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A B S T R A C T   

Composites are prone to defects in manufacture，which are to be evaluated for safety through non-destructive 
testing (NDT) techniques. Thermal images are acquired for NDT by using Optical pulsed thermography. Defect 
detection can be performed by proposing defect detection algorithms. However, due to the low resolution of 
defect contrast, the detection performance of the existing algorithm is still sub-optimal. In this work, a 
decomposition algorithm by differentiating low-rank tensors is proposed to extract weak defect information from 
complex thermal pattern disturbances for surface and sub-surface defect detection. The algorithm mines deep 
insight into the information on the differentiation of different ranks between structures from the results of Tucker 
decomposition to extract defect features. In particular, a probabilistic tensor model is introduced to correct 
potential mismatch patterns enhance defect contrast, and suppress noise and light spot interference. To verify the 
effectiveness and robustness of the proposed algorithm, a variety of complex composite specimens have been 
used for validation. The experimental results show that the proposed algorithm achieves better performance 
compared to the state-of-the-art algorithms especially in enhancing the defect contrast and suppressing the light 
spot in seven common samples. In overall, it can provide on average of approximately 15% F-score and 3 dB SNR 
improvement for validation.   

1. Introduction 

Tensor based algorithms have attracted wide attention such as in 
computer vision [1], signal processing [2]，data mining [3]. Cande-
Comp/Parafac (CP) and Tucker decomposition [4] are classical algo-
rithms for tensor decomposition. Tucker decomposition is generally 
designed and solved based on L2 norm. Chachlakis et al. [5] proposed 
Tucker decomposition based on L1 norm. They presented two solutions 
based on L1-norm Higher Order Singular Value Decomposition and 
L1-norm Higher Order Orthogonal Iterations algorithm frameworks. It 
shows strong corrosion resistance in the processed data. Haddock et al. 
[6] used CP decomposition in dynamic topic modeling to reduce the 
interference of noise on detecting potential topics. Liu et al. [7] per-
formed low-rank tensor approximation with CP rank and Tucker rank to 
complete the estimation of image missing components. Deng et al. [8] 
proposed an unsupervised anomaly detection method by combining 
Tucker decomposition with single-class support vector machine, which 
improved the accuracy and efficiency of performance without 

destroying data structure. In addition, non-negative tensor decomposi-
tion [9] imposes non-negative constraints on the factorization matrix. 
Veganzones et al. applied the non-negative CP decomposition algorithm 
based on compression to multi-linear spectral decomposition, and 
analyzed hyperspectral data tensors such as hyperspectral time series 
[10]. However, both Tucker and CP decomposition algorithms are 
required to manually set the rank. To automatically determine the rank, 
Zhao et al. [11] proposed a hierarchical probability model to formulate 
CP factorization by adopting complete Bayesian processing and adding 
sparse priors. In addition to these two basic models, robust principal 
component analysis (TRPCA) has become one of the important models in 
the field of tensor decomposition. Lu et al. [12] proposed a new TRPCA 
algorithm with tensor kernel norm constraint based on tensor singular 
value decomposition (T-SVD). Jiang et al. [13] replaced the Fourier 
transform in T-SVD framework with the tight wavelet frame and applied 
it in tensor robust principal component analysis (TRPCA). Shahid et al. 
[14] proposed a low-rank sparse tensor decomposition algorithm based 
on Graph Laplacian regularization. They projected the tensor onto a 
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low-dimensional graph basis to reduce the computation at the SVD step. 
Compared with TRPCA, the running time was greatly reduced while 
maintaining the original effect. Zhou et al. [15] proposed anomalous 
robust tensor principal component analysis (OR-TRPCA) to restore 
low-rank tensor and anomaly detection. Bengua et al. [16] proposed a 
tensor completion algorithm based on the tensor train (TT) rank. They 
avoided SVD with high computational load by approximating TT rank 
with a matrix decomposition model, and obtained higher-order repre-
sentations of low-order tensors through ket augmentation. In these 
ways, the completion effect and operation efficiency of the algorithm 
were improved. Meng et al. [17] proposed a novel tensor-based robust 
principal component analysis (TenRPCA) for enhancing the background 
difference [18]. Wu et al. [19] proposed a novel hierarchical low-rank 
and sparse tensor decomposition (HLSTD) to extract micro crack infor-
mation under the inductive heat image. Tensor decomposition is also 
used in deep learning. Tjandra et al. [20] compressed the weight matrix 
in RNN by using Tucker decomposition, CP decomposition and tensor 
train decomposition algorithms to reduce the number of parameters 
while maintaining the effect of RNN. 

