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A B S T R A C T

In this paper, we propose a structured iterative alternating sparse matrix decomposition to efficiently decompose
the input multidimensional data from active thermography into the sum of a low-rank matrix, a sparse matrix,
and a noise matrix. In particular, the sparse matrix is further factorized into a pattern constructed dictionary
matrix and a coefficient matrix. The estimation of the dictionary matrix and coefficient matrix is based on
integrating the vertex component analysis with the framework of the alternating direction method of multipliers.
In addition, the joint structure sparsity and nonnegative constraint are emphasized as part of the learning
strategy. In order to verify the effectiveness and robustness of the proposed method, experimental studies have
been carried out by applying the proposed method to thermal imaging diagnostic system for carbon fiber re-
inforced plastics (CFRP) defects detections. The validation study has been conducted by comparing the proposed
method with the current state-of-the-art algorithms. The results indicate that the proposed method significantly
improves the contrast ratio between the defective regions and the non-defective regions.

1. Introduction

Composite materials have been widely used in many fields such as
aerospace, high-speed rail, automotive, etc. With the wide application
of composite materials in various fields, the demand for composite
material safety testing is increasing. Therefore, non-destructive testing
(NDT) technology is particularly important for the safety assessment of
composite materials [1]. Several traditional NDT techniques such as
penetrant testing, eddy current testing, ultrasonic testing, and infrared
thermography have been conducted in defect detection of composite
materials [2]. Optical pulsed thermography (OPT) is a vision based
NDT technology developed based on infrared temperature measure-
ment and optical imaging [3]. Since OPT has the advantages of non-
contact, non-invasive and fast, it has become the key technology to
guarantee the quality of composite material. There are some strategies
that focus on the excitation signal for defect detection capability en-
hancement, Busse et al. [4] proposed lock-in thermography for NDT
evaluation of materials. Mulaveesala et al. [5] proposed a pulse-com-
pression approach to infrared NDT characterization and frequency-
modulated thermal wave imaging to detect sub-surface defects [6].
Silipigni et al. [7] proposed an optimized pulse-compression technique
for infrared thermography NDT evaluation. Laureti et al. [8] conducted

a comparative study between linear and non-linear frequency-modu-
lated pulse-compression thermography. Wu et al. [9] proposed halogen
optical referred pulse-compression thermography for defect detection
of CFRP.

Theoretically, defects can be directly observed from the original
image collected by the OPT system, however, due to the influence of
noise, feature extraction algorithms are required to enhance the defect
detection. Maldague et al. [10,11] proposed a pulse phase thermo-
graphy (PPT) technique based on Fourier transform to extract the fre-
quency domain characteristics of the thermal data. Shepard et al. [12]
proposed a thermal signal reconstruction (TSR) method for enhancing
the visibility of the thermography sequence by fitting the log-time
temperature evolution. Zauner et al. [13] proposed pulsed phased
thermography with the wavelet transform which preserves the time
information of the signal since PPT loses the temporal information.

In addition, researchers have applied matrix factorization techni-
ques for defect feature extraction. Principal component analysis (PCA)
has been widely used in thermal imaging systems [14]. It is used to
calculate the principal components of the temporal data for enhancing
the thermal contrast of defect information. Rajic et al. [15] proposed a
principal component thermography (PCT) algorithm to enhance flaw
contrast and characterize flaw depth in composite structures. Some
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improved algorithms based on PCA have been proposed as well. Yousefi
et al. [16] proposed candid covariance-free incremental principal
component thermography for thermal NDT testing and applied the K-
medoids clustering approach to segment the defects in the specimens.
Low-rank sparse principal component thermography [17,18] has been
proposed by applying both L1 and L2 norm to test CFRP, Bell Tower, and
wall infrared sets. A comparative study of PCA and partial least squares
thermography on NDT investigation of paintings on canvas is proposed
in [19]. In addition, Yang et al. [20] proposed independent component
analysis (ICA) to improve the thermal contrast for CFRP debond de-
tection. Lu et al. [21] proposed an ensemble variational Bayes tensor
factorization (EVBTF) to conduct the super-resolution of the debond
detection by deep mining the sparse tensor. It is based on the varia-
tional Bayesian framework [22] which decomposes the given tensor
into a low-rank tensor, a sparse tensor, and a noise tensor. The de-
composition procedure is performed multiple times on the low-rank
matrix until the sparse matrix satisfies the requirement of defect de-
tection. Ahmed et al. [23] proposed a sparse low-rank matrix factor-
ization (S-MoG) algorithm for debond detection in CFRP composite
based on integrating the mixture of Gaussian (MoG) model and multi-
layer structure [24].

Matrix factorizations are widely used in many industrial applica-
tions. The matrix factorization problem can be solved by a set of tra-
ditional factorization methods such as SVD [25]. With the development
in various fields, a family of matrix factorization models has been
proposed such as non-negative matrix factorization (NMF), sparse re-
presentation, robust principal component analysis (RPCA), etc.

