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A B S T R A C T   

Pipeline safety is of paramount importance for socio-economic development, necessitating regular inspection and 
maintenance. The complexity of the internal pipeline environment and the presence of irregular noise in 
detection data, however, pose significant challenges to pipeline inspection technologies. Additionally, the reli
ance on manual expertise for inspection and the absence of standardized assessment criteria further complicate 
the development of automated inspection methods in this context. To address these challenges, this paper 
proposes a pipeline anomaly detection framework based on reinforcement learning with hierarchical reward 
exploration mechanism (RHiREM). It includes two main aspects: Firstly, the hierarchical reward mechanism. By 
deeply simulating the process of defect recognition based on expert personal experience, the original pipeline 
data is first adaptively divided into sets of windows with different sizes, and then attribute and type judgments 
are performed on them. In this way, the approach achieves accurate identification of defects and pipeline 
structures in scenarios with minimal noise interference. Secondly, the hierarchical exploration mechanism. By 
leveraging the temporal exploration and spatial exploration, the mechanism enables further deep search and 
feature learning on complex pipeline signals, and facilitates comprehensive assessment of the relationships be
tween global features and local features across different signals, effectively resolving the difficulties associated 
with identifying defect signals in the presence of high noise interference. the proposed framework has been 
demonstrated to automate the detection of complex on-site pipeline internal signals and successfully detected the 
common anomalies with high F1-score over conventional techniques.   

1. Introduction 

Pipelines serve as critical components of the infrastructure network, 
playing a crucial role in ensuring the safety, reliability, and efficiency of 
various industries, including oil and gas transportation. Regular in
spection and maintenance are therefore essential and important. As a 
non-destructive inspection method, eddy current testing technology 
offers advantages such as high speed, low cost, and ease of automation, 
making it an excellent approach for rapidly detecting internal defects in 
pipelines. This method utilizes electromagnetic principles to detect and 
analyze defects in the pipeline structure, exhibiting a high sensitivity to 
small cracks, corrosion, and other internal anomalies. By analyzing the 
time-domain signals generated from the interaction between induced 
eddy currents in the pipeline and the existing defects, these anomalies 

can be effectively detected. The problem of pipeline defect identification 
based on eddy current signals essentially falls within the realm of time- 
series data anomaly detection, which has been extensively studied by 
numerous researchers across the globe. 

In the research on single-method anomaly detection, various algo
rithms have been proposed, including K-means clustering, Isolation 
Forest (iForest), deep learning autoencoders, and time series clustering 
labeling. Gupta et al. [1] introduced a K-means clustering anomaly 
detection algorithm based on local search. It detects anomalies by 
clustering the dataset and analyzing the distribution differences of 
abnormal and normal samples in different clusters. Liao et al. [2] pro
posed the iForest anomaly detection algorithm, which uses dimension 
entropy as the partition criterion to construct the forest and compares 
the path length of the test samples to the average path length of normal 
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samples for anomaly detection. Wang et al. [3] presented a deep 
learning autoencoder anomaly detection algorithm that learns the 
low-dimensional representation of data using autoencoders and mea
sures the anomaly level of samples based on reconstruction errors. Bu 
et al. [4] developed a time series clustering labeling algorithm that 
clusters historical time series and labels the actual centroids of each 
cluster. New time series are subsequently input into the labeled clus
tering model for real-time clustering and anomaly detection. Kha et al. 
[5] proposed a clustering and anomaly detection approach based on 
time segment partitioning. It divides the target time series into 
equally-sized subsequences, performs clustering on the subsequences, 
and determines whether a subsequence is an anomaly based on the 
clustering results. 

In the research on multi-source methods for anomaly detection, the 
fusion of different algorithms significantly improves the accuracy and 
reliability of anomaly detection. Ren et al. [6] combined spectral re
siduals with Convolutional Neural Networks (CNN) for anomaly detec
tion in medical images. Xu et al. [7] proposed a method that combines 
autoencoder reconstruction errors with bias for anomaly detection in 
web data streams. Zhao et al. [8] addressed the holiday effect in time 
series data by incorporating the modeled holiday impact into anomaly 
detection. Furthermore, there are fusion methods combining different 
algorithms, such as fusion of iForest and Local Outlier Factor (LOF) al
gorithms [9]. 

In the framework research of anomaly detection, Yu et al. [10] 
proposed a method that establishes a historical data model and uses 
prediction confidence intervals to detect whether target samples are 
anomalies. Malhotra et al. [11] utilized neural network models to learn 
pattern features of time series data and used prediction errors to identify 
anomalies, making it suitable for time series anomaly detection. Fer
dousi et al. [12] introduced the Peer Group Analysis theory, which 
utilizes clustering methods to detect anomalous points and is applicable 
to high-dimensional data. Liu et al. [13] proposed a generative approach 
for active learning, significantly reducing the cost of labeled data. 
Takeuchi et al. [14] introduced a novel scoring strategy to assess the 
degree of deviation, which is applicable to various domains. Teng et al. 
[15] proposed a unified framework for anomaly detection that supports 
various anomaly detection algorithms and models. Liu et al. [16] pre
sented an integrated method for anomaly detection in large-scale system 
logs, enabling fast and efficient anomaly identification. 

Traditional statistical models are suitable for online processing but 
lack accuracy, while supervised models have higher accuracy but suffer 
from a lack of labels. In the fields of anomaly detection and time series 
prediction, the absence of labels is a common characteristic of datasets. 
To address this, researchers have employed various methods, including 
models such as Long Short-Term Memory (LSTM) and Extreme Gradient 
Boosting (XGBoost), as well as variations of LSTM. For time series pre
diction, Li et al. [17] proposed an integrated LSTM and XGBoost model 
for forecasting, which improves the prediction performance compared 
to a single model. In a comparative experiment for time series predic
tion, Yamak et al. [18] found that ARIMA performs better for small 
datasets, while LSTM and GRU excel at capturing data features and 
patterns in large-scale datasets. Additionally, researchers have proposed 
other methods, such as using the Symbolic Aggregate approXimation 
(SAX) method for subsequence synthesis and employing LSTM for pre
diction [19]. Regarding the comparison of model variations, 
Siami-Namini et al. [20] found that BiLSTM achieves better prediction 
results in time series prediction experiments. However, due to its bidi
rectional path computation, BiLSTM has slower convergence and longer 
computation time than LSTM. Furthermore, Greff et al. [21] tested eight 
variations of LSTM and found that none of them surpassed the standard 
LSTM architecture, indicating that the forget gate and output gate are 
the most critical components of LSTM. As different types of models have 
different advantages in anomaly detection and time series prediction, it 
is important to choose the appropriate model and method based on 
different datasets and task requirements. 

The aforementioned methods, however, have limitations in the 
analysis of eddy current signals in field pipelines, which mainly result in 
the following two challenges: (1) High data noise: (a) Eddy current 
sensors are susceptible to magnetic field disturbances from various 
external equipment during signal reception, resulting in the introduc
tion of noise; (b) The process of converting the magnetic signal received 
by the eddy current sensor into an electrical signal also introduces noise; 
(c) Other interferences, such as inherent noise from the eddy current 
sensor system and power frequency noise, can also contribute to the 
overall noise. Therefore, the acquisition of raw data from field pipelines 
using eddy current sensors introduces a significant amount of irregular 
random noise, which obscures the effective signals. Extracting valid 
defect signals from the noise is one of the current challenges in eddy 
current signal anomaly analysis. (2) Complex signal conditions: (a) Eddy 
current sensors are highly sensitive and can be influenced by factors 
such as detection speed, lift-off distance, detection angle, and defect 
size, resulting in complex-shaped defect detection data; (b) Original 
structural components of the pipelines (such as welds, bends, flanges, 
etc.) are clearly present in the defect detection data; (c) The operating 
speed and vibration level of the eddy current sensor in field pipelines 
significantly affect the defect detection data. Therefore, the eddy current 
detection data in field pipelines exhibit complex and diverse charac
teristics, making the defect detection process heavily reliant on manual 
experience and lacking a fixed standard for reference. Consequently, 
designing algorithms for automated defect detection becomes the sec
ond challenge in eddy current signal anomaly analysis. 