With the continuous development of modern industry, composite 
materials [21] have been widely used. Due to the influence of 
manufacturing and fatigue damage, internal defects [22] such as 
debonds and delaminations inevitably occur in composites. Therefore, 
non-destructive testing (NDT) [23] of optical pulsed thermography 
(OPT) [24] has been effectively used in the defect detection of composite 
materials. Farmaki et al. [25] proposed pulsed phase-informed lock-in 
thermography for detecting subsurface and superficial damage in 
aircraft-grade composite materials. In OPT, the temperature of the ma-
terial is varied by using an external excitation source. The thermography 
of both defect and non-defect regions can be recorded by a thermal 
camera for defect detection. 

Due to the influence of environmental noise and other unpredictable 
factors, the thermal images collected by OPT have shortcomings of 
detection. These include fuzzy edges, low resolution and inconspicuous 
defect features. Therefore, defect information will be processed by 
feature extraction algorithms. Several traditional methods of infrared 
sequential image processing are proposed, including thermal signal 
reconstruction (TSR) [26], pulsed phase thermal imaging (PPT) [27] 
and principal component thermal imaging (PCT) [28]. In TSR, the 
sequence image data in the cooling stage are polynomial fitted in the 
logarithmic domain. More defect information is obtained by calculating 
the first and second derivatives of reconstructed image sequences. 
Leyburn University researchers [26] proposed an algorithm for defect 
depth prediction by using the maximum second derivative of TSR. 
Maldague et al. [27] proposed pulse phase thermography (PPT) for 
defect analysis. PPT extracts the defect information through the differ-
ence of the phase and amplitude information between the defect and 
non-defect regions in the frequency domain. This process improves the 
detection sensitivity and anti-interference ability. Ishikawa et al. [29] 
used phase contrast caused by the defect regions when using PPT at a 
suitable high frequency. In this case, the high visibility of the defect is 
ensured and the detection time can be shortened. In particular, tensor 
and matrix decomposition-based works has been employed for ther-
mography processing. Yousefi et al. [30] proposed a faster PCT in order 
to eliminate the covariance matrix. A shorter computational alternative 
is used instead of the calculation of covariance matrix. Yousefi et al. [31] 
proposed semi convex and sparse negative matrix factorization (NMF) to 
detect abnormal subsurface thermal patterns. Liu et al. [32] proposed 
using the independent component thermography (ICT) to detect defects 
in carbon fiber reinforced polymer (CFRP) composites. Independent 
Component Analysis (ICA) was used to separate the defect signal from 
the thermal image background with uneven heating. Defects generally 
occupy a small proportion in the sample and can be considered as 
sparsely distributed. Therefore, the thermal data of the defect part is 
taken as the abnormal heat mode image with the sparse property while 
this part is embedded into the background image of the normal heat 

mode with the low-rank property. Wu et al. [33] proposed sparse 
principal component thermography (SPCT) with structural sparsity by 
combining PCT with the penalization term. Liu et al. [34] proposed a 
structured iterative alternating sparse matrix decomposition. In the 
framework of the alternate-direction multipliers, the sparse matrix 
under the tri-decomposition framework was further decomposed for 
defect detection by combining with the vertex component analysis 
(VCA). 

In overall, the existing feature extraction algorithms are vulnerable 
to the interference of background information, light spot, noise and so 
on. The resolution, contrast and SNR of the detection effects need to be 
further enhanced. Due to the interference of background light spot and 
the complex characteristics of the specimen, such as subsurface defect 
and irregularity, we propose differentiate low rank tensor decomposi-
tion algorithm. Contributions can be illustrated as follows:  

i Differentiate low rank modelling can effectively suppress noise, and 
the contrast between defect area and non-defect area can be signif-
icantly enhanced in tensor decomposition.  

ii The foreground part (defect information) of the image sequence is 
effectively extracted by using information on differentiate of 
different rank between structures from the results of Tucker 
decomposition.  

iii Probability tensor modeling is introduced to correct potential 
mismatch patterns, enhance image contrast and suppress noise in-
formation as well as light spot interference. 

The remaining of the paper has been organized as follows: The de-
tails of the proposed method and the quantitative detectability assess-
ment indicators are described in Section 2. The experiment and result 
analysis are carried out in Section 3. Conclusion and further work are 
outlined in Section 4. 

2. Methodology 

2.1. Proposed model 

Let X ∈ RH×W×T be a third order tensor to represent the thermog-
raphy sequence data. In the proposed model, we decompose X into three 
tensors as follows 

X = L + S + N (1)  

where L ∈ RH×W×T is a low-rank tensor corresponding to the back-
ground. S ∈ RH×W×T is a sparse tensor, corresponding to defects infor-
mation, N ∈ RH×W×T corresponds to the noise or interference. Part of 
noise belongs to high frequency noise, which can be removed by wavelet 
transform. Using the stationary wavelet transform [35], X can be 
decomposed into an approximation image Y ∈ RH×W×T and three 
wavelet sub-band images H ∈ RH×W×T, V ∈ RH×W×T , D ∈ RH×W×T . N ∈

RH×W×T is expressed as follows: 

N =N1 + H + V + D (2) 

N1 is the residual noise component after wavelet transform. 
Substitute (2) into (1) to obtain (3). 