NMF [26] solves the problem of V = WH where V is a given non-
negative matrix, W and H are unknown with non-negative constraint. It
is noted that in practical applications, the solution of sparse decom-
position has attracted considerable attention [27]. In recent years, NMF
has been applied in action detection [28], recommender systems [29],
link prediction in temporal networks [30], etc. The research of NMF on
thermal imaging are mentioned in [31,32,33]. The sparse representa-
tion model utilizes the training samples to learn a complete dictionary
to obtain the sparse representation of the signal. In addition, sparse
representation has been widely used in image processing, such as image
fusion [34], classification [35], object detection [36], etc. In particular,
Wright et al. [37,38] defined the problem of decomposing a given data
matrix into the sum of a low-rank matrix and a sparse matrix as RPCA
which can be described to solve Y = L + S with unknown L (low-rank
matrix) and S (sparse matrix). This problem can be represented by the
following convex optimization problem;

∥ ∥ + ∥ ∥ + =∗L S L S Ymin s.t.
L S,

1 (1)

where ∗ ∗‖Â·‖ ‖B‖ ∗ ∗ ∗‖Â·‖ ‖Â·‖ ‖Â·‖ denotes nuclear norm, ‖Â·‖1denotes the
L1 norm. The optimization problem (1) is termed as the robust principal
component pursuit (RPCP). In the real situation, Y contains noise, that
is, Y = L + S + N, then (1) becomes

∥ ∥ + ∥ ∥ ∥ + ∥ <∗ δL S L S Ymin s.t. - F
L S,

1
2

(2)

where ‖Â·‖F denotes the Frobenius norm. The optimization problem (2)
is termed as the stable principal component pursuit (SPCP). The RPCA
has been used in applications such as target tracking [39] and hyper-
spectral image processing [40].

Although the existing feature extraction algorithms can enhance
defects detections, they have limited or poor performance for detecting
weak defects (weak thermal signatures from hard-detectable defects) on
complex and irregular surfaces. To deal with these limitations, we
propose a structured iterative alternating sparse matrix decomposition
model to extract structured sparse features of thermal imaging data for
debond detection. The model decomposes the given matrix into a low-
rank component, a sparse component and a noise component. The
model can efficiently enhance the contrast ratio between the defective
and non-defective regions significantly. In addition, only a few

requirements are needed for parameter setting and this is validated by
carrying out robustness test on different samples. Six different CFRP
samples with various sizes of debond defects at different depth levels
are used to test the robustness and efficiency of the proposed algorithm.
Comparison studies have been undertaken with RPCA-based algorithms
and state-of-the-art thermography algorithms. In addition, the results
were quantitatively validated by using event-based F-Score [41] and
signal-to-noise ratio (SNR) [42].

The remaining of the paper has been organized as follows: The
details of the proposed method and the quantitative detectability as-
sessment indicators are described in Section 2. The experiment and
result analysis are carried out in Section 3. Conclusion and further work
are outlined in Section 4.

2. Methodology

2.1. Proposed model

In the proposed model, we decompose the given matrix into three
matrices, which is Y= L+ S+ N, where Y represents the original data
extracted from the infrared (IR) camera, L represents the low-rank
matrix, S represents the sparse matrix and N represents the noise ma-
trix. In general, defects are spatially sparse, that is, the sparse matrix S
contains the structure information of defects. Different defects have
different spatial-temporal thermal pattern since this is attributed to the
fact that the size and depth of the defects are different. We introduce
dictionary matrix D to represent the structured thermal pattern. Thus,
the sparse matrix S can be factorized into a dictionary matrix D and a
coefficient matrix W. The model thus becomes Y = L + DW + N. In
particular, Fig. 1 illustrates the strategy framework of the proposed
method.

a. Background modelling

For weak signal extraction problem such as defect detection, most of
the observed signals are background traces, only a small amount of
defect information exists in the thermographic sequence and they are
unavoidably covered by the background traces. The proposed method
adopts a strategy of removing the strong interference signal and si-
multaneously enhancing the contrast for defect signal from the re-
maining signal by estimating the background, and then subtracting the
background data (L) from the observed data (Y) to enhance a rough
positioning of the defect data (S).

b. Mining sparse structure

The estimation of the background paves the way forward for ex-
tracting the defect signal. It requires a dictionary matrix to characterize
and subsequently enhance the thermal pattern of the defects. The ex-
pected enhancement by the dictionary matrix will ensure that the es-
timated defect signal does not only deviate from the original physical
properties but also separate it from other components. In theory, de-
fects and background will show completely different features, however,
due to the effects of lateral and longitudinal thermal diffusion, the
observed signals are not the expected feature signals as they are su-
perimposed by the expected features. It hypothesizes that the expected
features spanning a high-dimensional space, and since the observed
data is located in this high dimensional space, we can describe this
characteristic with a simplex. In geometry, a simplex is a generalization
of the notion of a triangle or tetrahedron to arbitrary dimensions.
Specifically, a k-simplex is a k-dimensional polytope which is the
convex hull of its k + 1 vertices. Thus, we assume that there is a
simplex that wraps the points of Y – L which can be seen as a mixture of
vertices. These vertices are the thermal patterns, that is, the dictionary
D. Once the vertices are found, the relative weights of the vertices are
further updated to obtain the structure of the sparse data. The
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procedure will be iteratively alternated until convergence.