To address the aforementioned challenges, this paper presents a 
pipeline internal inspection intelligent diagnostic framework based on a 
hierarchical reinforcement mechanism. The distinctive feature of this 
framework lies in its utilization of the hierarchical reward mechanism 
and the hierarchical exploration mechanism in reinforcement learning 
to simulate the process of human expert judgment of pipeline state 
signals. It employs a multi-dimensional perspective to assess signals with 
high noise interference or those difficult to identify artificially, thereby 
obtaining accurate identification results and achieving automation to 
some extent. The main contributions of this paper can be summarized as 
follows: 

(i). Hierarchical reward mechanism: The entire pipeline internal in
spection intelligent diagnostic framework is constructed based on 
a hierarchical reward mechanism in reinforcement learning. By 
simulating the defect identification process through deep expert- 
based experience, accurate identification of defects and pipeline 
components is achieved under low noise interference. Ultimately, 
this framework enables precise automated detection of internal 
defects in pull-in pipelines.  

(ii). Hierarchical Exploration Mechanism: The entire intelligent 
diagnostic framework based on hierarchical reward mechanism is 
fine-tuned and optimized by the hierarchical exploration mech
anism. By conducting deep searches and feature learning in the 
spatiotemporal dimensions of real-world pipelines’ complex state 
signals, it enables a thorough evaluation of the global and local 
feature relationships among different signals. This approach re
solves challenges such as the difficulty of identifying defect sig
nals in the presence of significant noise interference. It enhances 
the efficiency of defect and pipeline component recognition in 
complex environments, ultimately achieving a more accurate 
automated detection of internal pipeline defects. 

We term the proposed framework as Reinforcement Learning with 
Hierarchical Reward Exploration Mechanism (RHiREM). The remaining 
sections of the paper are structured as follows: Section II provides an 
overview of the eddy current detection system, including sensing system 
structure, eddy current data characteristics, and pipeline environment 
difference. Section III presents the overall construction and fine-tuning 
optimization of the pipeline internal inspection intelligent diagnostic 
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framework in the study. Section IV presents a comprehensive descrip
tion of the experimental conditions, results analysis and significant 
findings. Finally, Section V summarizes the contributions made by this 
paper and provides an overview of potential directions for future 
research. 

2. Related work 

2.1. Sensing system structure 

The pipeline internal inspection system [22] is a collection of sen
sors, including eddy current probes, inertial measurement units (IMU), 
and odometers, which are primarily used for collecting qualified data of 
the pipeline inner wall. The specific structure is shown in Fig. 1, where 
the eddy current probes are arranged in a circular distribution with a 
certain angular spacing. Typically, there are 20 probes, and each probe 
corresponds to a set of time-domain data, which includes two di
mensions of amplitude and phase. Besides, the hardware structures are 
mainly composed of FPGA, MCU, AD/DA conversion, power amplifier, 
and amplitude extraction. The FPGA generates two signals through the 
DAC, one as the excitation signal, and the other as the reference signal. It 
extracts the amplitude and phase of the signal, and the ADC collects the 
signal after the extraction. The MCU stores the data sent by the FPGA 
and communicates with the host computer to complete the data storage 
and real-time display. Therefore, the format of the collected eddy cur
rent data by the pipeline internal inspection system is a multi-channel 
time-domain signal. In this paper, only the amplitude of eddy current 
data is used to identify the anomaly, other sensor data is employed to 
assist anomaly localization and pipeline status monitoring. 

2.2. Eddy current data characteristics 

Due to the interference from pipeline structural components (such as 
welds, flanges, elbows) or the vibrations of the inspection system caused 
by factors like blockages or uneven operating speeds, the pipeline in
ternal inspection system has a significant impact on the corresponding 
defect signals during the data acquisition process, as depicted in Fig. 2 
and Fig. 3. 

Fig. 2 illustrates the interference of pipeline structural components 
on defect signals. The red window represents the signal from a structural 
component (e.g., weld), while the blue window represents the defect 
signal. It is evident that they are very similar in terms of shape and 
amplitude, making it challenging to effectively differentiate between 
them. Fig. 3 demonstrates the influence of self-induced vibrations of the 
inspection system on defect signals. The significant noise generated by 
vibrations can mask the smaller amplitude defect signals, rendering the 
identification of minor defects difficult. Therefore, these two factors are 
also the challenges faced in the anomaly detection of eddy current sig
nals in this paper. 

2.3. Pipeline environment difference 

In addition, the specific application environments of the pipeline 
internal inspection system mainly fall into two categories: pull-in pipe
lines and field pipelines. As shown in Fig. 4, pull-in pipelines (Fig. 4(a)) 
refer to pipelines that have not been put into actual engineering use but 
contain artificially curated defects. They are typically used for pre
liminary algorithm validation or feature learning. Field pipelines (Fig. 4 
(b)), on the other hand, are pipelines that are in actual engineering use 
and contain naturally occurring defects. They are primarily used to 
verify or enhance the algorithm’s generalization and robustness. The 
specific differences between the two are illustrated in Table 1 (shown in 
appendix). The frame work is shown in Fig. 5. 

3. Methodology 

To date, non-destructive testing (NDT) techniques for oil and gas 
pipelines have made significant progress in the analysis and processing 
of eddy current signals. However, due to poor inspection environments, 
high signal noise, various pipeline conditions, complex defect charac
teristics, and insufficient accuracy of the detection systems, the quality 
of defect data deteriorates making subsequent signal analysis chal
lenging and unable to meet the actual inspection requirements of all 
pipelines. Therefore, existing methods for analyzing eddy current sig
nals in pipelines still have significant limitations. To address these 
challenges, this paper proposes a pipeline internal inspection intelligent 
diagnostic framework based on a hierarchical reward mechanism. This 
framework collects experiential data through a specific human-machine 
interaction mechanism and applies corresponding human-like rein
forcement learning to achieve accurate and automated detection of de
fects and pipeline structures in pull-in pipelines. Subsequently, the 
framework is further refined and optimized using a hierarchical explo
ration mechanism to achieve relatively accurate and automated detec
tion of internal defects and pipeline structures in field pipelines. The 
following sections will provide detailed explanations of the framework 
construction and framework optimization. 

Fig. 1. Structure of pipeline internal inspection system.  

Fig. 2. Interference of pipeline structural components on defect signals.  

Fig. 3. Impact of pipeline inspection system vibrations on defect signals.  

L. Su et al.                                                                                                                                                                                                                                        



NDT and E International 144 (2024) 103073

4

3.1. Construction of pipeline intelligent diagnostic framework 

3.1.1. Parameter space modeling 
The reinforcement learning process is a typical Markov decision 

process, and its corresponding parameter space can be represented as a 
quintuple (S,A,P,R,γ). In this paper, the reinforcement learning envi
ronment consists of the above quintuple, aiming to associate the pipeline 
eddy current data with the anomaly diagnostic algorithm and provide 
the operating environment for subsequent algorithm training. The 
training process of the entire anomaly diagnostics algorithm is as fol
lows: Assuming the current time step is t, the reinforcement learning 
environment first determines the current state st based on the observed 
pipeline eddy current data and passes it to the diagnostics algorithm 
through the interaction interface. The algorithm makes a decision based 
on the current state and determines the optimal action at, which is then 
executed in the reinforcement learning environment. The corresponding 
pipeline eddy current data in the environment will be updated to the 
next time step state st+1 under the influence of the optimal action at, and 
the reward function value rt corresponding to the current action at and 
the updated next time step state st+1 are fed back to the algorithm 
through the interaction interface, providing a basis for subsequent 
decision-making. Through the above steps, the reinforcement learning 
environment and the anomaly diagnostics algorithm form a complete 
closed-loop cycle, as shown below. 

As the research objective of this paper is to achieve fast and accurate 
detection of anomaly regions and identification of anomaly types in 
complex pipeline eddy current data under different environments, it is 
essential to define and design the quintuple parameter space in a 
reasonable manner for subsequent discussions. The specific design 
process is supplied in the appendix. 

The final design results of quintuple parameter space are shown in 
Table 1. 

3.1.2. Action reward function derivation 
During the interaction process, the first action taken by the agent in 

response to the pipeline eddy current signals is action a1, which is a key 
action in this paper. The quality of window segmentation significantly 
affects the judgment results of subsequent actions. In other words, if 

action a1 can accurately divide the pipeline eddy current signals into 
complete temporal signal segments (where each individual abnormal 
signal is fully contained within a single adaptive window), the agent can 
then perform fast and accurate attribute judgment (a2) and type judg
ment (a3) for different temporal signal segments. Therefore, designing a 
reasonable reward function to achieve the above objectives is the key 
problem to be addressed in this section. 

Based on whether the adaptive window contains abnormal signals, 
the above key problem can be divided into two sub-problems:  

1) If the adaptive window contains abnormal signals, the window 
should fully encompass the abnormal signals while keeping the 
window size as small as possible.  

2) If the adaptive window does not contain any abnormal signals, under 
certain conditions, the window should be as large as possible. 