X = L + S + N1 + H + V + D (3) 

Low-frequency images have been retained by wavelet transform is 
expressed as formula (4). 

Y = L + S + N1 (4) 

Under this sparse and low-rank decomposition framework, TRPCA is 
generally used to solve the problem. The specific mathematical model is 
expressed as 

min
L,S

‖L‖∗ + λ‖S‖1, s.t. Y = L + S (5) 
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where ‖ • ‖∗ and ‖ • ‖1 are the low-rank and sparse constraints. How-
ever, Y still contains noise and interference, then (5) becomes 

min
L,S

‖L‖∗ + λ‖S‖1, s.t. ‖L + S − Y‖2
F < δ (6)  

where ‖ • ‖F denotes the extensions of the Frobenius norm on tensors, 
and δ > 0. 

The proposed solution for L and S is not only directly constraining L 
and S but also using Tucker factorization for approximation. Tucker 
decomposition is widely used in low rank tensor approximation but it is 

highly dependent on the rank. Since image is viewed as a matrix, the 
rank of the matrix determines the amount of information within the 
image. The rank of the image is low when most of its pixels are similar 
such as grassland, etc. Once elements different from the background are 
added, such as a horse or a house, the rank rises. Therefore, with the 
increase of the rank, the approximate result graph will contain more 
details in the original image. Usually, the low-rank part of the image is 
used as its background. We regard a thermography video in which the 
background is fixed and the foreground varies in time as a tensor Y of the 
third order along the time dimension. Tucker rank is generally used as 

Fig. 1. In the Tucker rank, the first two dimensions (rank(Y{i})i=1,2) are set unchanged, while the third dimension (rtc) is changed. the Tucker result obtained is 
compared with the original image. (a) raw data. (b) Tucker decomposition results images based on rtc = n2. (c) Tucker decomposition results images based on rtc =

n1. 

Fig. 2. In the Tucker rank, the first two dimensions 
(rank(Y{i})i=1,2) are set unchanged, while the third 
dimension (rtc) is changed, and the Tucker result 
obtained is compared with the original image. (a) raw 
data (Y). (b) Ln2 is Tucker decomposition results im-
ages based on rtc = n2. (c) Ln1 is Tucker decomposi-
tion results images based on rtc = n1. (d) E is the 
foreground component plus the noise component. (e) 
N1 is noise part, the result of Y − Ln3 . (f) The pre-
liminary foreground result S is the Tucker decompo-
sition result corresponding to rank increment.   

Fig. 3. Framework of the proposed method. X is the 
raw video sequence. Y is obtained by applying 
wavelet analysis to X. HOOI(.) indicates Tucker 
decomposition, detailed see 2.2.1. Ln2 is Tucker 
decomposition results images based on rtc = n2. Ln1 is 
Tucker decomposition results images based on rtc =

n1. R1,R2, n1, n2 are Tucker rank. N1 is noise part, the 
result of Y − Ln3 . The preliminary foreground result S 
is the Tucker decomposition result corresponding to 
rank increment. P is the final result, which is calcu-
lated by correcting the mismatch patterns in S.   
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the tensor rank. Tucker rank is a vector, defined as ranktc(Y) =

(rank(Y{1}), rank(Y{2}), rank(Y{3})), where Y{i} is the mode-I matriciza-
tion of Y. The term rtc is the value at rank(Y{3}), the integer value be-
tween 1 ≤ rtc ≤ rank(Y{3}). Combined with the analysis of the spatial- 
temporal characteristics of the tensor, a hypothesis is proposed. In the 
approximation process, specific information in the image can be ob-
tained by changing the value of the third dimension in the Tucker rank 
of the tensor. Since rank is set as sufficiently small, the low-rank 
approximation obtained by Tucker decomposition can be regarded as 
background. As the value of rank increases gradually, the foreground 
component in the results of Tucker decomposition of approximation will 
gradually increase. n1 and n2 are two different values of rank, and they 
have been hypothesized as 1 ≤ n1 ≤ n2 ≤ rank(Y{3}). When rtc = n1, 
the corresponding Tucker decomposition can be modeled as background 
component. Once rtc = n2, the corresponding Tucker decomposition 
might contain both background and foreground components. This is 
shown in Fig. 1 for an intuitive illustration. 

Therefore, we can assume that as long as an appropriate rank 
increment is found, the incremental component of the corresponding 
Tucker decomposition can be approximated as the foreground compo-
nent. Fig. 2 provides an intuitive illustration. When the appropriate n1 
and n2 are selected, the foreground (defects)can be effectively extracted. 

