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A B S T R A C T   

Distractor suppression (DS) is crucial in goal-oriented behaviors, referring to the ability to suppress irrelevant 
information. Current evidence points to the prefrontal cortex as an origin region of DS, while subcortical, oc
cipital, and temporal regions are also implicated. The present study aimed to examine the contribution of 
communications between these brain regions to visual DS. To do it, we recruited two independent cohorts of 
participants for the study. One cohort participated in a visual search experiment where a salient distractor 
triggering distractor suppression to measure their DS and the other cohort filled out a Cognitive Failure Ques
tionnaire to assess distractibility in daily life. Both cohorts collected resting-state functional magnetic resonance 
imaging (rs-fMRI) data to investigate function connectivity (FC) underlying DS. First, we generated predictive 
models of the DS measured in visual search task using resting-state functional connectivity between large 
anatomical regions. It turned out that the models could successfully predict individual’s DS, indicated by a 
significant correlation between the actual and predicted DS (r = 0.32, p < 0.01). Importantly, Prefrontal- 
Temporal, Insula-Limbic and Parietal-Occipital connections contributed to the prediction model. Furthermore, 
the model could also predict individual’s daily distractibility in the other independent cohort (r = –0.34, p <
0.05). Our findings showed the efficiency of the predictive models of distractor suppression encompassing 
connections between large anatomical regions and highlighted the importance of the communications between 
attention-related and visual information processing regions in distractor suppression. Current findings may 
potentially provide neurobiological markers of visual distractor suppression.   

1. Introduction 

The overwhelming surge of external information surpasses our 
cognitive capacity, emphasizing a crucial role of selective attention to 
effectively allocate limited resources (Theeuwes, 1993). Selective 
attention involves selecting task-relevant stimuli while tuning out 
irrelevant stimuli. The ability of filtering out irrelevant or disruptive 
information is termed as distractor suppression and it enables better 
concentration on the chosen goal, crucial on goal-oriented behaviors. 
Failure of suppressing distractor may lead to difficulty in allocating 
attention on the relevant information. Along with target facilitation, 
distractor suppression is a key component of selective attention (Van 
Moorselaar and Slagter, 2020). Notably, some distracting information 
(e.g., a unique color item), has intrinsic power to capture attention 

(Theeuwes, 1992). However, a rapidly growing body of work has shown 
that physically salient distractors can be actively suppressed to prevent 
visual distraction (Gaspelin and Luck, 2018a; Sawaki and Luck, 2010). 
Supporting evidence comes from various studies, including but not 
limited to behavioral, event-related potential, and eye movements 
studies (Chang and Egeth, 2019; Gaspelin et al., 2015; Gaspar and 
McDonald, 2014; Gaspelin and Luck, 2018b; Gaspelin et al., 2019; 
Hamblin-Frohman et al., 2022). Visual search task is commonly used in 
these studies. Behaviorally, studies found faster search responses when a 
salient distractor appeared in the visual search display (Chang and 
Egeth, 2019; Gaspelin et al., 2015). Such a benefit indicates that the 
suppressive process was triggered by the salient distractor. In addition to 
these laboratory measures of distractor suppression, individual’s 
distractibility in daily life can be assessed using a Cognitive Failure 
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Questionnaire (CFQ) (Broadbent et al., 1982). Higher distractibility re
flects lower distractor suppression in daily environment. Everyday 
environment is notably complex and dynamic, full of factors that can 
significantly impact an individual’s behavior, cognition, and perception 
(Peelen and Kastner, 2014). Thus, combination of laboratory measure
ment and CFQ may provide us a better understanding of distractor 
suppression. 

Distractor suppression renewed interest in recent years (Luck et al., 
2021; Schneider et al., 2022), yet the neural mechanism of how the brain 
suppresses distracting information is still up in the air. In contrast with 
target facilitation, distractor suppression has been less well understood. 
Contemporary research highlights that top-down selective attentional 
control encompasses three primary brain lobes — the frontal, parietal, 
and temporal lobes. These lobes are interconnected through fiber 
pathways spanning considerable distances, facilitating the coordination 
of attention (Sani et al., 2021). The top-down selective attentional 
control mechanism operates to suppress irrelevant stimuli and priori
tizes the processing of task-relevant information, thereby facilitating 
goal-oriented behaviors. The prefrontal cortex (PFC) is known as a 
source of top-down control signals, establishing communication not only 
with the parietal and temporal lobes but also transmitting regulatory 
signals to various brain regions, encompassing subcortical, occipital 
areas (Banich, 2009; Ridderinkhof et al., 2004). This not entirely 
modular organizational pattern aligns with the understanding of coor
dinated interactions between brain regions required for complex 
cognitive functions (Katsuki and Christos, 2014). Present evidence in
dicates that distractor suppression is achieved by modulating sensory 
processing (Seidl et al., 2012), similar to target facilitation (Reynolds 
and Leonardo, 2004). Typical attention-related brain regions, such as 
the occipital, parietal and frontal areas, were devoted to minimizing the 
impact of distractors and enhancing target processing (Ruff and Driver, 
2006). However, it has been demonstrated that the neural mechanisms 
underlying distractor suppression are distinct from those involved in 
target facilitation (Gazzaley et al., 2005; Markant et al., 2015; Noonan 
et al., 2016b; Van Moorselaar and Slagter, 2019; Xie et al., 2020). Within 
the frontoparietal cortex, distinct and distributed regions were associ
ated with target facilitation and distractor suppression respectively (Xie 
et al., 2020). This study examined the neural bases of target facilitation 
and distractor suppression via associating morphologic characteristics 
and resting-state functional connectivity strength with behavioral per
formance. Such approach is beneficial for establishing the relationship 
between the brain and distractor suppression. 