2.2. Alternating structure sparse matrix decomposition

In order to enhance the defect information, the following mini-
mization problem is generated

+ ∥ ∥ + ∥ − − ∥

⩾

μrank λL W Y L DW

W 0

min{ ( ) }

subject to:

F
L W,

2,0
2

(3)

The parameter λ and μ in the formula are the regularization coef-
ficient, the larger the coefficient, the stronger the regularization effect.
W ≥ 0 is the weight nonnegativity constraint. However, (3) is an NP-
hard problem due to rank(·) and‖Â·‖2,0. To simplify the problem, we
relax these terms to convex proxies. We use ∗‖Â·‖ instead of rank(·), and
‖Â·‖2,1instead of ‖Â·‖2,0. The minimization problem becomes

∥ ∥ + ∥ ∥ + ∥ − − ∥ +∗ +μ λ lL W Y L DW Wmin{ ( )}F R
L W,

2,1
2

(4)

In video processing, it is hypothesized that pixels located in the
same region will exhibit similar spatial-temporal characteristics. Thus,
both spatial and time-domain features are considered highly correlated.
Since the sparse matrix represents the structured thermal pattern, a
common sparsity pattern is embedded. In [43], researchers adopted L2,1
norm defined by = =X x‖ ‖ Σ ‖ ‖i

n
i2,1 1 2where xi denotes the i-th row of X to

solve the joint sparsity model for pixels in a small neighborhood. In (4),
= =W w‖ ‖ Σ ‖ ‖i

q
i2,1 1 2denotes the L2,1 norm ofW,wi denotes the i-th row of

W, we consider sparsity and correlation of W through L2,1 norm. The
thermal features are stored in the columns of the dictionary matrix. The
reason we expect W to be sparse is to select the features from the dic-
tionary matrix. As shown in Fig. 2 below, the first row of W is 0, in-
dicating that the feature in the first column of D has no contribution.
We require a certain row of W to be 0, which means the sum of the
squares of the elements in the row is 0. Thus, we regularize each row
with the L2 norm to obtain a vector and use the L1 norm to regularize
this vector to enable feature selection. Thus, this is termed as the L2,1
norm. The second column of D in Fig. 2 is the feature of the defect. If

the current target point located at the defective region, the feature will
have a large weight as shown in the red square in W. When we re-
construct the second row of W into an image, the pixel value corre-
sponding to the defective region is larger than the non-defective region,
to achieve the purpose of enhancing the defect detection.

The last term of (4) is =+ = +l lW w( ) Σ ( )R i
q

R i1 and +l w( )R i has the fol-
lowing form

= ⩾
+ ∞+ {l

otherwise
w w 0( ) 0

R i
i

(5)

The proposed minimization can be solved iteratively and alter-
natively in the estimation of L in (6), D in (7) andW in (8). The problem
in (6) is convex and can be solved in many ways. As mentioned above,
most of the thermal information is the background traces. Singular
values often correspond to the dominant information in the matrix since
the importance and singular value are positively correlated. Thus the
components with larger singular values will be extracted to represent
the background, that is, the low-rank matrix. Thus, we employ the
Singular Value Thresholding algorithm [44] as a candidate solution.
The dictionary matrix D in (7) can be estimated by using the vertex
component analysis (VCA) [45] as the potential solution. For the pro-
blem of (8), we solve it by using the alternating direction method of
multipliers (ADMM).

Input Thermal Sequences 

Output

Matrix Decomposition

Y = L + DW + N

Tensor to Matrix

X Y

d1

d2 d3

d4

w3w2

w1

w4

L=SVT(Y)

D = VCA(Y-L)

W = ADMM(Y-L,D)

Y-L

Y

L

D W

Iterative update

L=SVT(Y-DW)

Fig. 1. Framework of the proposed algorithm.
The proposed sparse matrix decomposition al-
gorithm decomposes the given matrix into a low-
rank component (L), a sparse component (S) and
a noise component (N), the sparse component
further decomposed into a dictionary matrix (D)
and a coefficient matrix (W). The model esti-
mates each component in an iterative and al-
ternating manner.

D
W

irrelevant feature
featureof defects

:large value

reconstruct 
to image×

Fig. 2. Sparse matrix (W) to select features from the dictionary matrix (D).
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= ∥ − − ∥ + ∥ ∥+
∗μL L Y D W Larg min { ( ) }k k k

F
L

1 2

(6)

← −+ +D Y LVCA( )k k1 1 (7)

= ∥ − − ∥ + ∥ ∥ ++ + +
+λ lW Y L D W W Warg min { ( ) ( )}k k k

F R
W

1 1 1 2
2,1

(8)

As mentioned in 2.1, We assume that the sparse data is located in
simplex and the defect features are considered as the vertices of the
simplex. Taking three-dimensional space as an example, as shown in
Fig. 3, d1, d2, d3 and d4 represent thermal features, which is the
column of D, S is a simplex. The idea of VCA is that it finds an initial
vertex first, we can choose the pixel with the largest L2 norm in Y. Then
it finds the orthogonal projection matrix of the found vertexes in every
iteration, the pixel with the largest projection length is the new vertex.
Add the new vertex to the vertex set and start the next iteration until all
vertexes are found.

In the problem (8), since we have already estimated L and D, we use
Y’ in place of (Y-L), and consider the following model

= ∥ ′ − ∥ + ∥ ∥ ++
+λ lW Y DW W Warg min { ( )}k

F R
W

1 2
2,1

(9)

We now apply ADMM to solve this problem [43], the optimization
problem (9) can be written as (10).