Generally, the noise exists in the highest rank component of the 
tensor as a large number of abrupt and irregular small components. The 
advantage of using Tucker decomposition when rtc = n2 instead of using 
the original image can be drawn that the noise can be significantly 
removed. However, although the Tucker decomposition results in these 
two ranks have similar patterns, partial patterns may not match through 
direct subtraction in which hinders extraction of the foreground. Thus, 
we propose to add weights P to correct the potential mismatched pat-
terns. P ∈ RH×W×T is set as a probability tensor in which represents the 
probability that each pixel position of the resulting image sequence S is 
not the foreground. It is worth noting that automatically learning P is 
required. In conjunction with P, we assume that the probability distri-
bution that best represents the current state of knowledge is the prob-
ability distribution of the prior data with maximum entropy. Fig. 3 
illustrates the strategy framework of the proposed method. 

2.2. Differentiate tensor decomposition model 

Combined with the above analysis, the proposed objective function 
can be modeled as： 

min
1
2

P

⃦
⃦
⃦

̅̅̅
P

√
⊙ S

⃦
⃦
⃦

2

F
+ α‖P̂‖1 + β

∑W

w=1

∑H

h=1

∑T

t=1
pwht lgpwht + p̂wht lg p̂wht

s.t. P + P̂ = 1, pwht ∈ [0, 1]

Ln2 = Ln1 + S

Ln2 = min
rtc≤n2

‖Ln2 − Y‖

Ln1 = min
rtc≤n1

‖Ln1 − Y‖

(7) 

The parameter α and β in the formula are the regularization coeffi-
cient. P̂ ∈ RH×W×T, as a probability tensor, represents the probability 
whether each pixel position of the resulting image sequence S belong to 
the foreground. ‖ • ‖2

F and ‖ • ‖1 correspond to the L1 norm and the F 
norm, respectively. Where ‖ •‖ denote the tensor norm. The background 
tensor Ln1 ∈ RH×W×T is solved by Tucker decomposition based on rtc ≤ n1. 
Ln2 ∈ RH×W×T is solved by Tucker decomposition based on rtc ≤ n2. The 
foreground tensor S is the incremental component of the Tucker 
decomposition result when the rank changes from n1 to n2, namely 
difference of Ln2 − Ln1 . 

The entry values of S are distributed differently in the foreground 
and background regions. When pixel value at the foreground is set 

higher, this results in a larger weight constraint at the foreground P in 
the first optimization item, and a smaller entry value (probability) in P. 
This behaves consistent with our interpretation of P. The foreground is 
sparsely distributed in the image while the value of most items in P is 
close to 0. We use the L1 norm to constrains P. Finally, the last constraint 
in the optimization function is set according to the maximum entropy 
principle. 

We solve the above problems in the following steps. 

Ln1 ← min
rtc≤n1

‖Ln1 − Y‖

Ln2 ← min
rtc≤n2

‖Ln2 − Y‖

S←Ln2 − Ln1

P←
1
2

min
P

⃦
⃦
⃦

̅̅̅
P

√
⊙ S

⃦
⃦
⃦

2

F
+ α‖P̂‖1 + β

∑W

w=1

∑H

h=1

∑T

t=1
pwht lgpwht + p̂wht lg p̂wht

s.t. P + P̂ = 1, pwht ∈ [0, 1]
(8)  

2.2.1. Tucker decomposition 
There are several common solution methods for Tucker decomposi-

tion, such as HOSVD, BCD and HOOI algorithm. The HOOI algorithm is 
adopted in this paper. Tucker decomposition decomposes a tensor Y ∈

RH×W×T into a core tensor multiplied (or transformed) by a matrix along 
each mode. The core tensor G ∈ RH×W×T and orthogonal factor matrix 
A(1) ∈ RH×R1 , A(2) ∈ RW×R2 and A(3) ∈ RT×R3 are obtained through 
calculation by Tucker decomposition. The result of multiplying G with 
different factor matrices in different modes is approximate to the orig-
inal data tensor Y. Thus, we have 

Y ≈G×1A(1)×2A(2)×3A(3) =
∑R1

r1=1

∑R2

r2=1

∑R3

r3=1
gr1r2r3 a(1)

r1
∘a(2)

r2
∘a(3)

r3
(9) 

A(1), A(2) and A(3) are the main components of 1,2 and 3 modes 
respectively, and R1, R2 and R3 correspond the Tucker ranks, ranktc(Y) =

(R1,R2,R3). a(1)
r1

, a(2)
r2

, a(3)
r3 

are the r1th, r2th, r3th columns of the matrices 
A(1), A(2) and A(3). gr1r2r3 , as an element of G corresponds the level of 
interaction between the different components. The symbol “◦” corre-
sponds the vector outer product and ×n(n= 1,2, 3) denotes the tensor n- 
mode product. 