Additionally, it has been showed that the resting-state functional 
connectivity and cognition have a substantial association (Petersen and 
Sporns, 2015; Smith, 2016). The unique and stable connectivity patterns 
in individuals offer reliable indicators of their traits and behavioral 
variations (Bari et al., 2019; Elliott et al., 2019). Shen et al. (2017) 
introduced a data-driven cross-validation protocol, connectome-based 
predictive modeling (CPM), based on connectome data. This approach 
crafts neuroimaging-based biomarkers potentially applicable in 
real-world scenarios, and can successfully predict individual’s traits 
such as attention (Rosenberg et al., 2016), fluid intelligence (Greene 
et al., 2018), and anxiety (Yoo et al., 2022). The projection of CPM 
model features back into brain space facilitates interpretation based on 
known relationships between brain structure and function. Therefore, 
CPM based on the resting-state functional connectome offers a conve
nient and precise perspective to explore intricate relationships between 
brain function and behavior. However, most CPM studies relied on 
fine-grained brain region connectivity (e.g., parcellating the brain into 
268 regions) and didn’t explicitly highlight communication between 
large anatomical regions, despite its recognized importance in the 
brain’s modular organization (Zamora-López et al., 2011). Previous 
studies demonstrated the significance of intercommunication among 
large-scale anatomical brain regions in anxiety using a computational 
“lesion” method within CPM to simulate disruptions in connectivity 
between limbic regions and the prefrontal cortex (Wang et al., 2021). 

While the “lesion” method can demonstrate the contribution of con
nections between large brain regions to some extent, predictive models 
using these connections as features may offer greater efficiency in 
assessing their significance. Although increasing interest has been 
drawn to how the brain suppresses salient distractors (Luck et al., 2021; 
Schneider et al., 2022), investigation of the neural bases of distractor 
suppression remains challenging. Here, our work introduces the appli
cation of CPM to investigate the importance of functional connections in 
distractor suppression. 

To do it, we checked the role of the communication between 
anatomical large-scale brain regions in distractor suppression in the 
framework of the CPM. Two independent cohort of participants were 
recruited for the study. In one cohort, individual’s DS was measured 
using a visual search task where a salient distracting singleton recruited 
distractor suppression in the laboratory (refer to Xie et al., 2022). In the 
other cohort, individual’s distractibility in daily life was assessed using 
the Chinese version of Cognitive Failures Questionnaire (CFQ) (Zhou 
et al., 2016). Besides the DS measures, every participant scanned rs-fMRI 
data. For the predictive model construction, connectivity strength be
tween anatomical large-scale brain regions were computed and served 
as features. Then, we generated predictive models of DS using a 
leave-one-out validation procedure. Finally, a predictive model using all 
participant’s data in discovery dataset was generated to predict 
distractibility in daily life for the external validation. We hypothesize 
that the communication patterns between anatomical large-scale brain 
regions reflect the common neural mechanisms of distractor suppression 
under different circumstances (in-laboratory experiment or daily life). In 
addition, we expect the significance of prefrontal regions in DS predic
tive models because the PFC was known as an origin region of DS, 
transmitting signals through higher-order cognitive control networks, 
and coordinating the work of various brain regions. 

2. Materials and methods 

2.1. Participants 

Two cohorts from University of Electronic Science and Technology of 
China were recruited for the study. For discovery sample, 88 normal 
college students (44 females, mean age = 20.95 years, SD = 1.93 years) 
were recruited. For validation sample, additional 53 normal college 
students (26 females, mean age = 23.09 years, SD = 1.95 years) were 
recruited. All participants had normal or corrected-to-normal vision, no 
psychiatric and neurological disorders, no history of substance, drug, or 
alcohol dependence and no contraindications to MRI scans. This study 
was approved by the University of Electronic Science and Technology of 
China Institutional Review Board. Written informed consent was given 
by all participants in accordance with it. 

2.2. Experimental paradigms 

2.2.1. Assessment of DS using visual search task 
For the discovery sample, every participant conducted a visual 

search task to measure the DS. In the visual search task, each trial started 
with a white central fixation point (800–1200 ms) which was followed 
by a search display. The search display comprised of four items, a white 
target, a white (non-salient) or red (salient) distractor, and two white 
non-targets (“X” and “K”). Upon the search display onset, the partici
pants needed to identify whether the target was an upright or inverted 
“T” by pressing the “F” key for an upright “T” and the “J” key for an 
inverted “T” using their left and right index fingers. For more details of 
the search task, please refer to Xie et al. (Xie et al., 2022). 

In this experimental design, the salient distractor was supposed to 
benefit the search performance due to the recruitment of distractor 
suppression (Gaspelin et al., 2015). Hence, we computed the reaction 
time difference with versus without a salient distractor (ΔRT = RTnon-

salient - RTsalient) to evaluate individual’s DS. 
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2.2.2. Assessment of DS using CFQ 
The Cognitive Failure Questionnaire (CFQ) (Broadbent et al., 1982) 

was used to evaluate daily distractibility. Every participant filled in 
Chinese version of CFQ, which has been validated in Chinese college 
students (Zhou et al., 2016). The CFQ consists of 25 items and captures 
difficulty with distractibility (10 items), memory (8 items), and psy
chomotor (7 items). For each item, participants stated how often each of 
the mentioned events happened to them in the past six months using a 
five-point Likert scale (ranging from “0=never” to “4=very often”). The 
score of each item was summed for every subscale and total CFQ score 
was the summation of three subscale scores. More often an individual 
experiences daily distractibility, the more susceptible he/she is to 
distraction. Thus, higher distractibility score represents worse DS. 