= ∥ ′ − ∥ + ∥ ∥ +

=
=
=

+
+λ lW Y C C C

C DW
C W
C W

arg min { ( )}

s.t.

k
F R

W

1
1

2
2 2,1 3

1

2

3 (10)

Its augmented Lagrangian function is

= ∥ − ′∥ + ∥ ∥ +

+ ∥ − − ∥ + ∥ − − ∥ + ∥ − − ∥
+L λ lW C C C U U U C Y C C

DW C U W C U W C U

( , , , , , , ) ( )μ F R
μ

F
μ

F
μ

F

1 2 3 1 2 3
1
2 1

2
2 2,1 3

2 1 1
2

2 2 2
2

2 3 3
2

(11)

The problem in (11) becomes (12), (13), (14) and (15) as expressed
as follows

= ∥ − ′∥ + ∥ − − ∥
μ

C C Y DW C Uarg min 1
2 2F F

C
1 1

2
1 1

2

1 (12)

= ∥ ∥ + ∥ − − ∥λ
μ

C C W C Uarg min
2 F

C
2 2 2,1 2 2

2

2 (13)

= + ∥ − − ∥+l
μ

C C W C Uarg min ( )
2R F

C
3 3 3 3

2

3 (14)

= ∥ − − ∥ + ∥ − − ∥ +

∥ − − ∥

μ μ μ
W

DW C U W C U

W C U

arg min
2 2 2F F

F

w
1 1

2
2 2

2

3 3
2 (15)

The solution of (12) is expressed as

= ′ + − + −μ μC Y DW U( ( ))(1 )1 1
1 (16)

The solution of (13) is the vect-soft threshold [46], which is applied
to each row of C2 independently in (17), where r denotes the r-th row of
the matrix.

= −

= − ∥ − ∥ −
∥ − ∥ − +

λ τC W U

W U

vect - soft(( ) , / )

( )
r

r
λ

λ τ λ τ
W U

W U

2, 2 r

2
max{ ( ) , 0}

max{ ( ) / , 0} /
r

r
2 2

2 2 (17)

The solution of (14) is

= −C W Umax( , 0)3 3 (18)

The solution of W can be expressed as follows

= + + + + + +−W D D I D C U C U C U( 2 ) ( ( ) ( ) ( ))T 1 T
1 1 2 2 3 3 (19)

The solution of Lagrange multipliers is (20), (21) and (22).

= − +U U DW C1 1 1 (20)

= − +U U W C2 2 2 (21)

= − +U U W C3 3 3 (22)

The complete description for the proposed algorithm is shown in
Table 1.

2.3. Quantitative detectability assessment

In order to estimate the detection ability of the proposed algorithm,
the event-based F-score and SNR is used to measure the results.

The F-score is defined as follows:

= + ×
× +

F core β Precison Recall
β Precison Recall

- s ( 1)
( )

2
2 (23)

The precision and recall are defined as follows:

=
+

Precision TP
TP FP (24)

=
+

Recall TP
TP FN (25)

where TP is true positive, denotes a defect exists and is detected; FP is
false positive, denotes no defect exists but is detected; FN is false

d1

d2 d3

d4

S

Fig. 3. S is a simplex, d1-d4 are vertices.

Table 1
Proposed method.

Input: X matrix representation of the thermal signal.
Output: thermal low-rank pattern L, sparse pattern S, coefficient matrix W
Pre-processing:
Y ← Vectorization (X)

Initialize: q (represents the number of columns of D), L, D, W
Repeat:

1. ← −+L Y D WSVT( )k k k1

2. ← −+ +D Y LVCA( )k k1 1

3. Repeat:

3.1 = − + − ++ + + −μ μC Y L D W U(( ) ( ))(1 )i k k i i
1

1 1 1
1

1

3.2 = −+ λ τC W Uvect - soft(( ) , / )r
i i i
2,

1
2 r

3.3 = −+ +C W Umax{ , 0}i i i
3

1
3

1

3.4

= + + + + + ++ + + − + + + +W D D I D C U C U C U(( ) 2 ) (( ) ( ) )i k k k i i i i i i1 1 T 1 1 1 T
1

1
1 2

1
2 3

1
3

3.5 = − ++ + + +U U D W Ci i k i i
1

1
1

1 1
1

1

3.6 = − ++ + +U U W Ci i i i
2

1
2

1
2

1

3.7 = − ++ + +U U W Ci i i i
3

1
3

1
3

1

3.8 Update iteration: ← +i i 1
Until convergence: ∥ − − ∥ <+ + + δY L D Wk k i1 1 1 2 or reached the maximum number

of iterations, return +Wk 1

4. Update iteration: ← +k k 1
Until convergence: ∥ − − ∥ < δY L D Wk k k 2 or reached the maximum number of

iterations.
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negative, denotes a defect exists but is not detected; TN is true negative,
denotes no defect exists and none is detected. The β in (23) is a default
value that determines the weight of the precision and recall. If the value
of β is set to 1, it means that the recall is as important as the precision.
However, in the field of NDT, it is highly demand to increase the recall
rate while ensuring the precision. Therefore, the value of β is set to 2
which means that the recall is more important than the precision.

Fig. 4 shows the interpretation of event-based F-Score. In Fig. 4(a),
the thermographic image is divided into 3 × 8 square grids. According
to the label of the sample, each region as an event could be determined
by the attribute (defect or non-defect) for the calculation of the F-score.
Fig. 4(b) is the label of Fig. 4(a), where 1 indicates that the current grid
contains defects, and 0 otherwise. Take Fig. 4(a) as an example, there
are 8 events with defect in the figure, the rest are non-defect. According
to the above description, TP is 8, FP is 0, FN is 0, therefore, F-score is 1.