With above, the optimization problem can be solved as 

min
G,A,B,C

⃦
⃦Y − G×1A(1)×2A(2)×3A(3)⃦⃦ (10)  

where the solution is subject to G ∈ RH×W×T, and A(1), A(2) and A(3) are 
column-wise orthogonal. The objective function is rewritten in vector-
ized form as 
⃦
⃦vec(Y) −

(
A(1) ⊗A(2) ⊗A(3))vec(G)

⃦
⃦ (11) 

It is obvious that G must satisfy the following expression 

G= Y×1A(1)T
×2A(3)T

×3A(3)T
(12) 

Then the squared of the object function is rewritten as 

‖Y‖2
−

⃦
⃦
⃦Y×1A(1)T

×2A(2)T
×3A(3)T

⃦
⃦
⃦

2
(13) 

Since ‖Y‖2 is constant, we redescribe the objective function as the 
following maximization problem. 

max
A(n)

⃦
⃦
⃦Y×1A(1)T

×2A(2)T
×3A(3)T

⃦
⃦
⃦ (14)  

where A(n) subject to column-wise orthogonal for n = 1, 2,3.The 
objective function in (14) can be rewritten in matrix form as 
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⃦
⃦
⃦A(n)TZ

⃦
⃦
⃦ Z=Y(n)

(
A(3) ⊗⋯⊗A(n+1) ⊗A(n− 1) ⊗⋯⊗A(1)) (15)  

where A(n) is obtained by taking the Rn in leading left singular value 
vector of Z by SVD. We then use HOSVD as the starting point for the 
iterative algorithm. More detailed information can be found in Ref. [36]. 
Thus, the optimization processes of algorithm can be summarized in 
Table 1. In this algorithm, the singular value decomposition (SVD) is 
used and rank n determines the number of components to be inter-
cepted. Therefore, the Tucker decomposition results the components of 
the rank increment, can be approximately regarded as the extraction of 
n2 − n1 components. As long as the appropriate rank is found, the 
component corresponding to the foreground can be extracted. 

2.3. Solving the tensor P 

P←
1
2

min
P

⃦
⃦
⃦

̅̅̅
P

√
⊙ S

⃦
⃦
⃦

2

F
+ α‖P̂‖1 + β

∑W

w=1

∑H

h=1

∑T

t=1
pwht lgpwht + p̂wht lg p̂wht

s.t. P + P̂ = 1, pwht ∈ [0, 1]
(16) 

Optimizing the entry value of P separately, formula (16) is equivalent 
to formula (17). 

min
pwht

1
2
⃦
⃦ ̅̅̅̅̅̅̅̅

pwht
√

⊙ swht
⃦
⃦2

F + α‖p̂wht‖1 + β(pwht lg pwht + p̂wht lg p̂wht)

s.t. pwht + p̂wht = 1, pwht ∈ [0, 1]∀w, h, t
(17) 

By Lagrange function method, the equation constraint is formula 
(18). 

L(pwht, p̂wht,mwht)=
1
2
pwhts2

wht +αp̂wht + β(pwht lg pwht + p̂wht lg p̂wht)

+mwht(pwht + p̂wht − 1)
(18) 

where M is Lagrange multiplier. Solve the partial derivative of each 
variable and set it to zero. 

∂L
∂pwht

=
1
2
s2

wht + β + β lg pwht + mwht = 0

∂L
∂p̂wht

= α + β + β lg p̂wht + mwht = 0

∂L
∂mwht

= pwht + p̂wht − 1 = 0

(19) 

pwht has a closed solution. 

pwht =
exp−

s2
wht
2β

exp−
s2
wht
2β + exp− α

β

(20) 

pwht is like sigmod function which normalized in [0,1]. This is 
consistent with the classification probability interpretation of P. 

The optimization processes of the proposed algorithm can be 

summarized in Table 2. 

2.4. Quantitative detectability assessment 

Two merit factors were selected to evaluate the defect detection 
ability of the proposed algorithm. SNR was used to evaluate the contrast 
between defect and non-defect areas of the experimental results. F-Score 
was used to evaluate the defect detection accuracy of the algorithm. 

SNR is expressed as follows: 

SNR= 20 lg
(

Td

Tnon

)

(21)  

where Td denotes the sum of pixel values in the selected defect area, and 
Tnon denotes the sum of pixel values in the corresponding non-defect 
area. The unit is decibel (dB). In our paper, when we maximize the 
SNR, we are essentially jointly maximizing the signal term (S) and 
minimizing the noise term (N). The noise term includes both sensor 
noise and background of the image. In practical term, when an image is 
captured by a recording device, the sensor noise is also being captured. 
Thus, the background of a captured image has contained the sensor 
noise as well as other background artefacts. 

In the calculation of indicators, a defect area is selected as a prior 
information for the calculation of Td, as shown in Fig. 4. 1-1 area. 
Meanwhile, the area with the same size as the selected defect area was 
selected in the adjacent area for the calculation of Tnon, as shown in 
Fig. 4. 1–2 area. When the SNR of an image is calculated, the mean value 
of the absolute value of the SNR of all defects is taken. 