2.3. Image acquisition, preprocessing, and analysis 

2.3.1. Neuroimaging data acquisition and preprocessing 
For both cohorts, the structural and functional MRI images were 

collected using a GE Sigma 3.0-Tesla scanner (General Electric, Mil
waukee, WI, USA) at the MRI Brain Imaging Center, at the University of 
Electronic Science and Technology of China. The T1-weighted structural 
images (repetition time= 5.96 ms, echo time= 1.96 ms, flip angle=9◦, 
field of view = 256 × 256 mm2, matrix size= 256 × 256, voxel size= 1 ×
1 × 1 mm3, and slices= 176) were acquired. Subsequently, resting-state 
fMRI were acquired using a echo planar imaging sequence (repetition 
time= 2000 ms, echo time= 30 ms, flip angle= 90◦, field of view = 240 
× 240 mm2, matrix size= 64 × 64, voxel size= 3.75 × 3.75 × 3.75 mm3, 
and slices= 43). For each participant, a total of 205 functional volumes 
were acquired. All participants were instructed to simply rest with their 
eyes closed, and not to think of anything in particular while remaining 
awake throughout all the scans. 

Neuroimaging data were preprocessed using the DPARSF (v6.0, 
www.restfmri.net) and SPM12 toolkits (www.fil.ion.ucl.ac.uk 
/spm/software/spm12). Slice-timing correction and realignment were 
applied to the remaining 200 functional images after excluding the first 
5 images. Structural images were then co-registered to the preprocessed 
functional images, and then segmented into GM, WM, and cerebrospinal 
fluid (CSF) by using DARTEL. The mean signals from WM, CSF and 
Global Signal, 24 head motion parameters (six motion parameters, six 
temporal derivatives, and their respective squares) and linear trend were 
regressed out from the data. Subsequently, a band-pass filtering 
(0.01–0.08 Hz) was performed to minimize high-frequency physiolog
ical noise sources including the respiration rate. Then spatial normali
zation to Montreal Neurological Institute space and resampling to 3 × 3 
× 3 mm3. Finally, spatial smoothing with an 8-mm FWHM Gaussian 
kernel. 

2.3.2. Quality control 
Participants were excluded from analyzes if their head motion 

exceeded 3 mm or 3◦ in any direction or the mean framewise displace
ment exceeded 0.2 (Power et al., 2014). For the discovery sample, all 
participants were included for further analysis. For the validation sam
ple, three participants (2 females) were excluded from further analysis. 
In addition, a participant was excluded from the validation sample 
because they appeared in the discovery sample. Finally, 88 participants 
(44 females, mean age = 20.95 years, SD = 1.93 years) were included in 
the discovery sample; 49 participants (24 females, mean age = 23.02 
years, SD = 2.00 years) were included in the validation sample. 

2.3.3. Connectome-based predictive modeling (CPM) 

2.3.3.1. Functional parcellation and communication definition. Brain 
nodes were defined by using a functional brain atlas, derived from a 
graph theory-based parcellation algorithm that maximized the similar
ity of the voxel wise time series within each node (Shen et al., 2013, 

2010). The atlas includes 268 nodes spanning the whole brain including 
cerebellum and brainstem. After parcellating the brain into 268, func
tionally coherent nodes, the average time course of each node pair were 
correlated and correlation coefficients were Fisher transformed, gener
ating 268 × 268 connectivity matrices per subject. Then removing 268 
diagonal elements for further analysis. 

To characterize the large-scale brain region communication, the 268 
nodes were grouped into 10 macroscale anatomical brain regions (see 
details in Fig. 1), including the prefrontal lobe (46 nodes), motor lobe 
(21 nodes), insular lobe (7 nodes), parietal lobe (27 nodes), temporal 
lobe (39 nodes), occipital lobe (25 nodes), limbic lobe (36 nodes), cer
ebellum lobe (41 nodes), subcortical lobe (17 nodes) and brainstem lobe 
(9 nodes) (Feng et al., 2019). And the large-scale brain region commu
nication was computed by summing the set of 268 × 268 connectivity 
edge for all the edges spanning tow specific large-scale brain regions, 
where threshold (r = 0.2) was chosen to eliminate weak correlations 
attributed to signal noise (Liu et al., 2017). 

2.3.3.2. Prediction analysis using cross-validation in discovery sample. To 
investigate whether the communication between anatomical large-scale 
brain regions could predict DS, we employed a leave-one-out cross- 
validation (LOOCV) to avoid false positive results from overfitting (Shen 
et al., 2017). In each LOOCV, N-1 participants were used as the training 
set and the remaining one was used as the testing set, where N is the 
number of the participants in the discovery sample. During the training 
procedure, predictive features were defined as the relevant communi
cations to DS at a significant threshold of p < 0.05 in the training set. 
Next, a simplified general linear model (GLM) was constructed to 
establish the relationship between communications and DS. During the 
testing procedure, the left-out participant’s predictive features were 
obtained, and then the trained model was used to predict the testing 
participant’s DS. The training and testing procedures were repeated N 
times such that each participant was used once as the testing participant 
(see details in Fig. 1). 

Finally, each participant’s predicted DS was obtained. Pearson cor
relation coefficient (r) and mean squared error (MSE) between actual 
and predicted DS were used to evaluate the power and the accuracy of 
the predictive model. 