The SNR is used to further evaluate the thermal contrast ratio be-
tween the defective and non-defective regions is calculated according to
equation (26), where Td is the temperature of all pixels in the local
thermal image 1–1 in Fig. 5, Tnon is the temperature of all pixels in the
local thermal image 1–2 within valid heating area near the defect. The
SNR of the entire thermal image is the average of the SNR calculated for
all defects.

⎜ ⎟= × ⎛
⎝

⎞
⎠

SNR T
T

20 log 10 d

non (26)

3. Experiment and result analysis

3.1. Toy examples of the proposed method

In order to verify the proposed method, a toy example is generated
shown in Fig. 6. Fig. 6(a) is a real coding of the simulated mixed data, L
is a rank-one low-rank matrix, D is a dictionary matrix with 5 columns,
the different 5 curves are shown in Fig. 6(a) which represent 5 dic-
tionaries, W is a sparse coefficient matrix, Y is the mixed matrix. In
addition to the low-rank and the sparse matrix, we added uniform noise
in the observation. Parameter setting of the proposed method only re-
quires to set the number of columns in the dictionary matrix D, which is
represented by q. The set of q is 5.

Fig. 6(b) shows the decomposition results when q is 5. The curves
are not as smooth as the real D in the estimated dictionary whereas the
shape and trend of the curves are consistent. The model has converged
when the number of iterations is 15. Fig. 6(c) shows the decomposition
result when q is 10. The five colored solid lines in estimated D are 1–5
columns of the estimated dictionary matrix. These five curves are si-
milar to the results when q is 5. The five black dashed lines are the 5
overestimated dictionaries, corresponding to the 6–10 columns of the

estimated dictionary matrix. The relationship between color and value
can be generated from the color bar in W since the more the color tends
to be blue, the smaller the value. As can be seen from the estimated W,
the weights of these 5 overestimated dictionaries are mostly 0, which
means, these dictionaries contribute little to the final results. Therefore,
they have rare effect on the reconstruction error. The model has not
converged when the number of iterations is 15. Table 2 shows the re-
sults of 10 experiments for q equal to 5 and 10. From the table, it can be
seen that when q is overestimated, the reconstruction error increases.
Fig. 6(d) shows the decomposition result when q is 3. Although the
reconstruction error converged to a small value, the shape and trend of
the three curves in the estimated D are different from the real D in
which indicates that the result of decomposition is wrong when q is
smaller than the real situation.

In summary, when q is equal to the real situation, the proposed
method can effectively estimate the sparse pattern. When q is over-
estimated, the convergence speed will become slow and the re-
construction error will increase where the weights of the five over-
estimated dictionaries are mostly 0.

3.2. Experimental setup and sample preparation

The Optical Pulse Thermography (OPT) system is shown in Fig. 7. In
our experiments, the halogen lamp is used as an excitation and it is
controlled by the excitation source. We use IR camera (A655sc) to
collect thermal image sequences. It is equipped with an uncooled Va-
nadium Oxide (VoX) microbolometer detector which can produce
480 × 640 thermal images. 50 Hz frame rate is used to capture the
thermal images. The test sample is held by the bracket and placed di-
rectly opposite the IR camera and halogen lamp.

Six different samples are tested. Four of them are carbon fiber re-
inforced plastic sample with flat shape, two of them are carbon fiber
reinforced plastic sample with curved shape which are more challen-
ging. For the first four samples, they have sub-surface debond defects
with different diameters and depths. The latter two samples have de-
bond defects located in the elbow location which are difficult to be
detected. The detailed information of these samples can be found in
Table 3. Nine sets of experimental data were performed based on these
six samples. Due to the honeycomb of test specimen 1, only one-sided
defects can be heated in each experiment, the results of specimen 1
correspond to data 1 and data 3.

3.3. Thermographic image description

Let ∈ × ×X M N F denotes a tensor containing the thermographic
sequence image, ×M N , denotes the size of a single thermographic
image, F, denotes the length of the sequence or the number of the
frames. Fig. 8(a) shows the selected image from the original thermal
sequences and being partitioned in 4 characteristic regions. These 4
regions include the defect region (number 1), the near defect region
(number 4, on the test sample with strong interference background),
the far defect region (number 3, on the test sample with weak inter-
ference background), and the non-thermal background region (number
2, excluding test sample). Fig. 8(b) shows the temperature transient
characteristics of the 4 regions (temperature changes with heating and
cooling time). It can be seen that region 2 and region 3 are easily

non-defect 24 Eventsdefect
0

0

0 0 0 0 0 0 0

1 1 1 1 1 1 1

0 0 0 0 0 0 0

1

)b()a(

Fig. 4. Illustration of event based F-Score. (a) Meshing. (b) Corresponding label.
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Fig. 5. Illustration of SNR.
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distinguished from region 1 whereas the characteristics of region 4 and
region 1 are more difficult to be separated.

We transform the thermographic sequence data into a matrix
∈ ×Y F P before decomposing, F denotes the number of frames, the size

of P is ×M N . As illustrated in Fig. 9, the vec-operator applied on a
matrix fX(:,:, ) stacks its columns into a row vector vec[X(: , :, f)]T.

3.4. Model analysis

According to the description of 3.3, the defect region and the near
defect region is hard to be separated. The proposed model’s strategy is
to remove the strong interference signal (background) and

simultaneously enhance the contrast for defect signal from the re-
maining signal. However, there exists only rare defect information in
the entire sequence. In other words, most of the thermal image se-
quence is background traces. The singular value decomposition is se-
lected to approximate the physics behavior of the thermal spatial-
transient characteristic. Singular values often correspond to the domi-
nant information in the matrix since the importance and singular value
is positively correlated. Thus the components with larger singular va-
lues will be extracted to represent the background, that is, the low-rank
matrix. With the simple calculation, the singular value decomposition
will be able to extract the background signal which is beneficial for
subsequent defect information enhancement.