Prior to reward function design, some parameter definitions are 
given as follows: Given the eddy current signals corresponding to the 
pull-in pipeline, the data points can be classified into four categories: 
normal, defect, weld, and bend, which correspond to label values 0, 1, 2, 
and 3, respectively. Let the current state be s, and the adaptive window 
action taken at state s corresponds to the data point range (m, n) where n 
> m. Let i represents any point within the adaptive window, and label(i) 
denotes the corresponding label data for that point. In addition, let (mj, 
nj) denote the label range region of the j-th abnormal signal within the 
adaptive window. 

For sub-problem 1), the reward function is designed as follows: 

R∗
11(s, a1)=

pvalid − α
1 − α × r11 −

∑2

i=1
sgn(label(ki)) × r12 − R13(s, a1) (1)  

pvalid =

∑n

i=m
sgn(label(i))

n − m + 1
(2) 

Fig. 4. Application environments of the pipeline internal inspection system. (a) Pull-in pipeline. (b) Field pipeline.  

Fig. 5. Reinforcement learning environment for pipeline internal inspection 
intelligent diagnostic framework. 

Table 1 
Design of specific action space.  

Symbol of 
actions 

Definition of actions Range of actions 

a1 Adaptive window signal division 
action 

{1, 2, 3, …, 1022, 1023, 
1024} 

a2 Adaptive window attribute 
judgment action 

{normal window, abnormal 
window} 

a3 Adaptive window type judgment 
action 

{normal, bend, weld, defect} 

a4 The reliability of attribute 
judgment action 

{0, 0.1, 0.2, …, 0.8, 0.9, 1.0} 

a5 The reliability of type judgment 
action 

{0, 0.1, 0.2, …, 0.8, 0.9, 1.0}  
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R13(s, a1)= − sgn(count(a1) − 1)× count(a1) × r13 (3) 

In Eqn. (1), pvalid represents the proportion of the abnormal signal’s 
length within the corresponding adaptive window. Its calculation is 
described in Eqn. (2). α represents the threshold for determining 
whether pvalid receives positive or negative rewards. This threshold is 
determined based on subjective importance. k1 and k2 are two points, 
representing a proper and centered range in the adaptive window, 
where their values are determined subjectively and we choose 10％to 
90％ region ranges of the adaptive window here. r11 and r12 represent 
positive constant rewards. R13(s,a1) is described in Eqn. (3), where count 
(a1) represents the number of abnormal signals with intervals greater 
than the distance threshold parameter of 256 points, and r13 represents a 
positive constant reward. 

According to Eqn. (1), the reward function for subproblem 1) consists 
of three parts: r11, r12, and R13(s,a1). The r11 part measures the propor
tion of the abnormal signal segment within the adaptive window. When 
this proportion exceeds α(0 ≤ α ≤ 1) threshold, a higher reward is given. 
Otherwise, if the proportion is smaller, a greater punishment is applied. 
The α threshold serves as the boundary for reward or punishment based 
on the proportion. The r12 part ensures abnormal signal properly and 
centrally contained within the adaptive window. When k1 and k2 
represent normal data points, no punishment is incurred. However, if k1 
and k2 are abnormal data points, a significant punishment is imposed, 
which overwhelms any rewards obtained from the r11 part. This en
courages the agent to focus on the issue of whether the abnormal signal 
is located properly within the adaptive window. The R13(s,a1) is used to 
assess whether there are multiple abnormal signals within the adaptive 
window, thereby promoting the accurate division of adaptive windows 
containing only a single abnormal signal by the agent. 

For sub-problem 2), the reward function is designed as follows: 

R∗
21(s, a1)=

n − m + 1
winSizeMax

× r21 (4)  

where winSizeMax is the maximum window length that can be divided 
by the adaptive window action. r21 is a positive constant reward. 

Therefore, the final reward function of action a1 is shown below: 

R∗
1(s, a1)= sgn(pvalid)R∗

11(s, a1) + (1 − sgn(pvalid))R∗
21(s, a1) (5) 

After performing adaptive window action partitioning on the 
detected temporal signals inside the pipeline, multiple complete tem
poral signal segments are obtained. The next step is to make a thorough 
assessment of these signal segments, which involves two main actions: 
1) determining the attribute of the temporal signal segment (normal or 
abnormal), denoted as action a2, and 2) determining the type of the 
temporal signal segment (normal, defect, bend, or weld), denoted as 
action a3. Since actions a2 and a3 are categorical and mutually exclusive, 
the reward function can be designed as follows: a fixed reward is given 
for correct judgments, while a fixed penalty is imposed for incorrect 
judgments. However, due to the inherent randomness in the judgment 
process (similar to random guessing), auxiliary actions a4 and a5 are 
introduced in this paper to mitigate such occurrences. The auxiliary 
actions essentially represent confidence indices, which measure the al
gorithm’s level of certainty in correctly identifying a particular window 
signal and reflect the algorithm’s mastery of different window signals. 
The key characteristic is that higher penalties are assigned when the 
diagnostic algorithm correctly identifies a window with low confidence 
or incorrectly identifies a window with high confidence. Conversely, 
when the diagnostic algorithm provides confidence indices that align 
with its true understanding, the rewards or penalties assigned to the 
identified windows are within a reasonable range. Therefore, a loga
rithmic form is used to design the reward function for the auxiliary 
actions. 

The reward function for action a2 is as follows: 

R∗
21(a2, a4)=

{
log2(2a4) × r2i correct answer
− log2 2(1 − a4) × r2i false answer (6)  

where the characteristics of this function are as follows: when a correct 
judgment is made with a confidence index of 100%, a full reward is 
obtained; when the confidence index is 50%, regardless of whether the 
judgment is correct or incorrect, no reward is given; when a correct 
judgment is made with a confidence index of 10% or an incorrect 
judgment is made with a confidence index of 90%, the obtained rewards 
are equivalent. These characteristics encourage the diagnostic algorithm 
to continuously strengthen its understanding of different window sig
nals, aiming to achieve correct judgments with higher confidence 
indices [23]. 

Similarly, the reward function for action a3 is as follows: 

R∗
22(a3, a5)=

⎧
⎨

⎩

log4(4a5) × r2j correct answer

− log4
4
3
(1 − a5) × r2j false answer

(7) 

The reward functions for actions a2 and a3 can be combined into a 
single reward function to represent the overall performance of the 
window recognition actions. The function is defined as follows: 

R∗
2(a2, a3, a4, a5)= q21 ×R∗

21(a2, a4)+ q22 × R∗
22(a3, a5) (8)  

where q21 and q22 are the proportion coefficients that measure the 
importance difference between action a2 and action a3. 

Therefore, the reward function that measures the detection perfor
mance of the entire framework can be defined as follows: 

R∗(s, a1, a2, a3, a4, a5)= tR∗
1(s, a1) + (1 − t)R∗

2(a2, a3, a4, a5) (9)  

where t ∈ [0,1] is an importance factor, and is set to a value of 0.5 to give 
equal importance to both R∗

1 and R∗
2. 

3.1.3. Interactive process design 
The intelligent diagnostic framework for pipeline internal detection 

based on a hierarchical reward mechanism is illustrated in Fig. 7 where 
reward function can be shown in Fig. 6. The specific interaction process 
is as follows: The environment consists of single-channel amplitude data 
of the pipeline’s temporal detection signals, with the specific length 
being related to the actual length of the pipeline, typically in the order of 
tens of millions of data points. The agent represents an intelligent 
decision-making algorithm aimed at pipeline anomaly detection. At time 
t, the agent observes the current environment and its own current state 
st, and based on the internal decision-making algorithm, takes an action 
from the action set at. Subsequently, the action set at interacts with the 
environment, causing the current state st to transition to the next state 
st+1, and an immediate reward rt is provided at time t+1 to evaluate the 
quality of the action at. The agent subsequently observes the state st+1 
and the reward rt, where rt, st, at, and other elements form a five-tuple (st ,

at , rt ,P, γ) used for updating the decision-making algorithm. The state 
st+1 then obtains a new action set at+1 through the processing of the 
decision-making algorithm, and this loop continues until the exit con
dition is met. When the agent completes its training and is used to test 

Fig. 6. Parameter definitions used in reward function design.  
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new temporal detection data from the pipeline, the interaction process 
remains the same as in Fig. 7, with the exclusion of the decision-making 
algorithm’s decision update based on the five-tuple (st ,at , rt ,P, γ). 