2.3.3.3. Permutation test. Although we initially used parametric statis
tical analysis to obtain p values in the LOOCV procedure, the number of 
degrees of freedom is overestimated when LOOCV is performed within a 
single data set (Rosenberg et al., 2016). To confirm that our LOOCV 
results are still significantly better than chance, the permutation test was 
applied to compute the sampling distribution for any test statistic under 
the null hypothesis. Specially, we randomly and repeatedly shuffled DS, 
and each time re-applied the above LOOCV procedure. If there were no 
relevant communications selected as predictive features for DS, we 
consider this situation as a model that has not been constructed and 
perform a reshuffle. This resulted in a 1000 times sampling distribution 
of correlation (r) and MSE values. The ppermutation value was calculated 
by dividing shuffled times by the number that was greater than (or with 
respect to MSE values, less than) or equal to the true value. 

Because of nonoverlapping participants in the discovery and vali
dation samples, in validation samples, we evaluated the p value between 
the observed and predictive DS using parametric statistical analysis 
only. 

2.3.3.4. Identify significant communications. Large-scale brain region 
communications appeared in the 95 % iterations of the LOOCV were 
defined as substantial communication connectivity. The strength of 
these connections was correlated with individual’s DS respectively. 

2.3.3.5. Predictive model for external validation. To construct a predic
tive model of DS to apply to a completely independent group, 88 
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participants in discovery sample were used to establish a general model. 
We extracted identical communication connections from the validation 
sample, which had been initially chosen in the general DS predictive 
model. Following that, these connections were directly fed into the 
aforementioned general DS predictive model. Finally, we calculated the 
Spearman correlation between the predicted ΔRT and actual CFQ scores. 

2.3.4. Control analyzes of confounding factors 
Several control analyzes were implemented to further examine the 

significance of predictions of our models despite potential confounds of 
age, gender and head motion. To better understand the variables in 
discovery and validation samples, the relationships between behavior 
score (actual DS and actual CFQ scores) and confounding factors (age 
and head motion) were evaluated. The gender-based differences in 
behavior scores were assessed by t-test. We conducted control analyzes 
for factors with the potential to exert an effect. In these analyzes, new 
predictive features were generated by utilizing communications that 
exhibited a partial Pearson correlation with DS at a significant threshold 
of p < 0.05, while controlling for confounding variables (Feng et al., 
2019). The remaining procedures were kept constant. 

2.4. Data and code availability 

The software mentioned in Sections 2.3.1 is freely accessible. Data 
can be obtained from the corresponding author upon reasonable 
request. Sharing and reusing the data necessitate explicit written con
sent from the authors, along with approval from the institutional review 
boards. 

3. Results 

3.1. Visual search task performance 

In the discovery dataset, the participants performed a visual search 
task with and without a task-irrelevant salient distractor (Fig. 2A). As 
expected, we found faster responses in the trials with the salient dis
tractor (629.18 ms) than without it (635.97 ms) (t (87) = − 3.59, p <
0.01), indicating that the salient distractor triggered the suppressive 
mechanism. Thus, the difference of mean response time with and 
without a task-irrelevant salient singleton (ΔRT) of each participant can 
be used to evaluate their DS. 

Furthermore, in order to evaluate the reliability of DS measure, we 
executed the Monte Carlo splitting combined with stratification (dis
tractor type and target type) 1000 times and used the average split-half 
Spearman-Brown-adjusted Pearson correlations as an indicator of the 
reliability of the DS measure in this study (Pronk et al., 2022). We found 
that the average split-half Spearman-Brown-adjusted Pearson correla
tion was 0.64, suggesting that the ΔRT can serve as the reliable measure 
of the DS. Upon the reliability of the ΔRT, we picked the ΔRT in all trials 
to evaluate individual’s DS which varied across individuals (range, 
− 53.84 to 49.34 ms) and followed a normal distribution (Kolmogor
ov-Smirnov test, p = 0.20). 

Accuracy was high generally (95.80 %) and was higher in the trials 
with the salient distractor (salient, 96.09 %; non-salient, 95.52 %; t (87) 
= 2.55, p < 0.05), once again indicating superior search performance 
with the salient distractor. Subsequently, we computed ΔACC (ACCsalient 
- ACCnon-salient) for each participant as another measure of DS. 

Fig. 1. The schematic flow of connectome-based predictive modeling. 
Note: rsFCs, resting-state functional connectivity. 
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3.2. Predicting distractor suppression based on large-scale brain region 
communications 

We first investigated whether the communication pattern of large- 
scale brain regions could predict an individual’s ΔRT observed in the 
discovery dataset. Pearson’s correlation between the actual and pre
dicted values was used to evaluate the predictive performance of the 
model. Ultimately, the predictive model based on large-scale brain re
gion communication patterns successfully predicted the ΔRT (r = 0.32, p 
< 0.01, Fig. 2B) and survived 1000 permutation test (p < 0.05, Fig. 2C), 
revealing that the model could successfully predict individual’s DS. For 
further evaluation, Mean Squared Error (MSE) was assessed the con
sistency between actual values and predicted values (Feng et al., 2019), 
where smaller MSE means better fit of the model to the data and more 
accurate predictions. Since the value of MSE can be influenced by the 
data range, it cannot be directly used for comparing different datasets. 
Thus, we generated a distribution of MSE values during the process of 
1000 permutation tests and we found that the estimated p-value of the 
original MSE was less than 0.01, convincing that large-scale brain region 
communication patterns capture crucial information related to DS 
(Fig. 2D and E). 