F-score is expressed as follows: 

F − score=
(
β2 + 1

)
(Precision × Recall)

(
β2 × Precision

)
+ Recall

(22) 

Table 1 
Tucker decomposition: HOOI(Y,R1,R2,R3).  

Input: original data Y, Tucker rank R1,R2,R3 

Output: L 
Initialize: A(n) for n = 1,2, 3 using HOSVD 
Repeat 

For n = 1,2, 3 do 
Z←Y×1A(1)T⋯×n− 1A(n− 1)T×n+1A(n+1)T⋯×3A(3)T 

A(n)←Rn leading left singular value vector of Z(n)

End for 
Until fit ceases to improve or maximum iterations exhausted 

G←Y×1A(1)T
×2A(3)T

×3A(3)T 

Return L = G×1A(1)×2A(2)×3A(3)

Table 2 
Proposed algorithm.  

Input: original data Y, Tucker rank R1,R2,n1 ,n2 

Output: foreground tensor P 
Ln1 = HOOI(Y,R1,R2,n1)

Ln2 = HOOI(Y,R1,R2,n2)

S = Ln2 − Ln1 

P←pwht =
exp

−
s2
wht
2β

exp
−
s2
wht
2β + exp

−
α
β 

Return P  

Fig. 4. Schematic diagram of SNR calculation.  
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Precision，Recall are expressed as follows.: 

Precision=
TP

TP + FP
(23)  

Recall=
TP

TP + FN
(24) 

Since Precision and Recall rates show opposite trends, β is used to 
define the importance of the two indicators. The detection task needs to 
detect all defects where the impact of missed detection (FN) is more 
serious than that of false detection (FP). Recall has a greater impact for 
detection. After experimental verification, β is set to 2. The grid method 
is used to facilitate the statistics of defect and non-defect areas. Fig. 5 
shows an approach to statistics using the grid approach. The image is 
divided into a grid of 3× 6. Each grid is treated as an event with 
defective or non-defective attributes. The real sample at the top of the 
figure provides reference calculation for the sample to be evaluated at 
the bottom. The black circles in the figure represent the theoretical 
defects. The table on the right represents the distribution of defects in 
the image on the left. In the table, 0 represents the non-defect area and 1 
represents the defect area. According to statistics, there are 12 non- 
defect and 6 defect regions in the real sample, and 13 non-defect and 
5 defect regions in the sample to be evaluated. TP is 5, FP is 0, and FN is 
1. According to the calculation, F-score is 0.86. 

3. Experiment and result analysis 

3.1. Experiment setup and sample preparation 

Data is collected using a 2000W photoexcited infrared thermal im-

aging system and a portable photoexcited thermal imaging system. The 
experimental system diagram is shown in Fig. 6. The principle of these 
two systems is the same, the main difference lies in the use of different 
light sources as excitation. The high-power system uses two 1 kW 
halogen lamps to stimulate the specimen on the support at a relatively 
long distance. The handheld portion of the portable system integrates six 
150W halogen lamps and thermal imager. The test piece is excited at 
close range by controlling software. Two thermal imagers are used in the 
experiment. Their resolutions were respectively 640 × 480 and 384 ×

288 respectively. During data acquisition, the sampling frequency is set 
to 50 Hz. 

Seven samples are used for the experiments. Their particulars are 
shown in Table 3. Samples 1 and 2 are carbon fiber reinforced flat plate 
composites. They contain internal debonding defects. The diameter, 
burial depth and distribution of defects are shown in Table 3. Sample 3 is 
carbon fiber reinforced flexural composite material. The internal 
debonding defect of the sample is at the bend. Sample 4 is a curved 
coating material with an aluminum alloy substrate. The buried defect 
was PVC film of 0.1 mm thickness. Samples 5 and 6 are plate coating 
samples. The depth of buried defects was 0.6 mm and 0.7 mm, respec-
tively. Sample 7 is rubber pipe test piece. The defect of the sample is the 
bubble defect at the bond between rubber and pipe. 

3.2. Result and analysis 

To verify the effectiveness and robustness of the proposed algorithm, 
four algorithms used for infrared defect detection, one RPCA-based al-
gorithm and two TRPCA-based algorithms are selected for comparison. 
The four defect detection algorithms include two matrix decomposition 

Fig. 5. Schematic diagram of F-Score calculation.  

Fig. 6. Experimental system diagram (a) the portable photoexcited thermal imaging system. (b) the 2000W photoexcited infrared thermal imaging system.  
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algorithms (PCA and ICA) and two physical process-based algorithms 
(PPT and TSR). In PCA algorithm, the first six principal components 
contain most of the image information. Due to the existence of possible 
errors, the first seven principal components are selected to retain in 
order to get the best one. In ICA algorithm, the first eight independent 
components are retained to select the best one. The RPCA-based algo-
rithm is SIASM. The TRPCA-based algorithms are KBR_TRPCA and 
IRPRPCA. IRPRPCA and SIASM are used for defect detection. Their 
sparse components are selected as the final result. Algorithms are pro-
cessed in MATLAB(R2019a) running on a PC with Windows 10 Profes-
sional 64 bits, 2.9 GHz Core Intel(R) CPU i7-10700 and 16 Gb of RAM. 