3.2. Optimization of pipeline intelligent diagnostic framework 

The aforementioned intelligent diagnostic framework based on the 
hierarchical reward mechanism is mainly designed for tensioned pipe
line data, but the final application scenario is field pipeline data during 
service. Compared to tensioned pipelines, field pipelines exhibit poorer 
internal detection environment, greater inherent signal noise, a wider 
range of pipeline states, and more complex characteristics of different 
defects. These factors result in lower quality of raw defect data and 
increased difficulty in subsequent analysis, making it impossible to meet 
all the requirements of practical pipeline inspections. Directly applying 
the aforementioned intelligent diagnostic framework to the automated 
detection of field pipeline signals would lead to unsatisfactory perfor
mance in terms of algorithm generalization and robustness. 

Therefore, in this section, considering the characteristics of field 
pipeline signals, we propose to introduce a hierarchical exploration 
mechanism on top of the existing framework to achieve differentiated 
learning of raw data with different characteristics in field pipelines. This 
approach aims to enhance the generalization and robustness of the 
entire intelligent diagnostic framework to different field pipeline sig
nals. The hierarchical exploration mechanism consists of two parts: 
temporal exploration and spatial exploration. The temporal exploration 
mechanism focuses on targeted exploration of different segments of 
single-channel raw eddy current data to enhance the framework’s un
derstanding of complex defect segments. The spatial exploration 
mechanism adaptively denoises different regions of multi-channel raw 
eddy current data to improve the framework’s understanding of signal 
regions with severe noise interference. 

The following provides a description of the optimization parts of the 
proposed framework. 

3.2.1. Optimization to reward function 
For field pipeline signals, due to the difficulties and high costs 

associated with on-site excavation work, they are often considered un

labeled data. To address the issue of ineffective action reward functions 
caused by the lack of labeled data for field pipelines, we introduce the 
use of power spectral features as a substitute for labeled data in the 
decision-making process. Therefore, the optimal reward function for the 
action a1 is improved as follows. For subproblem 1), the optimized 
reward function is shown below. 

R∗
11(s, a1)=

pvalid − α
1 − α × r′

11 − f (tp1, tp2) × r′
12 (10)  

pvalid =
tp2 − tp1 + 1

n − m + 1
(11)  

f (tp1, tp2)=

⎧
⎨

⎩

0 tp1 > k1 and tp2 < k2
1 others
2 tp1 < k1 and tp2 > k2

(12)  

where k1, k2 are the points within a certain distance from the left and 
right ends of the adaptive window, and tp1, tp2 are two points deter
mined based on the power spectrum characteristics inside the adaptive 
window. Compared with Eqn. (1), Eqn. (10) uses f(tp1,tp2) for r12 part 
calculation, and omits the penalty function R11(s,a1) based on the 
number of abnormal signals within the adaptive window. This is because 
in field pipeline signals, closely spaced abnormal signals often couple 
together to form a complex “larger” abnormal signal, making it difficult 
to effectively differentiate them. In such cases, treating them as a single 
abnormal signal is sufficient. 

For subproblem 2), due to the reward function is not connected to 
label, so it keeps unchanged shown in Eqn. (4). Therefore, the reward 
function of action a1 is optimized as: 

R∗
1(s, a1)= sgn(pemax − pethre)R∗

11 + (1 − sgn(pemax − pethre))R∗
21 (13)  

where pemax represents the maximum value of the power spectral density 
corresponding to the amplitude signal in the current adaptive window. 
pethre represents the adaptive parameter threshold of the power spectral 
density corresponding to the amplitude signal in the current pipeline 
section. Its actual meaning is the upper bound of the power spectral 
density for normal window signals, and its value is related to the overall 
complexity of the current pipeline section’s signal (i.e., when the signal 

Fig. 7. Proposed framework for pipeline intelligent diagnostic system based on a hierarchical reward mechanism.  
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noise is small or there are fewer overall anomalies, the value of pethre will 
adaptively decrease, and vice versa). In simple terms, pethre will adap
tively adjust based on the overall signal conditions of different pipeline 
sections, and the region in the adaptive window corresponding to the 
power spectral density exceeding the pethre threshold will be considered 
as the true anomaly region. 

For action a2 or a3, since it is a categorical decision, the derivation 
process of the optimal reward function remains unchanged, as shown 
above, with only the source of ground truth answers being modified. 
Due to the limitations of power spectral features, we can only determine 
the presence of abnormal signals for action a2 and are unable to identify 
the specific signal types for action a3, so the reward for a3 is disregarded 
and the corresponding weighting coefficients for the reward functions 
are set to zero. Besides, the determination of specific signal types in field 
pipelines will be based on a new mechanism, as outlined in the following 
section. 

The optimized reward function for action a2 is shown below. 

R∗
21(a2, a4)=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

log2(2a4) × r′
21 anomaly and pemax > pethre

log2(2a4) × r′
22 normal and pemax ≤ pethre

− log2 2(1 − a4) × r′
21 anomaly but pemax ≤ pethre

− log2 2(1 − a4) × r′
22 normal but pemax > pethre

(14) 

Since the main forms of the optimal reward functions for a1 to a5 
have not changed, the fusion method of the functions remains the same, 
which is shown in Eqn. (9). 

3.2.2. Design of temporal and spatial exploration mechanism 
Before designing the exploration mechanism, we unify some relevant 

conceptual terms as shown in Fig. 8. 
Compared to pull-in pipeline data, field pipeline data is more com

plex, primarily due to the following reasons: 

1) Significant variation in signal noise among different pipeline sec
tions. Some sections may experience significant noise interference 
due to sensor effects (such as equipment vibration, foreign object 
obstruction inside the pipe, or interference from other power fre
quency signals), while other sections have relatively low levels of 
noise.  

2) Substantial variation in signal complexity among different pipeline 
sections. Some sections may contain numerous defects or spiral 
welds, resulting in highly intricate signal patterns, while other sec
tions may have only a few defect signals, exhibiting simpler patterns. 

To address these complexities, differential exploration of data fea
tures is proposed from both the temporal and spatial perspectives. 

The basic process of the spatiotemporal exploration mechanism is 
illustrated in Fig. 9. The blue line represents the principle of the tem
poral exploration mechanism, which considers the lateral complexity of 
individual channel signals (i.e., comparing the lateral complexity of 
signals from different pipeline sections) to determine which individual 
channel signals require further attention and learning. The red line 

represents the principle of the spatial exploration mechanism, which 
considers the vertical complexity of multi-channel signals (i.e., 
comparing the vertical complexity of signals from different pipeline 
sections) to determine which multi-channel signals require further 
attention and learning. 

In relative terms, the temporal exploration mechanism partially ad
dresses the issue of learning imbalance caused by uneven distribution of 
raw eddy current signals in field pipelines. It enables the pipeline in
spection interaction model to perform targeted and differential learning 
on the raw eddy current signals from different pipeline sections, thereby 
improving the model’s understanding of signals with different patterns. 
On the other hand, the spatial exploration mechanism targets pipeline 
sections with significant noise interference and effectively enhances the 
diagnostic algorithm’s understanding of complex eddy current signals 
through directed denoising. 

In addition, the basic feature of the spatiotemporal exploration 
mechanism, which is the complexity of the pipeline section signals, 
mainly includes two aspects: the level of noise interference and the 
variation in the distribution of anomalies. In this study, the number of 
identified abnormal signals obtained from the existing intelligent diag
nostic framework is chosen as the measure. The reasons are as follows: 
When the overall noise of a pipeline section increases, the corresponding 
adaptive parameter threshold pethr also increases. Similarly, the power 
spectrum pe of each adaptive window signal within the section also in
creases. However, the growth trend of pe is much larger than that of pethr. 
This leads to many normal signal windows being misclassified as 
abnormal, resulting in an increased number of identified abnormal 
signal windows within the section. When the noise is severe, compared 
to other pipeline sections, the total number of identified abnormal sig
nals across all channels in that section will be very large, thereby 
achieving the purpose of distinguishing different levels of noise inter
ference. Furthermore, the number of identified abnormal signals in 
different pipeline sections can effectively characterize the differences in 
anomaly distribution. Therefore, this approach is reasonable. 

3.2.3. Improvement of interactive process 
The interactive process is improved as follows, where ①② represent 

the pipeline intelligent diagnostic framework based on the hierarchical 
reward mechanism, and ③④ represent the spatiotemporal exploration 
mechanism introduced in the optimization phase. The pipeline intelli
gent diagnostic framework optimized based on the hierarchical explo
ration mechanism is denoted by ①②③④. 

As shown in Fig. 10, the optimized interactive process during the 
training phase is as follows:  

1) For the pull-in pipeline data, the pipeline inspection intelligent 
diagnostic framework based on the hierarchical reward mechanism 
is used to train the intelligent decision algorithm and obtain the 
model pre-parameters.  

2) For the field pipeline data, based on the model pre-parameters, the 
relevant data is trained using the optimized pipeline inspection 

Fig. 8. Illustration of some conceptual terms used in exploration mechanism.  