We also tried to establish a predictive model of the ΔACC, but failed 
to generate models to predict ΔACC. This may be due to too easy search 
task, leading to a ceiling effect (overall accuracy, 95.80 %). Further
more, such ceiling effect lacked the dynamic range which is necessary to 
generate a predictive model using the CPM method (Shen et al., 2017). 
Besides, we also checked whether the predictive model of the ΔRT could 
predict the ΔACC and found that the it was unable to predict the ΔACC (r 
= 0.10, p = 0.37). 

3.3. Significant large-scale brain region communications in predicting DS 

Across all folds of LOOCV, 2 to 5 large-scale brain region commu
nication contributed to the predictive model. Notably, 3 of these 
appeared in the 95 % iterations of the LOOCV, so they were defined as 
substantial communication connectivity (Jiang et al., 2020; Rosenberg 
et al., 2016). These significant large-scale brain region communications 
were Prefrontal -Temporal, Parietal - Occipital, and Insula - Limbic 
connections (Fig. 3B). The strength of these connections was signifi
cantly negatively correlated with individual’s ΔRT respectively (Pre
frontal -Temporal, r = − 0.28, p < 0.01; Insula – Limbic, r = − 0.32, p <
0.01; Parietal - Occipital, r = − 0.30, p < 0.01;Fig. 3C), revealing that 
individuals with stronger functional connectivity across these anatom
ical brain regions demonstrated poorer DS. Upon the significant corre
lations between the ΔRT and Prefrontal -Temporal, Parietal - Occipital, 
and Insula - Limbic connections, we tried to generate predictive models 
of the ΔRT only based on individual network connection. We found that 
the Insula – Limbic connection (r = 0.27, p < 0.01, Table 1) and the 
Parietal - Occipital connection (r = 0.23, p < 0.01, Table 1) could suc
cessfully predict the ΔRT. However, the prefrontal-temporal connection 
could not predict the ΔRT (r = 0.19, p = 0.08). These results showed less 
contribution of the prefrontal-temporal connection to the 
laboratory-measure of the DS. 

3.4. Validating distractor suppression predictive model in an independent 
sample 

In order to validate the predictive model of the DS, we built a pre
dictive model using all participant’s data in discovery dataset, resulting 
in Prefrontal -Temporal, Parietal - Occipital, and Insula – Limbic con
nections survived for this model. This was consistent with the finding of 

Fig. 2. Large-scale brain region communication patterns can predict individual’s DS. (A) Schematic representation of the visual search task. ΔRT served as an index 
of DS. (B) Correlation between actual and predicted ΔRT scores. (C) Permutation distribution of the correlation coefficient (r) for the prediction analysis. The value 
obtained using the original scores are indicated by the black dash line. (D) Consistency between actual and predicted ΔRT scores. (E) Permutation distribution of the 
Mean Squared Error (MSE) for the prediction analysis. The value obtained using the original scores are indicated by the black dash line. 

L. Zhuo et al.                                                                                                                                                                                                                                    



NeuroImage 289 (2024) 120552

6

significant contribution of the Prefrontal -Temporal, Parietal - Occipital, 
and Insula - Limbic connection to the laboratory-measured DS predic
tion. Subsequently, we employed this trained model to make predictions 
on a completely independent dataset to assess its generalization ability. 
The validation dataset contained 49 participants whose daily distracti
bility was assessed using Cognitive Failure Questionnaire (CFQ) 
(Broadbent et al., 1982; Zhou et al., 2016). In this questionnaire, higher 
distractibility score represents worse distractor suppression. Distracti
bility score varied across individuals (range, 5–25) and it didn’t follow a 
normal distribution (Kolmogorov-Smirnov test, p < 0.05). Thus, 
Spearman correlation was used to check the relationship between the 
actual and predicted scores. Here, the model of ΔRT was able to predict 

individual’s distractibility in an independent sample (r = − 0.34, p <
0.05, Fig. 4), revealing the model’s generalization ability across 
different measure of DS and sample. In addition, the model still could 
predict the total score of CFQ (r = − 0.29, p < 0.05). Since the total score 
is simply the summation of each subscale, including distractibility, 
memory, and psychomotor scores, the distractibility score may have 
contributed to the total score prediction. Consistently, we found the 
model could not predict other subscales of the CFQ, such as the memory 
scores (score range, 0–19; r = − 0.23, p = 0.11), the psychomotor scores 
(score range, 1–18; r = − 0.13, p = 0.38). These results showed that the 
model generated for the laboratory-measured DS was able to predict 
individual’s daily distractibility and emphasized the model’s specificity 
in predicting distractor suppression. Moreover, we found the predictive 
capabilities of the connections between Insula – Limbic connection (r =
− 0.06, p = 0.67, Table 1) and the Parietal - Occipital connection (r =
− 0.18, p = 0.23, Table 1) declined in external predictions. Interestingly, 
the Prefrontal - Temporal connection could successfully predict the daily 
distractibility score of the independent sample (r = − 0.34, p < 0.05, 
Table 1). Together with the predictability of individual network 
connection to the ΔRT, these results exhibited the heterogeneity of the 
contributions of the network connections across different situations. 
Still, the combination of three network connections has strong predic
tive capability and generalizability for distractor suppression. 

Fig. 3. Contributory large-scale brain region communication to DS prediction. (A) The 268 nodes were grouped into 10 macroscale brain regions. Including the 
prefrontal lobe (46 nodes), motor lobe (21 nodes), insular lobe (7 nodes), parietal lobe (27 nodes), temporal lobe (39 nodes), occipital lobe (25 nodes), limbic lobe 
(36 nodes), cerebellum lobe (41 nodes), subcortical lobe (17 nodes) and brainstem lobe (9 nodes). (B) The large-scale brain region communication selected by the 
prediction model (C) Correlation between communication strength and DS. L, left; R, right. 