The estimation of the background paves the way forward for the
proposed algorithm to extracting the defect signal. It requires a dic-
tionary matrix to characterize and enhance the thermal pattern of the
defects. The expected enhancement procedure by the dictionary matrix
will ensure that the estimated defect signal does not deviate from the
original physical properties but also separate it from other components.
The VCA holds high potential to solving the problem. We will prove this
choice from two aspects, one is the mathematical connection between

Fig. 6. Toy examples of the proposed method. (a) Real coding of the simulated mixed data. L is the low-rank matrix, D is the dictionary matrix, W is the coefficient
matrix, Y is the mixed matrix. (b) Estimated results based on q = 5. (c) Estimated results based on q = 10. (d) Estimated results based on q = 3.

Table 2
The results of q equal to 5 and 10.

q 1 2 3 4 5 6 7 8 9 10 Average

5 0.37 0.37 0.38 0.36 0.37 0.37 0.38 0.34 0.37 0.40 0.37
10 0.38 0.39 0.41 0.38 0.38 0.42 0.43 0.36 0.39 0.42 0.40
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Fig. 7. Optical Pulse Thermography (OPT) system.

Table 3
Samples.

Number Specimen Picture

1

2

3

4

5

6
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thermal physics and VCA, the other is validation by the results.
Due to the effects of lateral and longitudinal thermal diffusion, the

observed signals are not the expected feature signals as they are su-
perimposed by the expected features. In Fig. 10(a), we take 4 points a,
b, c, and d, where point a represents the center of defect 2, we assume
that the thermal feature of point a is the expected feature of defect,
point b is the edge of defect 2, point c is the background near defect 2,
point d is the background far from defect 2. In Fig. 10(b), line 1–4

correspond to the thermal features of points a-d. It can be seen that line
1 and line 3 are easy to be distinguished, while line 2 and line 3 are
similar. In theory, line 2 is similar to line 1, and line 3 is similar to line
4. However, since point b and point c are located at the boundary be-
tween the defect and the background region, they are affected by
thermal diffusion, and the features of the two points can be regarded as
the superposition of background and defect features. Thus, it is re-
sulting in the features of point b and point c are quite similar. From the
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(a)                              (b)
Fig. 8. Temperature characteristics of thermal data. (a) Four characteristic areas on the thermal image, where area 1 is the defect area; area 2 is the background
without specimen area; area 3 is the non-defective area away from defect; area 4 is the non-defective area near defect. (b) Line 1 - line 4 are the temperature transient
characteristics corresponding to area 1 - area 4 where line 1 and line 4 are almost identical.

Fig. 9. Illustration of converting a 3-dimensional tensor into a 2-dimensional matrix by vectorising each frame.

Fig. 10. (a) Thermal diffusion effect. Point a, b,
and e located in defective area, point c and d
located in non-defective area. (b) Line 1-line 5
correspond to the characteristics of the tem-
perature change of points a-e over time. The
temperature characteristics of point b(defect)
and point c(non-defect) are difficult to distin-
guish. The temperature of point e(deeper defect)
is lower than point a(surface defect).
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longitudinal direction, point a corresponds to line 1, point e corre-
sponds to line 5, the non-defective area above point e is more thick than
that above point a, and the temperature at point e is lower than the
temperature at point a. This shows that the feature of the internal defect
transport to the surface is a superposition of features of the defect and
the non-defective area above the defect. The above description illus-
trates that the surface temperature signal we collected by the IR camera
is a mixed signal, and the process of finding each signal feature is the
process of unmixing. As we described in Section 2, the observed data is
located in this high dimensional space, simplex, data in simplex can be

regarded as linear combination of vertexes which are dictionaries.
Fig. 11(a) is a manually selected dictionary, which is the thermal

transient sequence of 4 characteristic regions on the image in 3.3. It can
be seen that the defect region (line 1) and the non-defect region near
the defect region (line 4) are difficult to be distinguished. Fig. 11(b) is
the dictionary estimated by VCA. We set the number of columns in the
dictionary matrix to 4, and the four lines in the figure represent the four
columns of the dictionary matrix, that is, four temperature character-
istics. These four estimated characteristic curves are approximately the
same in trend as the manually selected features from original thermal

Fig. 11. Manually selected dictionary vs. VCA estimated dictionary. Line 1 corresponds to the defective area; line 2 corresponds to the background area without test
specimen; line 3 corresponds to the non-defective area away from the defect; line 4 corresponds to the non-defective area near the defect. (a) Manually selected
dictionary. Line 1 and line 4 are difficult to be distinguished. (b) VCA estimated dictionary. VCA enhanced the contrast between line 1 and line 4.

Fig.12. Results of data 1 (sample 1). (a) RPCA (b) OR-PCA (c) EVBTF (d) PCA (e) ICA (f) S-MOG (g) PPT (h) TSR (i) Proposed.
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sequences, and more importantly, VCA directly enhanced the contrast
of lines 1 and line 4. Thus, it satisfies the initial expected enhance
procedure where this not only can’t deviate from the original physical
properties but also separate the defects from the other components.