The processing results of each algorithm are shown in Figs. 7–9. 
Flexural specimen 3, flat coating specimen 6 and rubber pipe specimen 7 
were selected for visual display. In the figure, the first row is the result of 
the four defect detection algorithms, and the second row is the result of 

the proposed algorithm and the algorithm based on RPCA and TRPCA. 
In the results, the detection results of the two algorithms based on 

TRPCA are noisier. Among them, the detection rate of KBR_TRPCA is 
lower. In addition, both algorithms have poor interference removal on 
data with strong light spots. In overall, ICA has the best performance 
where it has a higher defect detection rate. SIASM has a strong defect 
detection capability, but it is poor at light spots suppression. Compared 
with the remaining seven algorithms, the proposed algorithm has the 
best defect detection performance, which can effectively extract defect 
features and enhance the display of defects in the thermal image. In 
terms of defect detection rate, the proposed algorithm can detect more 
defects. The proposed algorithm also outperforms the rest of the algo-
rithms in detecting defects, especially on data with difficult detection. 
On data with strong light spots, the proposed algorithm shows better 
interference removal capability. In the visualization results, the light 

Table 3 
Test samples.  

Specimen Indication Picture 

1 

2 

3 

4 

5 

6 

7 
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spots are also completely suppressed in the results of the proposed 
algorithm. 

For the quantitative analysis, Table 4 gives the F-score and SNR 
metric values for the results of each algorithm. In the table, the last row 
is the metrics on average of each algorithm for multiple samples. 
KBR_TRPCA has the lowest defect detection rate and defect contrast, 
with F-score and SNR on average of only 0.9 and 1.09 dB respectively. 
ICA does not have a high SNR, but has the mean F-score of 0.97 and is 
second only to the proposed algorithm in terms of defect detection rate. 
Compared to the rest of the algorithms, the proposed algorithm has the 
highest defect detection rate and defect contrast, with F-score and SNR 

on average of 1.00 and 3.87 dB respectively. It detects all defects in the 
sample, and the mean SNR is 2.76 dB higher than the lowest 
KBR_TRPCA. 

Table 5 shows the running time of each algorithm on seven samples. The 
last row of the table shows the average running time of each algorithm. PCA 
is the fastest, with the run time of around 1 s. ICA is the next fastest, with an 
average run time of 1.6 s. TSR and PPT, which are based on physical pro-
cesses, run inefficiently. The two algorithms of TRPCA are the least efficient. 
The proposed algorithm is second only to PCA and ICA with an average run 
time of 5.9 s. For detection tasks where accuracy requirements outweigh 
efficiency, the run time is within acceptable limits. 

Fig. 7. Images of the detection results of each algorithm for sample 3 (a) PCA. (b) ICA. (c) PPT. (d)TSR. (e)SIASM. (f) IRTRPCA. (g) KBR_TRPCA. (h) Proposed.  

Fig. 8. Images of the detection results of each algorithm for sample 6 (a) PCA. (b) ICA. (c) PPT. (d)TSR. (e)SIASM. (f) IRTRPCA. (g) KBR_TRPCA. (h) Proposed.  

Fig. 9. Images of the detection results of each algorithm for sample 7 (a) PCA. (b) ICA. (c) PPT. (d)TSR. (e)SIASM. (f) IRTRPCA. (g) KBR_TRPCA. (h) Proposed.  
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3.3. Parameter setting analysis 

In this work, the detection effectiveness of the algorithm is strongly 
influenced by the selection of the rank. In the defect detection, two ranks 
were taken as 1 and 6. This was obtained by extensive experimental 
validation analysis. To illustrate the effect of parameter selection on the 
algorithm, we have chosen to visualize the detection results for two 
samples at different values of rank. Fig. 10 show the visualization results 
for sample 3 and sample 6. Table 6 gives the index values of the 
detection results for the two samples at different ranks. The results show 

that the best result images are obtained when the rank values are 1 and 
6. When the rank values are similarly low at 1 and 2, the data does not 
contain enough information, resulting in a background biased image 
and thus a missed detection. When the rank values are 1 and 40, the 
higher rank components have more information and contain strong 
noise, resulting in interference information such as light spots and noise. 
The resultant component of rank 6 is similar to the first six principal 
components of PCA. This component contains most of the useful infor-
mation of the image while also excluding the noisy information con-
tained at higher ranks. Although the resultant images with a larger rank 

Table 4 
Performance of different algorithms on F-score and SNR.  