Table 1 
Results of single network connection.  

Connections between 
networks 

Internal validation (N =
88) 

External validation (N =
49) 

Three network connections r = 0.41, p < 0.01a r = − 0.34, p < 0.05b 

Insula – Limbic r = 0.27, p < 0.01a r = − 0.06, p = 0.67b 

Parietal - Occipital r = 0.23, p < 0.01a r = − 0.18, p = 0.23b 

Prefrontal - Temporal r = 0.19, p = 0.08a r = − 0.34, p < 0.05b 

Notes: If the p-value of internal validation is significant, it is obtained through 
permutation testing. 

a Pearson’s correlation coefficients. 
b Spearman’s correlation coefficients. 
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3.5. Validations of the effects of confounding factors 

In this validation analysis, we aimed to assess the impact of con
founding factors on predictive capability. The current data showed no 
significant correlation between DS measurement and age (see details in 
Table 2). We found a significant difference in the predicted ΔRT scores 
between male and female groups in the discovery dataset (t = 3.07, p <
0.05, Table 2). Besides, the current data did not reveal a significant 
association between motion (i.e., mean FD) and DS measurement 
(Table 2). However, minor head motion by participants continues to 
significantly alter the time series of resting-state functional connectivity 
magnetic resonance imaging (rs-fcMRI) data, leading to systematic yet 
spurious functional connections within the brain (Power et al., 2012). 
Thus, we conducted control analyzes for factors with these three factors 
potential to exert an effect. In these analyzes, new predictive features 
were generated by utilizing communications that exhibited a partial 
Pearson correlation with DS at a significant threshold of p < 0.05, while 
controlling for confounding variables. After controlling for the potential 
confounders, the predictive models still effectively predicted the DS 
measurement (Table 3). We deduce that the predictive performance of 

the DS model remains unaffected by these factors. 

4. Discussion 

Here, we generated a robust predictive model of distractor sup
pression (DS) based on connections between anatomical large-scale 
brain regions, which was rather independent of measurement method. 
Our work established a link between the large-scale brain regions 
communication patterns and DS and revealed the significance of large- 
scale brain regions’ communication underlying DS. These novel find
ings point to a particularly important role of the connections between 
attention-related brain regions and visual information processing- 
related brain regions. This deepens our understanding of the 
connectome-based neuromarkers of DS, and may have implications for 
the early identification of individuals suffering from impaired-DS 
symptomatology in the general population. 

4.1. Large-scale brain region’s communications predict distractor 
suppression 

The current study successfully constructed a predictive model with 
vigorous generalization capabilities, using a connectome-based predic
tive modeling embedded within a machine learning framework, to 
predict individuals’ DS based on intrinsic functional connectivity be
tween anatomical large-scale brain regions. Everyone possesses unique 
functional brain connectivity patterns that contain information about 
their cognitive abilities (Finn et al., 2015; Rosenberg et al., 2016). 
Connectome-based Predictive Modeling (CPM) is one of the approaches 
to predict individual’s cognitive abilities based on their brain con
nectome. This approach focuses on individual differences and employs 
data-driven methods within a cross-validation strategy to select 

Fig. 4. Performance of the prediction model for external validation. Spearman 
correlation between actual and predicted CFQ distractibility scores. 

Table 2 
Demographic information for samples and correlations between the studied variables.  

Samples/Measures Mean (S.D.) Range 2 3 4 5 t value 

Discovery Dataset (N = 88)  
1. Sex (male/female) 44/44 – – – – – – 
2. Age (years) 20.95(1.96) 18 ~ 26 1    − 1.20 
3. Head motion (mean FD, mm) 0.04(0.02) 0.02 ~ 0.13 0.002a 1   − 0.13 
4. Actual ΔRT scores 6.80(17.75) − 53.84 ~ 49.34 − 0.15a 0.05a 1  1.12 
5. Predicted ΔRT scores 7.07(8.16) − 16.73 ~ 23.53 − 0.14a − 0.003a 0.32**,a 1 3.07** 
Validation Dataset (N = 49)  
1. Sex (male/female) 24/25 – – – – – – 
2. Age (years) 23..02(2.03) 18 ~ 27 1    0.49 
3. Head motion (mean FD, mm) 0.05(0.02) 0.02 ~ 0.12 0.08b 1   − 1.86 
4. Actual CFQ distractibility scores 17.14(5.45) 5 ~ 25 − 0.26b 0.05b 1  0.34 
5. Predicted ΔRT scores 9.98(8.65) − 11.73 ~ 27.52 − 0.09b − 0.02b − 0.34*,b 1 0.55 

S.D., standard deviation;FD, framewise displacement. 
a Pearson’s correlation coefficients. 
b Spearman’s correlation coefficients. 
* p < 0.05. 
** p < 0.01. 

Table 3 
Results of control analyzes.  