3.5. Result and analysis

In order to evaluate the proposed algorithm, three RPCA based al-
gorithms and five thermal based defect detection algorithms were se-
lected for comparison. The three RPCA algorithms include: SPCP [47],
online RPCA (OR-PCA) [48] and EVBTF which solved RPCA problem
from the perspective of probability distribution, and proposed for defect

detection. The five defect detection algorithms include: PCA, ICA, S-
MOG, TSR, PPT. Among them, PCA, ICA, S-MOG are algorithms based
on matrix factorization, TSR and PPT are algorithms with physical
significance.

SPCP decompose the given matrix into low-rank matrix, sparse
matrix and noise matrix, we choose sparse matrix as the result. OR-PCA
decompose the given matrix into low-rank matrix and sparse matrix,
sparse matrix is corrupted noise that contain few information, there-
fore, we choose the low-rank matrix as the result. We apply PCA where
the first 8 principal components are retained since experiments show
that 8 principal components can meet the requirement, and then choose
the component which has the best performance. The same setting is

Fig.13. Results of data 2 (sample 5). (a) RPCA (b) OR-PCA (c) EVBTF (d) PCA (e) ICA (f) S-MOG (g) PPT (h) TSR (i) Proposed.

Table 4
Performance comparison of computational time.

sample RPCA OR-PCA EVBTF PCA ICA S-MOG TSR PPT Proposed

1 342.96 926.14 238.23 1.34 1.61 79.51 118.44 59.04 14.28
2 230.62 785.45 230.12 1.60 1.90 27.34 117.95 59.90 8.32
3 184.23 471.54 239.97 1.02 1.55 29.13 112.47 59.47 7.45
4 194.64 948.67 256.27 1.54 2.06 28.05 125.75 58.13 8.95
5 123.37 327.97 224.02 1.05 1.38 30.3 112.69 57.34 7.00
6 264.15 699.99 361.28 2.24 2.84 44.95 123.19 61.51 12.40
7 280.91 877.26 306.19 1.56 2.03 58.76 118.53 61.15 9.85
8 456.60 587.17 454.35 1.86 2.70 81.65 124.30 62.28 26.51
9 88.82 204.26 182.23 0.90 1.21 15.99 105.28 55.60 6.00
Average 240.70 647.61 276.96 1.46 1.92 43.96 117.62 59.38 11.20
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conducted for ICA. In TSR, the parameter that needs to be discussed is
the order. In the following experiments, we choose the order of 5 to find
the best results of TSR. PPT is applied to transfer the time domain signal
into the frequency domain. The best phase thermal contrast image is
selected for comparison. The parameter setting of the EVBTF and S-
MOG is the layer selection, different layers are chosen according to
different samples.

The comparison visual results based on these algorithms and the
proposed algorithm are given in Figs. 12 and 13. In addition to the
visual results, the results based on computational time are tabulated in
Table 4, the comparative quantitative results based on the event-based
F-Score (denoted by F2) and SNR are given in Table 5.

For visual results, we choose a flat sample (sample1) and a curve
sample (sample 5) as Fig. 12 and Fig. 13, the remain results can be

Table 5
Performance comparison of F-score and SNR.

Sample RPCA ORPCA EVBTF PCA ICA S-MOG TSR PPT Proposed

1 F2 71.43% 76.47% 86.21% 76.47% 85.23% 71.43% 86.21% 76.47% 92.39%
SNR 1.88 0.73 17.42 3.49 1.92 11.16 3.68 1.70 18.45

2 F2 86.53% 84.16% 96.15% 99.06% 90.48% 96.15% 84.16% 96.15% 100%
SNR 3.54 0.85 7.83 6.62 4.92 9.63 4.24 4.74 17.96

3 F2 77.52% 53.72% 84.91% 87.36% 87.36% 90.23% 84.62% 86.14% 86.47%
SNR 7.79 0.92 7.63 9.57 8.51 12.64 5.17 8.31 Inf

4 F2 84.91% 68.63% 90.91% 90.91% 90.91% 96.15% 92.59% 60% 100%
SNR 1.64 0.65 4.47 3.59 3.42 4.08 4.51 2.02 22.83

5 F2 78.95% 0 78.95% 78.95% 78.95% 78.95% 78.95% 78.95% 98.77%
SNR 7.15 0 4.49 2.63 2.96 9.92 4.99 0.27 6.67

6 F2 74.47% 74.47% 100% 100% 100% 100% 100% 100% 100%
SNR 4.11 0.50 1.34 2.96 5.62 9.39 2.02 1.59 30.00

7 F2 85.23% 94.59% 83.33% 85.71% 94.59% 85.71% 94.59% 97.22% 97.22%
SNR 4.7 8.39 8.83 0.33 0.66 13.07 0.70 0.95 29.09

8 F2 88.24% 75.76% 100% 75.76% 97.22% 75.76% 75.76% 100% 100%
SNR 4.41 2.35 6.13 2.68 1.40 12.2 9.67 1.64 28.40

9 F2 48.39% 0 62.50% 62.50% 62.50% 48.39% 48.39% 33.33% 69.23%
SNR 11.90 0 4.24 2.67 3.87 6.91 5.13 0.77 Inf

Average F2 77.30% 58.64% 87.00% 84.08% 87.47% 82.53% 82.81% 80.92% 93.79%
SNR 4.99 1.95 7.22 3.19 2.99 9.92 4.26 1.84 16.99

Fig. 14. Visual results for different q.
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found in the supplementary file. In these figures, the first row is the
results of the three RPCA based algorithms, the second row is the results
of three matrix factorization based algorithms, the third row is the re-
sults of physical based algorithms and the proposed algorithm.