Fig. 9. Principle of temporal and spatial exploration mechanism.  
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intelligent diagnostic framework to obtain the final model 
parameters. 

In this way, the framework is capable of learning various features of 
field pipeline eddy current data based on the knowledge gained from the 
pull-in pipeline, which enhances the cognitive ability of the framework 
in recognizing complex signals in the pipeline, making it possible to 
realize the automated detection of field pipeline. 

4. Experiment and result analysis 

4.1. Model indexes and experimental data 

4.1.1. Model indexes 
For the pipeline internal defect anomaly diagnostics problem studied 

in this paper, due to the rarity of abnormal signals within the entire 
signal, the introduction of metrics such as precision and recall is 
necessary to evaluate the model’s performance. Precision represents the 
proportion of true positive predictions among the predicted positive 
samples, while recall represents the proportion of true positive samples 
correctly predicted as positive by the model. Typically, these two met
rics are in conflict with each other, meaning that while pursuing 
improvement in one metric, the other metric may be negatively affected. 

For binary classification problems, their states can be divided into 
four categories: true positives (TP), true negatives (TN), false positives 
(FP), and false negatives (FN), so the calculation methods for precision 
and recall are as follows: 

precision=
TP

TP + FP
(15)  

recall=
TP

TP + FN
(16)  

When generalizing the problem to n-class classification, the calculation 
methods for precision and recall are as follows: 

precision=
TP11

TP11 +
∑n

k=2
FP1k

(17)  

recall=
TP11

TP11 +
∑n

k=2
FPk1

(18) 

The definitions of TPnn and FPnn are shown in Fig. 11, where the 
matrix is referred to as the confusion matrix, serving to assess the overall 
classification performance of the model. When the data is distributed 
along the diagonal, the model exhibits the best performance in multi- 
class classification. 

Fig. 10. Proposed framework for pipeline intelligent diagnostic system after the optimization of temporal and spatial exploration mechanism.  

Fig. 11. Schematic diagram of confusion matrix of multi classifica
tion problem. 
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To comprehensively evaluate the model’s classification perfor
mance, this paper introduces the F-score, which combines precision and 
recall. The calculation method is as follows: 

F − score=
(
1+ βf

2)×
precision × recall

(
βf

2 × precision
)
+ recall

(19) 

Considering the ultimate application scenario of pipeline internal 
defect anomaly detection in this paper, where the priority is given to 
recall to identify all true defects as much as possible, we set the value of 
ßf as 2. 

4.1.2. Experimental data 
The experimental data in this paper is divided into two categories: 

pull-in pipelines and field pipelines. The pull-in pipelines are classified 
based on their diameter sizes into three types: 168 pipeline, 219 pipe
line, and 273 pipeline (with a diameter of 273 mm). Among them, 
partial true value parameters for defects in the 219 pipeline are shown in 
Table 2, and more related true value information for defects can be 
found in the supplementary materials. 

In comparison to the pull-in pipelines where accurate true value 
defect parameters were obtained through manual carving, the field 
pipelines completely lack such data due to difficulties in construction 
and other engineering reasons. To facilitate subsequent experimental 
discussions, alternative methods were employed to obtain relatively 
accurate reference defect values for the field pipelines. Specifically, the 
positions of pipeline structural components were derived from the initial 
design drawings of the pipelines and manually annotated, while the 
positions of pipeline defects were obtained from the corresponding 
detection reports generated by a state-of-the-art commercial algorithm 
used in the field. Additionally, some positions were further annotated by 
combining with partial manual excavation verification processes. 

4.2. Experiments on the unoptimized pipeline intelligent diagnostic 
framework 

4.2.1. Effects of different actions 
Due to the pipeline internal detection intelligent diagnostic frame

work involving three intermediate steps for time-series eddy current 
data, namely, adaptive window signal segmentation, adaptive window 
attribute classification, and adaptive window type classification, the 
actual performance of these three steps will be analyzed.  

(a) Adaptive window signal segmentation action 

Regarding the adaptive window signal segmentation, the concept of 
a confusion matrix is introduced, and the window types are classified 
into three categories: A, B, and C. Category A represents the case where a 
single anomaly signal is accurately segmented into a single adaptive 
window; category B represents the case where a single anomaly signal is 
segmented into multiple adaptive windows; and category C represents 
the case where multiple anomaly signals are segmented into a single 
adaptive window. The specific results of the confusion matrix are shown 
in Fig. 12. Since the actual counts for categories B and C should be zero 
from a true classification perspective, all the second and third rows of 

the confusion matrix are marked as 0. Subsequently, the analysis will 
focus on the data in the first row of the confusion matrix. 

From Table 3, it can be observed that there are a total of 15 weld 
signals and 168 defect signals in the pull-in pipelines, while there are 14 
weld signals and 77 defect signals in the field pipelines. In Fig. 12(a) and 
(b), the window segmentation action achieves a recall rate of 100% for 
weld signals in the pull-in pipelines (predicted as category A: 15/15), 
and a recall rate of 94.6% for defect signals (predicted as category A: 
159/168). However, a few defect signals are misclassified as category B 
(3/168) or category C (6/168). This may be due to the presence of he
lical weld sections in the pull-in pipelines, where the signal character
istics are closer to those of field pipelines, resulting in more complex 
features compared to other pull-in sections and leading to misclassifi
cation. In Fig. 12(c) and (d), the window segmentation action achieves a 
high recall rate of 100% for weld signals in the field pipelines (predicted 
as category A: 14/14). However, the recall rate for defect signals is only 
42.9% (predicted as category A: 33/77), with a large number of defect 
signals misclassified as category B (18/77) or category C (26/77). This is 
attributed to the fact that the field pipelines have poorer internal envi
ronment, larger original signal noise, and more complex defect mor
phologies, making it challenging for the current intelligent diagnostic 
framework to fully learn the effective features of relevant defect signals. 

Therefore, the conclusions of window segmentation action on the 
raw data of oil and gas pipelines are as follows: (1) For pull-in pipelines, 
the window segmentation action demonstrates excellent partitioning 
capability for all abnormal signals (regardless of weld or defect signals). 
It accurately and completely segments each individual abnormal signal 
into a single adaptive window. (2) For field pipelines, the window seg
mentation action exhibits excellent partitioning capability for weld- 
related abnormal signals, accurately segmenting them into individual 
windows. However, it shows poorer performance for defect-related 
abnormal signals. Some individual defect-related abnormal signals are Table 2 

Truth table of some defects in pull-in 219 pipeline.  

Defect 
Index 

Length 
(mm) 

Width 
(mm) 

Depth 
(mm) 

Distance to 
weld(m) 

Clock 
position (◦) 

W1-1 56 53 4.27 1.60 123.8 
W1-2 53 37 2.43 1.59 82.5 
W1-3 55 55 3.87 1.60 15.5 
W1-4 51 31 3.27 1.60 319.8 
W1-5 51 44 3.85 1.60 247.6 
W1-6 60 53 2.86 1.15 294.0  

Fig. 12. Confusion matrix of adaptive window signal segmentation action. (a) 
Weld signals in pull-in pipeline. (b) Defect signals in pull-in pipeline. (c) Weld 
signals in field pipeline. (d) Defect signals in field pipeline. 

Table 3 
Truth numbers of anomaly in related pull-in pipelines.   

Defect numbers Weld numbers Bend numbers 

Pull-in 168 pipeline 43 5 0 
Pull-in 219 pipeline 68 5 0 
Pull-in 273 pipeline 55 5 0 
Zhejiang Field pipeline 77 14 0  
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partitioned into multiple adaptive windows, while in other cases, mul
tiple defect-related abnormal signals are partitioned into a single 
adaptive window.  

(b) Adaptive window attribute judgment action 

Regarding the segmented window set, ensuring the accurate identi
fication of individual windows containing abnormal signals essentially 
constitutes a binary classification problem. The specific identification 
results are illustrated as follows. 

From Table 4 and Table 5, it is evident that without confidence 
indices, the recall rate for defect-type windows in pull-in pipelines is 
60.7% (102/168), and in field pipelines, it is 40.3% (31/77). However, 
with confidence indices, the recall rate for defect-type windows in pull- 
in pipelines increases to 100% (168/168), and in field pipelines, it rises 
to 66.2% (51/77). This indicates that the inclusion of confidence indices 
greatly improves the recognition performance of the attribute classifi
cation action for the abnormal states of adaptive windows. 

