem

For the electrostatic problem, an example of a 5 mm ×
4 mm × 0.5 mm parallel-plate capacitor is considered.
As presented in Fig. 14(a), the capacitor is discretized into
2288 edges and 1576 triangle patches. A potential-based delta-
gap source is applied in the central edges of the connected
bridge between the two plates. Fig. 14(b) shows the current
distribution of the capacitor solved using the A-� formulation.
The current is largest at the port area and then gradually
vanishes to the open end. Using the input impedance at
port edges, the capacitance is calculated to be 0.47 pF,
which is the same as the A-EFIE result. The convergence
information of two different mesh densities is compared
in Fig. 15 for the A-EFIE and A-� formulation at 10 MHz.
Mesh 1 is denser with 2288 edges, while mesh 2 has for
553 edges. The A-� method converges much faster than the
A-EFIE method regardless of the mesh densities.

C. Magnetostatic Problem

The magnetostatic problem is discussed here with a strip
loop inductor, as shown in Fig. 16. This is also a multiply-
connected structure. Generally, the magnetostatic nullspace
problems should be considered more carefully in the local-
excited multiply-connected structures than in the scatter-
ing problems, since lumped elements usually work at low

Fig. 16. Model of a rectangular loop structure.

Fig. 17. Comparison of computed inductance for the EFIE, A-EFIE, and
A-� formulation.

Fig. 18. Convergence results for the strip loop using the EFIE, A-EFIE, and
A-� formulation.

frequencies and the global-loop currents are very impor-
tant modal counterparts in local-excited problem solutions.
Here, the loop inductor is discretized into 1017 edges and
678 triangle patches. Similar to the case of the capacitor,
a potential-based delta-gap source is assigned in the middle
of the bottom side. In Fig. 17, the inductance is calculated
according to input impedance for the EFIE, A-EFIE, and
A-� formulation, respectively. The computed inductance using
the three methods matches well with each other at higher
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Fig. 19. Current distribution of the four-port interconnects under the delta-
gap excitation at port 1. Frequency: 20 GHz. Unit: 20 log10(A/m). The top
view of the current distribution and the discretization are shown in subfigures.

Fig. 20. Magnitude of the input impedances Y11 and Y21 solved with the
A-EFIE and A-� formulation.

frequencies until several hundreds of kilohertz. As frequencies
continually lower, a low-frequency breakdown problem starts
to emerge in the EFIE, and the computed inductance begins
to diverge. The result from the A-� formulation still remains
stable until very low frequencies and shows good agreement
with that of the A-EFIE. At the frequency of 10−5 GHz, when
the EFIE does not converge due to low-frequency breakdown,
our proposed method still converges well and better than the
A-EFIE, as shown in Fig. 18.

D. Four-Port Interconnects System

A four-port board plate structure with two pairs of inter-
connects is presented here. The structure is a part cut from a
realistic package board, which is discretized into 27 315 inner
edges and 19 870 triangle patches. Fig. 19 shows the current
distribution on the metallic board at 20 GHz with the delta-
gap excitation at port 1. The image presented in the blue
ellipse on the bottom-right of Fig. 19 describes the multiscale
discretization with the mesh elements of maximum edge
length λ/10 and minimum edge length λ/3000.

Fig. 21. Convergence information for the four-port interconnects problem
solved with the A-EFIE and A-� formulation.

Fig. 20 plots the magnitude of the input impedances
Y11 and Y21 from 0.25 to 40 GHz with 160 frequency
points. The results agree well with those calculated with the
A-EFIE method. Here, a mixed-form multilayer FMA with
five layers is incorporated in the solver, and the average
iteration step is approximately to be 40 for each frequency
point (GMRES-100, error tolerance: 10−3).

Also, the convergence information is plotted here by sweep-
ing the frequency from 2 to 20 GHz. As shown in Fig. 21,
the sparse preconditioned A-� formulation shows an advan-
tage over the A-EFIE (with constraint preconditioner) on the
convergence over a wide range of frequencies.

VIII. CONCLUSION

In this paper, an integral form of the potential-based
formulation has been proposed and implemented to solve
EM problems over a wideband frequency range. The system,
which is applicable to both scattering and circuit problems, has
been validated as immune to the low-frequency catastrophe,
the ill-conditioning with dense mesh, and the magnetostatic
nullspace problem. The integral kernel of the formulation is
just Green’s function; thus, it is convenient to incorporate
existing fast solvers to solve real-world problems with a
large number of unknowns. Since the equation is formulated
with potentials instead of fields, and works well for long-
wavelength situations, it is possible to couple with the quantum
theory to solve quantum effects problems where the problem
sizes are usually much smaller compared with the wavelength.
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