sample indicators PCA ICA PPT TSR SIASM IRT 
RPCA 

KBR_ TRPCA proposed 

1 F-score 0.86 1.00 1.00 1.00 1.00 0.86 0.86 1.00 
SNR 0.31 0.60 0.37 1.65 1.65 0.54 0.68 5.50 

2 F-score 0.65 0.89 0.71 0.65 0.77 0.65 0.77 0.94 
SNR 4.89 1.36 2.18 0.98 2.05 1.82 1.33 4.07 

3 F-score 0.83 1.00 0.83 1.00 1.00 1.00 0.83 1.00 
SNR 1.49 3.39 2.41 3.05 2.18 1.29 0.81 4.72 

4 F-score 1.00 0.90 0.90 0.81 0.81 0.90 0.81 1.00 
SNR 1.69 1.97 2.07 1.56 1.34 2.37 0.87 2.73 

5 F-score 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
SNR 2.30 2.03 5.58 2.08 0.91 2.92 1.16 2.42 

6 F-score 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
SNR 0.93 0.35 0.71 0.44 1.23 0.51 1.88 1.98 

7 F-score 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
SNR 1.61 1.23 1.36 1.79 3.66 2.65 0.94 5.67 

Average F-score 0.91 0.97 0.92 0.92 0.94 0.92 0.90 1.00 
SNR 1.89 1.56 2.09 1.65 1.86 1.72 1.09 3.87  

Table 5 
Performance of different algorithms on running time.  

sample PCA ICA PPT TSR SI ASM IR TRPCA KBR_ TRPCA proposed 

2 1.2 2.2 65.2 130.5 22 273.8 231.4 7.2 
3 0.9 2.1 63.4 128.1 21.5 265.4 210.3 6.5 
4 0.8 1.9 59.5 114.5 19.4 254.9 205.2 7.1 
5 0.6 1.4 42.6 103.9 15.5 223.5 189.4 6.3 
6 0.5 0.9 35.6 82.9 11.2 189.5 145.5 3.8 
7 0.5 1.1 39.5 83.5 11.6 190.1 152.3 4.2 
11(1) 1.4 2.0 67.8 124.7 15.4 276.5 214.1 6.4 
Average 0.8 1.6 53.4 109.7 16.6 239.1 193.3 5.9  

Fig. 10. The resulting images with different rank values (a) sample 3, rank: 1 and 2. (b) sample 3, rank: 1 and 6. (c) sample 3, rank: 1 and 40. (d) sample 6, rank: 1 
and 2. (e) sample 6, rank: 1 and 6. (f) sample 6, rank: 1 and 40. 
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than 6 is similar to the images of rank 6, the choice of 6 as one of the rank 
values is universal due to computational cost considerations and sta-
tistical validation of a large number of experimental results. The resul-
tant images of rank 1 is more like a background image, containing 
background information with minimal foreground information (defect 
information). Therefore, rank values of 1 and 6 are reasonable as pa-
rameters for the algorithm. 

3.4. Impact of the differential approach on the algorithm 

Partial pattern mismatches caused by direct differencing can affect 
the extraction of foreground components. Therefore, weights are intro-
duced to reduce the occurrence of mismatched patterns and to further 
extract defects. This part of the algorithm after the introduction of the 
weighting component is referred to as the matching difference, whereas 
without the introduction of the weights it is referred to as the direct 

difference. In order to illustrate the significance of the existence of 
matched differences and their impact on the detection performance of 
the algorithm, the results of two different classes of experimental spec-
imens are selected for specific analysis in this section. 

Fig. 11 show the visualization of the detection results for sample 3 
and sample 6 under different differential methods, respectively. Table 7 
gives the index values of the detection results. For the sample 3, the 

results show that matched differential has higher defect contrast, clearer 
defect display and less noise than direct differential detection. For 
sample 6, matched differencing has a lower defect contrast than direct 
differencing, while it removes the light spots and noise interference that 
hinders the observation of defects. In summary, matched differencing 
can extract more defect information than direct differencing, improve 
defect contrast and suppress interference such as light spots and noise. 

4. Conclusion and feature work 

This paper proposes a differentiate low rank tensor decomposition 
algorithm to cope with the detection of defects in complex specimens. 
The use of tensor rank brings benefit to extract more information of the 
defects. The probabilistic tensor model corrects for potential mismatch 
patterns into and achieves defect display enhancement, noise and light 
spot suppression. Experiments demonstrate that the proposed algorithm 
achieves the best performance in terms of F-score and SNR metrics for 
defect detection. n particular, it has excellent performance in non- 
destructive testing scenarios of composite materials with light spot 
interference. Future work will focus on the detection of defects arising in 
the natural environment. 
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Fig. 11. The resulting images with different differential methods (a) sample 3, direct differencing. (b) sample 3, matched differencing. (c) sample 6, direct dif-
ferencing. (d) sample 6, matched differencing. 
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