Furthermore, from Table 6, with confidence indices, the recall rate 
for weld signals in pull-in pipelines is 100%, and the precision rate is 
100%, while for defect signals, the recall rate is 100%, and the precision 
rate is 98.9%. In field pipelines, the recall rate for weld signals is 100%, 
and the precision rate is 100%, while for defect signals, the recall rate is 
66.2%, and the precision rate is 73.9%. 

Comparatively, it can be concluded that with confidence indices, the 
attribute classification action has the following actual recognition per
formance for the abnormal states of adaptive windows: (1) The attribute 
classification action demonstrates excellent recognition ability for both 
weld and defect signals in pull-in pipelines, with recall and precision 
rates at around 99%. (2) For field pipelines, the attribute classification 
action also exhibits excellent recognition ability for windows containing 
weld signals, with recall and precision rates at 100%. However, for 
windows containing defect signals, it shows a poorer recognition per
formance with a recall rate of only around 70%. The reasons are two- 
fold: (a) Some defect signals are submerged amidst the complex noise 
interference in field pipelines, leading to misclassification as normal 
windows, resulting in a lower recall rate for defect windows. (b) Some 
defect signals are segmented into multiple adaptive windows, leading to 
the classification of multiple abnormal windows by the attribute clas
sification action, resulting in a lower precision rate for defect windows.  

(c) Adaptive window type judgment action 

Similarly, for the window type classification (normal, weld, elbow, 
defect), it belongs to a typical multi-classification problem. Therefore, 
the effectiveness is directly measured using a confusion matrix, and the 
specific results are shown in Fig. 13. 

From Fig. 13(a), it can be observed that the adaptive window type 
classification action exhibits excellent classification performance for 
abnormal signal categories in pull-in pipelines, with a recall rate of 
95.2% for defect signals (160/168) and 93.3% for weld signals (14/15). 
However, there are still some shortcomings, such as 12 normal signals 
being misclassified as defect signals, which could be due to interference 
from spiral segment data in the pull-in pipelines with similar signal 
characteristics to field signals. Additionally, 8 defect signals are 

misclassified as weld signals, possibly due to the large amplitude of these 
defect signals, making them appear similar to weld signals in amplitude- 
based classification. Furthermore, 1 weld signal is misclassified as a 
defect signal, likely for a similar reason, where this specific type of weld 
signal has smaller amplitude features, resembling defect signals and 
leading to misclassification. 

Similarly analyzing Fig. 13(b), it can be observed that the adaptive 
window type classification action achieves excellent actual classification 
performance for abnormal signals in field pipelines, with a recall rate of 
100% for weld signals (14/14). However, the recall rate for defect sig
nals is only 51.9% (40/77), and the reasons behind this are twofold: (a) 
Severe noise interference in the field pipelines causes defect signals with 
relatively small amplitude changes to be submerged and misclassified as 
normal signals (26/77); (b) Severe noise interference in the field pipe
lines causes defect signals with relatively large amplitude changes to be 
misclassified as weld signals (11/77). In addition, since neither the pull- 
in pipelines nor the field pipelines’ data in this experiment contain 
elbow signal information, the relevant positions in the confusion matrix 
are all marked as 0. 

In summary, the actual classification performance of the adaptive 
window type classification action for abnormal signals can be concluded 
as follows: (1) For pull-in pipelines, this action can accurately identify 
and classify weld signals and defect signals, with recall rates around 
95%. (2) For field pipelines, this action can accurately classify weld 
signals, maintaining a recall rate of over 95%. However, the perfor
mance is poor for defect signals, with a recall rate of only 52%. 

4.2.2. Comparison with other methods 
Due to the proprietary nature of most algorithms in the pipeline in

spection field, where the source code or related information is not open- 
source or publicly available, it is not feasible to conduct a direct com
parison of actual performance. Therefore, in this study, a comparison is 
made with multi-classification algorithms. 

The pipeline status is divided into four categories: normal, defect, 
weld, and elbow. Traditional machine learning algorithms and deep 
learning-related algorithms are tested separately on pull-in pipelines 
(including three types of pipelines: 168, 219 and 273 pipelines). The 
traditional machine learning algorithms include K-Nearest Neighbor 
(KNN), Classification and Regression Tree (CART), Local Outlier Factor 

Table 4 
Classification performance of the adaptive window attribute judgment action 
without confidence index.  

Without confidence index 

Pull-in pipeline Field pipeline 

Weld types Defect types Wele types Defect types 

p r p r p r p r 

15/15 15/15 102/102 102/168 14/14 14/14 31/43 31/77  

Table 5 
Classification performance of the adaptive window attribute judgment action 
with confidence index.  

With confidence index 

Pull-in pipeline Field pipeline 

Weld types Defect types Wele types Defect types 

p r p r p r p r 

15/15 15/15 168/170 168/168 14/14 14/14 51/69 51/77  

Fig. 13. Confusion matrix of the adaptive window type judgment action. (a) 
Pull-in pipeline. (b) Field pipeline. 
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(LOF), and Isolation Forest (iForest). The deep learning-related algo
rithms include Multi-Layer Perceptron (MLP) [24], Long Short Term 
Memory-Fully Convolutional Networks (LSTM-FCN) [25], and 
Multi-Scale Convolutional Neural Networks (MS-CNN) [26]. Since 
pull-in pipelines do not have elbow information, the parameters related 
to elbows are marked as 0. The specific test results are shown in Table 6. 

However, since the ultimate application scenario of pipeline internal 
detection is the field environment, although ours performs extremely 
well in pull-in pipelines, as mentioned earlier, its performance in real 
field pipelines is not satisfactory. Specifically, the overall performance 
is: weld precision rate is above 95%, but the defect precision rate is only 
52%; this is manifested as follows: (1) the ability of the adaptive window 
signal segmentation action to accurately partition individual abnormal 
signals into single windows needs improvement; (2) the recognition 
ability of the adaptive window signal identification action for window 
signals with severe noise interference needs improvement. Based on the 
above analysis, the fundamental reason for the poor performance lies in 
the fact that compared to pull-in pipe signals, real field pipelines suffer 
from poorer internal inspection environment, larger original signal 
noise, a greater variety of pipeline conditions, and more complex defect 
characteristics. These factors result in poor quality of original defect 
data, leading to greater difficulty in subsequent signal analysis. There
fore, these issues will be addressed by optimizing the framework. 

4.3. Experiments on the optimized pipeline intelligent diagnostic 
framework 

4.3.1. Ablation experiments on exploration mechanism 
To test the impact of spatiotemporal exploration mechanisms on the 

automated detection capability of pipeline internal defects in real-world 
environments, this subsection validates the actual effects of the explo
ration mechanisms in three directions based on two types of frame
works: the unoptimized and optimized frameworks. The main 
comparisons include: (1) a comparison of the effectiveness of the 
adaptive window signal segmentation action, (2) a comparison of the 
effectiveness of the adaptive window attribute judgment action, and (3) 
a comparison of the effectiveness of the adaptive window type judgment 
action.  

(a) Adaptive window signal segmentation action 

Regarding the adaptive window signal segmentation action, this 
section conducts a two-step analysis: (1) a visual comparison of pipeline 
signal window partitioning, and (2) a comparison of pipeline signal 
window partitioning metrics. 

For (1), specific comparisons are shown in Fig. 14 (supplied in 
appendix). 

For (2), we conduct an evaluation method similar to the one used in 

Section IV B, the results are shown in Fig. 14. 
From Fig. 14(a) and (b), it is evident that for the traction pipeline, the 

intelligent diagnostic framework without the spatiotemporal explora
tion mechanism exhibits inaccuracies and inadequacies in the window 
partition of defect signals (as indicated by classes B and C in the figure), 
which can be attributed to the presence of spiral pipeline signals. 
However, with the introduction of the spatiotemporal exploration 
mechanism, the optimized intelligent diagnostic framework demon
strates accurate identification and window partitioning of such spiral 
signals, resulting in a reduction of incorrect window partitions (classes B 
and C) to zero and an overall improvement in the window partition 
accuracy by 5.4% (from 94.6% to 100%). 

From Fig. 14(c) and (d), it is evident that for the window partition of 
defect signals in the field pipeline, the introduction of the spatiotem
poral exploration mechanism significantly enhances the intelligent 
diagnostic framework’s ability to recognize defect signals, leading to a 
substantial improvement in the window partition accuracy from 42.9% 
to 92.2%, representing an overall increase of approximately 50%. 

Based on the analyses, we draw the following conclusion: The 
spatiotemporal exploration mechanism can significantly enhance the 
adaptive window signal segmentation action’s ability to recognize and 

Table 6 
Comparison of different multi-classification algorithms based on pull-in pipelines.  