Covariates Internal validation(N = 88) External validation(N =
49) 

Age r = 0.33, p < 0.05a r = − 0.32, p < 0.05b 

Sex r = 0.32, p < 0.05a r = − 0.32, p < 0.05b 

Head motion r = 0.29, p < 0.05a r = − 0.32, p < 0.05b 

Age; Sex r = 0.34, p < 0.05a r = − 0.32, p < 0.05b 

Age; Head motion r = 0.35, p < 0.05a r = − 0.32, p < 0.05b 

Sex; Head motion r = 0.32, p < 0.05a r = − 0.32, p < 0.05b 

Age; Sex; Head motion r = 0.36, p < 0.05a r = − 0.32, p < 0.05b 

Notes: If the p-value of internal validation is significant, it is obtained through 
permutation testing. 

a Pearson’s correlation coefficients. 
b Spearman’s correlation coefficients. 
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connections significantly correlated with behavior, thereby establishing 
a regression prediction model for brain connectivity and behavior (Shen 
et al., 2017). CPM has been widely applied in various domains, partic
ularly, models like the Sustained Attention Connectome-based Predic
tive Model (saCPM) developed by Rosenberg (Rosenberg et al., 2016) 
have demonstrated robust predictions of attentional abilities across 
various contexts and have been validated in multiple independent 
datasets. Building upon the aforementioned foundation, we attempted 
to link the communication between anatomical large-scale brain regions 
to individual’s DS. Since the connectivity strength between large regions 
was computed by summing all the values of fine-grained connections, it 
may be more resistant to noise. Accordingly, our model emphasized on 
the communication patterns among large-scale brain regions, an aspect 
that has not been strongly emphasized in prior researches. 

Existing research indicates that the functional organization of the 
brain is not entirely modular (Rosenberg et al., 2017). Modules are 
specific regions of the brain, where each module is tasked with pro
cessing particular types of information or performing specific cognitive 
functions. However, the organization of cognitive functions in the brain 
extends beyond independent modules to include the transmission and 
sharing of information between different modules. Most of our complex 
cognitive abilities, such as attention, working memory, and 
decision-making, rely on the coordinated activity of a distributed 
network (Mǐsić and Olaf, 2016). In the study of sustained attention, 
researchers have found that predictive connectivity models of attention 
function comprise numerous connections that span across different 
brain regions and multiple networks, indicating the importance of the 
coordinated activity between various modules in the brain (Rosenberg 
et al., 2017, 2016). We successfully predicted distractor suppression 
across different datasets using a model based on connections between 
large-scale brain regions. Based on these reliable results, our study 
emphasizes the impact of large-scale brain region connectivity patterns 
on distractor suppression, consistent with the understanding of the 
crucial role of coordinated activity among different modules in the brain 
for complex cognitive tasks. 

Additionally, the predictive model was generated using intrinsic 
brain connectivity, which is convenient to collect in clinical settings and 
task-unconstrained. Certainly, such models can be successfully built 
based on a fundamental principle, which is that the distractor suppres
sion system is reflected in the functional organization of the resting-state 
brain (Cole et al., 2021; Xie et al., 2022, 2020). This suggests that the 
brain maintains characteristics for task execution to some extent even 
when not engaged in specific tasks. In conclusion, our approach offers a 
novel perspective for understanding and forecasting cognitive function 
and holds promise for its significant role in the management of neuro
logical and psychiatric disorders and personalized medical 
interventions. 

4.2. Significant large-scale brain region communications in distractor 
suppression prediction 

By summarizing the connections involved in the model, we found 
Prefrontal-Temporal, Insula-Limbic and Parietal-Occipital connections 
contributed to the individual’s DS. Checking the predictability of indi
vidual network connection to the DS, we found the DS measured using 
the visual search task (ΔRT scores) could be predicted by Insula-Limbic, 
Parietal-Occipital connections, while the Prefrontal-Temporal connec
tion could predict distractibility in daily life. These findings suggest 
heterogeneousness contributions of individual network connection 
across different situations. Considering the distractibility score using 
CFQ estimates individual’s distractibility in daily life, it seems that the 
Prefrontal-Temporal connection is more important to the distractor 
suppression in more cognitively demanding situations. Still, three 
network connections together have strong predictive capability and 
generalizability for distractor suppression. These results demonstrated 
that DS is a network property of brain computation, relying on the 

communications between networks. Consistently, the parieto-frontal 
integration theory (P-FIT) model on intelligence emphasizes the 
importance of network connections (Jung and Haier, 2007). The P-FIT 
model implicated brain connectivity as having high predictability for 
fluid intelligence (Jiang et al., 2020). 