It can be seen from the results that OR-PCA performs worst among
other algorithms since it is an online algorithm and may lost some
global temperature characteristics, PPT and TSR have higher defect
detection rate on some test samples, but the result images contain a lot
of noise compared to other algorithms, the proposed algorithm can
extract defects on the thermal images and enhance the defect signals.
Compared with other 8 algorithms, the results of the proposed are
better and have less noise. From the detection rate, the proposed al-
gorithm can extract more defects and enhance the weak signal of de-
fects. In particular, the detection rate is significantly better than other
algorithms, especially for the challenging samples with complex shape.
From the aspect of parameter setting, all the detection results of the
proposed method are based on the same setting of the parameters in
which can validate its robustness.

Table 4 shows the results based on computational time of algo-
rithms. It can be seen from the results that PCA is the fastest algorithm,
the three RPCA based algorithms, and the physical based algorithms are
all inefficient. For a task whose detection accuracy requirement is
higher than the detection efficiency, the proposed algorithm is accep-
table in terms of the computational time.

Table 5 shows the F-Score and SNR based results, all the results of F-
Score are quoted as a percentage and the average value for all methods
is also shown in the table. From the table, it is evident that the proposed

algorithm gives the highest F-Score and SNR on average than other
algorithms. The ‘Inf’ in Table 5 denotes positive infinity as there are no
background and noise signals around the defects, as can be seen from
the corresponding visual results. The calculation of all average SNR
removes the results of sample 3 and sample 9, which contain the result
of positive infinity. Combining the results of Table 5, the proposed al-
gorithm is better in terms of detection ability and SNR. Even with a few
exceptions, such as the F-Score of PCA and ICA in sample 3 is slightly
higher than the proposed algorithm, the SNR is much lower than the
proposed algorithm.

3.6. Comparison of different parameter settings

In this work, the experimental results show that the proposed
method has a high level of performance in defect extraction compared
to other conventional detection methods. These results are highly im-
pacted by the selection of the number of columns in the dictionary
matrix, we use q to represent it. In the experiments, the number of q is
selected as 6. This selection is based on a large number of experiments.
In order to illustrate the effect of the value of q, we selected three
different samples for validating. Each sample was tested three times by
using different levels of q. The visual results of the experiment are
shown in Fig. 14. As can be seen from the results in Fig. 14, when the
value of q is selected too small (q = 2), a large amount of defect in-
formation is flooded by the background. This phenomenon can be seen
especially from the third sample as it can hardly detect the defects.
When the value of q is selected moderately (q = 6), defects can be
detected and the information of detects is significantly enhanced. When
the value of q is selected too large (q = 30), the defect can be detected
whereas the noise near the defects of the first sample is significantly
increased. All defects of the second sample are completely submerged
by the noise. In the result of the third sample, not only the vicinity of
the defects, the noise of the entire image is significantly increased. From
the results of Table 6, when the value of q is set to 6, the values of the F-
score and SNR are the highest. In summary, the selection of the number
of columns in the dictionary matrix will impact the performance, and
set this value to 6 can meet the requirement of the most application.

Table 6
Performance comparison of F-score and SNR.

Sample q = 2 q = 6 q = 30

3 F-Score 22.12% 86.47% 84.27%
SNR 0.87 Inf 29.91

4 F-Score 51.02% 100% 41.67%
SNR 0.43 22.83 20.91

6 F-Score 0%
0

98.77%
6.67

88.61%
3.40SNR

Fig. 15. Detection results for low-rank matrix with different rank. (a) rank is 1, defects are missed, the image contains lots of background traces. (b) rank is 3, all
defects been detected, the background is effectively suppressed. (c) rank is 5, weak defects are covered by noise, and the image contains a lot of noise. (d) rank is 1,
defects are missed, the image contains lots of background traces. (e) rank is 3, defects are missed, the background is effectively suppressed and the SNR is enhanced.
(f) rank is 5, large number of defects are missed, and the image contains a lot of noise.
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From the visual perspective, the higher the rank of a matrix, the
richer the detailed information it contains. Thus, the rank of the matrix
has significant impacts on the detection results. Fig. 14 are the results of
using different rank on two samples. From the results in Fig. 15 (a)-(f)
we can see that when the rank of matrix L is set to be small, although
defects can be detected, the background traces is not well suppressed;
when the rank of matrix L is set to be moderate, it can enhance defects
detections while effectively suppress background traces; when the rank
of matrix L is set to be large, matrix L contains not only background
traces but also a large amount of defect’s information, resulting in the
defect’s information in sparse matrix S is insufficient, defects are missed
and the image contains a lot of noise.

4. Conclusion and feature work

In this paper, a structured iterative alternating sparse matrix de-
composition has been proposed for thermal imaging diagnostic system.
Since different regions on the image have different spatial-temporal
thermal characteristics, the physical interpretation of thermal patterns
as well as the sparse decomposition has been established. The proposed
sparse decomposition method allows abnormal patterns to be extracted
automatically for flaw contrast enhancement. The proposed method is
able to reduce interference from the background. Compared with cur-
rent state-of-the-art methods, the evaluation results have shown that
the proposed method has the best performance in defect extraction.
However, the parameter setting is not fully automated. Future research
will focus on defect detection in motion condition, especially for ma-
terials containing natural defects.
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