Pull-in pipeline state types Traditional machine learning field 

KNN CART LOF iForest 

p r F p r F p r F p r F 

normal 1.00 0.99 0.99 0.99 1.00 0.99 0.97 0.98 0.98 0.99 1.00 0.99 
bend 0 0 0 0 0 0 0 0 0 0 0 0 
weld 1.00 0.93 0.99 0.92 0.73 0.76 0.88 0.93 0.92 1.00 0.80 0.83 
defect 0.57 0.73 0.69 0.73 0.43 0.47 0.79 0.64 0.67 1.00 0.61 0.66 

Pull-in pipeline state types Deep learning related fields 
MLP LSTM-FCN MS-CNN Ours 
p r F p r F p r F p r F 

normal 0.97 0.84 0.86 0.98 0.85 0.87 1.00 0.95 0.96 1.00 0.99 0.99 
bend 0 0 0 0 0 0 0 0 0 0 0 0 
weld 1.00 0.93 0.94 0.91 0.66 0.70 0.92 0.80 0.82 1.00 1.00 1.00 
defect 1.00 0.41 0.46 0.00 0.00 0.00 0.81 0.48 0.52 0.93 1.00 0.99  

Fig. 14. Confusion matrix of the adaptive window signal segmentation action 
(a) Pull-in pipeline without exploration mechanism. (b) Pull-in pipeline with 
exploration mechanism. (c) Field pipeline without exploration mechanism. (d) 
Field pipeline with exploration mechanism. 
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partition complex signals (such as spiral pipeline signals or field pipeline 
signals).  

(b) Adaptive window attribute judgment action 

Regarding the adaptive window attribute judgment action, the 
comparative results are as follows. 

According to Table 7, the introduction of the spatio-temporal 
exploration mechanism has significantly improved the intelligent diag
nostic framework’s recall rate for defect-type windows in real-world 
pipelines, increasing it from 66.2% (51/77) to 97.4% (75/77), repre
senting an overall increase of 31.2%. The precision rate also increased 
from 73.9% (51/69) to 84.3% (75/89), showing an overall increase of 
10.4%. 

Clearly, the optimized intelligent diagnostic framework demon
strates a significant enhancement in its ability to identify abnormal 
states of signal windows. There are two main reasons for this improve
ment: (1) The spatio-temporal exploration mechanism greatly improves 
the accuracy of adaptive window signal segmentation, making it easier 
to perform attribute judgments based on signal windows and avoiding 
misidentifications and omissions caused by inaccurate window seg
mentation. (2) The corresponding feature processing methods in the 
spatio-temporal exploration mechanism, such as multi-dimensional 
feature extraction and adaptive filtering for noise reduction, signifi
cantly enhance the adaptive window attribute judgment action’s capa
bility to recognize abnormal signals in complex conditions. 

Therefore, we can conclude that the spatio-temporal exploration 
mechanism significantly improves the adaptive window attribute judg
ment action’s ability to identify abnormal states within signal windows 
under complex conditions.  

(c) Adaptive window type judgment action 

Regarding the adaptive window type judgment action, the compar
ative results are as follows. It is important to note that the optimized 
framework does not include a direct adaptive window type judgment 
action for signal windows. Instead, it relies on a step-by-step classifi
cation process based on the combination of adaptive window signal 
segmentation and adaptive window attribute judgment actions, along 
with the utilization of global spatiotemporal features. The basic 
approach is as follows: (1) Utilize the adaptive window signal segmen
tation action and the adaptive window attribute judgment action to 
obtain all abnormal state windows. (2) Use multi-channel spatial fea
tures to determine signal windows belonging to the weld type. (3) Uti
lize spatiotemporal features between pipe sections to identify segments 
containing bends. (4) The remaining abnormal state windows are 
considered as defect-type windows. 

Based on Fig. 15, it can be observed that the optimized framework 
shows significant improvements in recognizing normal, defect, and weld 
signals. Specifically: (1) The number of normal signals mistakenly 
classified as defects due to noise interference reduced from 18 to 4, and 
all four were caused by significant sensor jitter, resulting in local intense 
fluctuations, making their waveform similar to defects. (2) The correct 
recognition of defect signals increased from 40 to 75, and the number of 
misclassifications as normal or weld signals significantly decreased. (3) 

The number of misclassifications for weld signals significantly reduced, 
achieving 100% accurate recognition for them. Overall, the spatiotem
poral exploration mechanism increased the defect signal recall rate from 
51.9% to 97.4% and the precision rate from 69% to 94.9%; the weld 
signal recall rate remained unchanged at 100%, and the precision rate 
improved from 56% to 100%. 

Therefore, the conclusion can be drawn that the spatiotemporal 
exploration mechanism significantly enhances the intelligent diagnostic 
framework’s classification and recognition capabilities for abnormal 
state windows. 

4.3.2. Verification of robustness and generalization 
In the previous section, the effectiveness and necessity of the 

spatiotemporal exploration mechanism were validated through ablation 
experiments. In this section, the overall detection performance of the 
optimized intelligent diagnostic framework will be tested based on real- 
world pipeline detection results. This testing comprises two main parts: 
framework robustness validation and generalization validation.  

(a) Algorithm comparison to validate robustness 

Different algorithms are compared to assess the optimized frame
work’s ability to perform well under various conditions and resist per
formance degradation due to changes in the operating environment. The 
specific results are as follows. 

According to Table 8, it can be observed that, compared to the pull-in 
pipeline, the performance of all classifiers in the real-world field pipeline 
generally deteriorates. However, the optimized pipeline internal detec
tion intelligent diagnostic framework shows a significant improvement 
in performance for the real-world field pipeline. Compared to the best- 
performing KNN classification algorithm for the real-world field pipe
line, the optimized framework demonstrates superior recognition per
formance for both weld-type and defect-type signals, specifically: the 
weld recall rate increases from 0.89 to 0.93 (an improvement of 4%), the 
defect recall rate increases from 0.65 to 0.89 (an improvement of 24%), 
and the overall detection performance (measured by F-score) improves 
by 15%. 

Therefore, the optimized intelligent diagnostic framework exhibits 
better robustness in detecting anomalies in real-world field pipelines.  

(b) Pipeline comparison to validate generalization 

The optimized framework will be tested on different pipelines to 
evaluate its ability to generalize and adapt to diverse pipeline structures 
and characteristics. Here, a real pipeline segment, approximately 4 km 
in length, from the Changqing Oilfield Eastern Mainline is chosen as the 
detection target. Parts of raw eddy current data consisting of pipeline 
structures(weld, bend) and pipeline defects are shown in Fig. 16. 

It is important to note that all previous pipeline experiments 
involved the pipelines listed in Table 4, which had the characteristic of 
having a reference list of true defects for validation. However, the 

Table 7 
Classification effects of the adaptive window attribute judgment action on field 
pipelines.  

Field pipeline 

Without exploration mechanism With exploration mechanism 

Weld types Defect types Wele types Defect types 

p r p r p r p r 

14/14 14/14 51/69 51/77 14/14 14/14 75/89 75/77  

Fig. 15. Confusion matrix of the adaptive window type judgment action in field 
pipeline. (a) without exploration mechanism. (b) with exploration mechanism. 
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chosen real pipeline in this instance does not have a reference list of true 
defects, so the actual detection results will be verified through manual 
comparison and validation. The specific detection results are shown in 
Table 9, where the actual quantities of welds and bends are manually 
counted based on the pipeline design drawings. 

From Table 9, it can be observed that the optimized framework 
achieves a high detection rate for pipeline structural components such as 
welds and bends, with the detection rate for welds being over 95% and 
for bends being over 90%. However, regarding defect signals, the al
gorithm automatically detects a total of 1273 defects, and upon signal 
analysis, it is found that many of these detected defects are small defects 
(i.e., signals with relatively small amplitude variations), making it 
difficult to individually verify each defect through manual intervention. 
Therefore, to verify the results, reference was made to detection reports 
from multiple foreign companies for the same pipeline, and a total of 30 
largest defects were manually selected for validation. The results 

indicate that the optimized framework successfully detected all 30 
defect signals. 

Furthermore, if the common anomalies (bends, welds, defects) from 
the above-mentioned company detection reports are taken as the ground 
truth reference, the corresponding confusion matrix can be obtained, as 
shown in Fig. 17. 

The percentages in the matrix represent the precision rate, which 
indicates the proportion of anomalies detected by the optimized 
framework among the common anomalies, where it can be observed that 
the optimized framework exhibits excellent recognition performance for 
bends, welds, and defects, with precision rates of 92.3% for bends, 

Table 8 
Comparison of different multi-classification algorithms based on field pipelines.  