Specifically, the prefrontal cortex (PFC) and posterior parietal cortex 
(PPC) have been typically implicated in a variety of tasks requiring 
attention allocation and maintenance (Chun et al., 2011; Corbetta and 
Shulman, 2002; Giesbrecht et al., 2003). These regions can contribute to 
the perceptual selection of salient information, and it can be argued that 
the PFC and the PPC plays a role in inhibiting the entry of interfering 
information. In line with these, the present study pointed out the pre
frontal and parietal regions as important regions. However, it was not 
the direct connection between the PFC and PCC that contributed to DS, 
but the Prefrontal-Temporal and Parietal-Occipital connections that 
were important to DS. The occipital lobe is the primary visual cortex, 
encompassing both the primary visual cortex and associated visual re
gions, which is associated with the perception and processing of visual 
information and the organization of complex visual perceptual processes 
(Tran et al., 2019). Similarly, the temporal lobe is involved in 
higher-level visual processing, handling information related to the color, 
shape, and other characteristics of visual stimuli. It is a critical brain 
region within the ’what’ pathway of visual processing (Ungerleider, 
1994). Thus, we think the Prefrontal-Temporal and Parietal-Occipital 
communications may reflect the communication between attention re
gions (PFC and PPC) and visual sensory processing regions (temporal 
and occipital). This may be related to the importance of the visual in
formation in our measure of DS. In the present study, a visual search task 
was employed to assess the participants’ ability to actively suppress a 
salient singleton distractor. In daily life, vision occupies more than 80 % 
of all the received information (Kasteleijn-Nolst Trenité et al., 2004). 
Consequently, communication between attention-related regions (the 
PFC and the PPC) and two critical brain regions associated with visual 
processing (the occipital and the temporal lobes), plays pivotal roles in 
individual’s difference of DS. Besides, the insula, a key node of a salience 
network, is responsible for salience-processing systems and switching 
between large-scale brain networks (e.g., the frontoparietal network and 
the default mode network) to facilitate the allocation of attentional re
sources (Bressler and Menon, 2010; Goulden et al., 2014; Uddin, 2015). 
While the limbic system does not have a direct dominant role in atten
tional control, its significance lies in regulating emotions, emotional 
memory, and physiological states, all of which can impact the quality 
and direction of attention (Rolls, 2019). Together, our research findings 
indicate that the interaction of attention-related brain regions with vi
sual processing-related brain regions contributes to the prediction of an 
individual’s DS. The process of distractor suppression can be viewed as a 
high-level cognitive function that regulates attention resources from 
top-down pathways to help us achieve our goals and suppressing dis
tractions. Since impaired distractor suppression has been found in some 
disorders such as attention deficit hyperactivity disorder (ADHD) (Mis
hra et al., 2016), schizophrenia (Gur et al., 2007), and autism spectrum 
disorder (Keehn et al., 2016), understanding of the neural mechanisms 
of distractor suppression may be helpful to gain a better understanding 
of these disorders and to elucidate specific symptoms manifested by 
patients and offering guidance for diagnosing specific diseases. 

4.3. Bridging in-laboratory and daily life measured distractor suppression 

In the fields of cognitive psychology and neuroscience research, the 
assessment of specific cognitive functions widely relies on laboratory 
measurements. These measurements conducted in laboratory settings 
offer several advantages, such as increased control over external in
terferences and variables, standardized tools and procedures to guar
antee result replicability, and precise, quantitative data (e.g., reaction 
times, error rates) (Gaspelin et al., 2017, 2015; Sawaki and Luck, 2010). 
However, laboratory-based measurements may not always fully reflect 
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cognitive performance in daily life. In contrast to the controlled envi
ronment of the laboratory, daily life is characterized by greater 
complexity in environmental situations. For example, distractions in 
everyday scenarios are well beyond simple geometric shapes. Hence, 
cognitive challenges related to distractor suppression in daily life may 
become more diverse. Similarly, as an active individual in daily life, our 
choices of actions can also influence distractor suppression — a factor 
often controlled for in laboratory settings to mitigate motion artifacts 
(Wöstmann et al., 2022). These differences between laboratory settings 
and real life may lead individuals to employ distinct cognitive demands 
and strategies in erratic environments (Thomson and Goodhew, 2021). 
The long-term goal of cognitive neuroscience is to elucidate the cogni
tive mechanisms in real-world environments, making it crucial to un
derstand how laboratory theories apply in the real world. 
Non-laboratory measurements, such as self-report methods, can cap
ture information that is not easily obtained through laboratory mea
surements (Kanai et al., 2011). For example, forgetting the date of a 
family gathering or being unable to locate a misplaced item can provide 
insights into cognitive performance in daily tasks. To gain a compre
hensive understanding of cognitive functions, researchers often need to 
integrate laboratory measurements and non-laboratory measurements 
to ensure the ecological validity of their findings. 

We established a predictive model for DS based on laboratory mea
surements, which can also forecast DS in daily life based on question
naire reports. This cross-modal predictive model contributes to 
elucidating the common processes that influence an individual’s DS 
across various contexts. The results mutually validate the reliability of 
the two measurement approaches. While laboratory measurements 
provide objective cognitive function data, questionnaire reports capture 
the subjective experiences and functional abilities of participants in their 
daily lives. 

4.4. Limitation of the study 

Regarding the current study, several limitations should be noted. 
Firstly, our predictions were obtained from a relatively small sample, 
and the generalizability of the current findings needs further validation 
using an independent, larger sample, and other cross-validation 
methods. For example, the narrow age range of the study sample may 
have limited the impact of age factors. In future research, a wider age 
range sample may be better to explore the influence of age on the brain- 
behavior relationship. Secondly, the current study did not thoroughly 
investigate the directionality of brain region interactions. In fact, in
teractions between brain regions are a complex process that may involve 
various forms of directionality (Corbetta and Shulman, 2002; Rolls, 
2019). Future research could further elucidate the directionality of brain 
region interactions that play a pivotal role in DS. Thirdly, 
laboratory-measured DS used a visual search paradigm, it is worth 
noting that the findings of the present study may be limited to visual 
distractor suppression. Future research could extend to explore the 
mechanisms of distractor suppression across sensory modalities, 
providing a more comprehensive understanding of the neural basis of 
distractor suppression. 

5. Conclusion 

We have demonstrated that the interaction between large-scale brain 
regions can effectively predict individual’s distractor suppression across 
independent datasets. It is noteworthy that the large-scale brain regions 
and connections within the predictive network involve the coordination 
and control of attention-related regions, the prefrontal and parietal 
lobes, over visual processing regions to achieve top-down distractor 
suppression. The current data-driven approach offers a novel tool, while 
the connectivity patterns of large-scale brain regions provide a fresh 
perspective for characterizing the fundamental neural mechanisms of 
distractor suppression in various contexts. This establishes a bridge 

between laboratory and daily life distractor suppression and holds po
tential applications in clinical practice. 
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