Pull-in pipeline state types Traditional machine learning field 

KNN CART LOF iForest 

p r F p r F p r F p r F 

normal 0.98 0.99 0.99 0.96 0.99 0.98 0.96 0.98 0.98 0.98 0.99 0.99 
bend 0 0 0 0 0 0 0 0 0 0 0 0 
weld 0.87 0.89 0.89 0.83 0.71 0.73 0.88 0.79 0.81 0.63 0.86 0.80 
defect 0.56 0.65 0.63 0.69 0.37 0.41 0.66 0.48 0.51 0.71 0.53 0.56 

Pull-in pipeline state type Deep learning related fields 
MLP LSTM-FCN MS-CNN Ours 
p r F p r F p r F p r F 

normal 0.96 0.79 0.82 0.98 0.82 0.85 0.99 0.91 0.92 0.99 0.99 0.99 
bend 0 0 0 0 0 0 0 0 0 0 0 0 
weld 0.75 0.64 0.66 0.62 0.57 0.58 0.85 0.79 0.80 0.96 0.93 0.94 
defect 0.81 0.37 0.42 0.00 0.00 0.00 0.77 0.41 0.45 0.86 0.89 0.88  

Fig. 16. Raw eddy current data of Changqing oil field pipeline.  

Table 9 
Results of anomaly detection in Changqing oil field pipeline.  

Anomaly 
types 

Verification 
methods 

Anomaly 
numbers 

Detection 
numbers 

Detection 
ratio 

Weld Algorithm 359 351 97.77％ 
Bend Algorithm 52 48 92.31％ 
Defect Manual 30 30 100％ 

Algorithm Difficult to 
calculate 

1273 Difficult to 
verify  Fig. 17. Confusion matrix of anomaly detection in Changqing oil field pipeline.  
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97.8% for welds, and 86.8% for defects. 
Therefore, based on the comprehensive analysis, it can be concluded 

that the optimized framework exhibits better generalization ability in 
the detection of anomalies in real-world field pipelines. 

5. Conclusion 

In response to the challenges of severe noise interference, complex 
anomaly states, and low automation in the detection of real-world 
pipeline signals, this paper has proposed a pipeline internal detection 
intelligent diagnostic framework based on reinforcement learning with 
hierarchical reward exploration mechanism to achieve accurate and 
automated detection of complex internal pipeline signals. This paper has 
constructed the entire pipeline internal detection intelligent diagnostic 
framework using the hierarchical reward mechanism. By adaptively 
dividing the original pipeline data into sets of signals with different 
window sizes and performing attribute and type judgments, the accurate 
and automated detection of defects in the pull-in pipeline is achieved. 
Secondly, the hierarchical exploration mechanism has been introduced 
to optimize the entire intelligent diagnostic framework. Through 
spatiotemporal dimensionality, deep search, and feature learning of 
complex signals in the real-world field pipeline, a relatively accurate 
automated detection of internal defects in the real-world field pipeline is 
achieved. Building upon this, the next step in the future will involve in- 
depth quantification of defects in the detected abnormal signal 
windows. 
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Appendix 

A. Pipeline environment difference  

Table 1 
Comparison of application environments for pipeline internal inspection systems.  

Types Pipeline conditions Supplementary notes 

Pull-in Pipeline Length of pipeline is short Limited by the experimental site, usually several hundred meters. 
Structure of pipeline is simple Does not contain elbow structural parts, and the overall number is small. 
Inner environment is good Not in service, free from various types of residues and relatively clean inside the pipeline. 
Flaws of pipeline is simple Defect shape is clear and noise interference is small. Position of flaws is known and contains ground truth. 

Field Pipeline Length of pipeline is long Actual production application, usually more than 10 km. 
Structure of pipeline is complex Contains structural parts such as elbows, welds, flanges, etc., and the overall number is large 
Inner environment is terrible Contains all kinds of tiny impurities remaining in the transmission medium during service 
Flaws of pipeline is complex Complex defect shape and larger noise interference. 

Unknown position of flaws and without ground truth.  

B. Parameter space modeling 

Design of state space S: It should satisfy the following two conditions: 1) Sufficiently represent changes in the environmental state; 2) Reduce 
unnecessary redundant information. It is known that the pipeline eddy current signal is a sequential data with N channels, and each channel cor
responds to a distinct angle of the circular pipelines and contains two dimensions: amplitude and phase. Since the signal amplitude can already 
significantly reflect the characteristics of anomaly regions in most cases, this paper adopts a fixed length of amplitude data points from a single channel 
for state design. 

Design of action space A: It involves the introduction of five actions to achieve the desired objectives, defined as (a1, a2, a3, a4, a5), as presented in 
Table 2. Among them, the purpose of action a1 is to divide the pipeline eddy current signal into multiple adaptively sized window signal segments 
according to the specified requirements. These signal segments can be classified into two types: 1) adaptive window signals that contain only a single 
abnormal region, and 2) normal window signals that do not contain any abnormal regions. This action is a crucial step in the reinforcement learning 
model as the quality of signal segmentation directly affects the subsequent window attribute judgment (action a2) and window type judgment (action 
a3), thereby directly determining the ability of the entire reinforcement learning model to achieve the objective of anomaly detection. The purpose of 
action a2 is to assess the attributes of the adaptive windows obtained under action a1 and determine whether they contain abnormal signal segments. 
The same applies to action a3. Additionally, action a4 serves as a reliability estimation for action a2 and aims to assist in the attribute judgment of the 
adaptive windows. The same applies to action a5. 

Design of state transition probability function P: Since the state space S is designed as a fixed-length set of eddy current amplitude data in a single 
channel, the state transition process is as follows after executing the corresponding action set: 1) The adaptive window action a1 promotes the current 
state change, and the state slides forward in the corresponding channel of the original pipeline amplitude data. 2) The signal classification actions a2 to 
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a5 assess the abnormal attributes and types of the current adaptive window signal, but they do not cause a change in the current state. Therefore, under 
the joint effect of the above actions set, the state transitions deterministically and the corresponding P should be set to 1. 

Design of discount factor γ: In our case, γ is chosen as 0.1 which allows the current rewards more heavily weighted while future long-term rewards 
are given less importance. This consideration is motivated by the following ground that under the aforementioned parameter design, the adaptive 
window action of the current state only affects the transition of the current state. It is therefore adjusted by the adaptive window action of the next 
state, without influencing the transition of the subsequent state or future long-term states. Hence, there is reduced need to overly consider future long- 
term rewards. 

C. Ablation experiments on exploration mechanism 

Regarding the adaptive window signal segmentation action, this section conducts a two-step analysis: (1) a visual comparison of pipeline signal 
window partitioning. 

For (1), specific comparisons are shown in Fig. 14, where (a) and (b) illustrate the impact of spatiotemporal exploration mechanisms on adaptive 
window partitioning for the pull-in pipeline, while (c) and (d) illustrate the impact of spatiotemporal exploration mechanisms on adaptive window 
partitioning for the field pipeline. It is important to note that the following figure only display the window partitioning corresponding to the abnormal 
signals, and signals without windows are considered normal signals. 
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Fig. 14. Window effects of the adaptive window signal segmentation action (a) Pull-in pipeline without exploration mechanism. (b) Pull-in pipeline with exploration 
mechanism. (c) Field pipeline without exploration mechanism. (d) Field pipeline with exploration mechanism.. 

L. Su et al.                                                                                                                                                                                                                                        



NDT and E International 144 (2024) 103073

17

Fig. 14. (continued). 

From Fig. 14(a) and (b), as for the pull-in pipeline, the unoptimized framework shows good window partitioning results for the straight pipe signals 
(indicated by the blue box on the left side in the figure). The introduction of the spatiotemporal exploration mechanism only slightly fine-tunes the 
appropriate range of some windows, with no significant overall improvement. However, for the spiral pipe signals (indicated by the blue box on the 
right side in the figure), the unoptimized framework performs poorly, with some individual anomaly being partitioned into multiple windows or 
multiple anomalies being assigned to the same window. The introduction of the spatiotemporal exploration mechanism greatly improves these issues, 
leading to a noticeable overall enhancement in the results. 

From Fig. 14(c) and (d) it is evident that the unoptimized framework performs poorly in partitioning abnormal signals for the field pipeline, as it is 
susceptible to various types of noise interference, leading to erroneous window partitioning, inappropriate window sizes, and unreasonable window 
distribution. The introduction of the spatiotemporal exploration mechanism enables the optimized framework to accurately recognize complex signals 
in the field pipeline. The majority of abnormal signals can be accurately and completely partitioned into individual adaptive windows, while the 
number of incorrectly partitioned windows significantly decreases. The issues observed before optimization are significantly improved, and the effect 
of adaptive window partitioning is noticeably enhanced. 
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