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Single-Channel Source Separation Using
EMD-Subband Variable Regularized Sparse Features

Bin Gao, W. L. Woo, and S. S. Dlay

Abstract—A novel approach to solve the single-channel source
separation (SCSS) problem is presented. Most existing supervised
SCSS methods resort exclusively to the independence waveform
criteria as exemplified by training the prior information before
the separation process. This poses a significant limiting factor to
the applicability of these methods to real problem. Our proposed
method does not require training knowledge for separating the
mixture and it is based on decomposing the mixture into a series
of oscillatory components termed as the intrinsic mode functions
(IMFs). We show, in this paper, that the IMFs have several desir-
able properties unique to SCSS problem and how these properties
can be advantaged to relax the constraints posed by the problem.
In addition, we have derived a novel sparse non-negative matrix
factorization to estimate the spectral bases and temporal codes
of the sources. The proposed algorithm is a more complete and
efficient approach to matrix factorization where a generalized
criterion for variable sparseness is imposed onto the solution.
Experimental testing has been conducted to show that the pro-
posed method gives superior performance over other existing
approaches.

Index Terms—Audio processing, blind source separation (BSS),
empirical mode decomposition (EMD), non-negative matrix fac-
torization (NMF), single-channel source separation (SCSS), sparse
features.

I. INTRODUCTION

B LIND source separation (BSS) using independent compo-
nent analysis (ICA) has been ubiquitously used in many

applications with great success. Linear blind decomposition has
been well learned so far and a plethora of methods have been
proposed. Most methods are based on higher order statistics
which require non-Gaussian source signals [1]. Extension of
BSS for solving nonlinear mixtures has also been introduced
[2]–[4]. In addition, these methods yield good performances
only if the number of observed signals is equal or more than
the number of independent sources. However, in general and for
many practical applications (e.g., speech and image processing)
only one-channel recording is available. In such cases, conven-
tional source separation techniques are not appropriate. This
leads to the single-channel source separation (SCSS) where the
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problem can be treated as one observed signal mixed with sev-
eral unknown sources. In this paper, we focus on two sources as
described in the following:

(1)

where denotes time index. The goal is to esti-
mate the two sources and when only the observed
signal is available. This is an underdetermined equation
problem [2]. In recent times, new advances have been achieved
in SCSS and this can be categorized either as supervised or un-
supervised SCSS methods. The terms “supervised” and “unsu-
pervised” refer to the separation system with and without using
the training information of the sources, respectively.

For supervised SCSS methods, this category predominantly
includes the model-based SCSS methods [5]–[8] which are
similar to the model-based speech enhancement techniques.
Commonly, the model-based SCSS method exploits the hidden
Markov models (HMMs) of the audio signals and at the
heart of these techniques is the approximation of the pos-
terior by Gaussian distribution [8]. Here

represent the time–frequency (TF) domain
of , , and , respectively. Using the Bayes the-
orem, the posterior distribution can be expressed as

(2)

where and denotes the
hidden states of sources. The sources are trained and modeled
by the mixture of Gaussians. Good separation requires detailed
source models that might use thousands of full spectral states.
However, these model-based techniques consume long time not
only for training the prior parameters but also presenting many
difficult challenges during the inference stages. There are other
model-based SCSS methods that do not use HMM, for example
[11] and [32]. A related technique to supervised SCSS is the
underdetermined-ICA SCSS method [9]–[11]. In this method,
the sources are modeled as sparse combination of a set of
time-domain basis functions which are initially derived using
the ICA methods. With these ICA basis functions, the sources
are estimated by maximizing the log-likelihood function of the
observed mixed signal. This method renders optimal separation
only if the ICA basis functions corresponding to each source
have minimal time-domain overlap. Mixture of two speech
sources is such a case where the derived basis functions have
significant overlap with each other.
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For unsupervised SCSS methods, this category predomi-
nantly includes the CASA-based SCSS techniques [12]–[16]
whose goal is to replicate the process of human auditory system
by using signal processing approaches (e.g., notes in music
recordings) and grouping them into auditory streams using
psycho-acoustical cues. The main idea is based on exploiting
an appropriate transform such as the short-time Fourier trans-
form (STFT) where the observed mixture is segmented into TF
cells which are then used to characterize note objects by har-
monicity, common onset, correlated modulation and duration
of sinusoidal partials, and finally to build note streams based
on pitch proximity [16]–[18]. Nevertheless, computational au-
ditory scene analysis (CASA)-based SCSS techniques cannot
efficiently segregate instruments playing in the different pitch
range into different streams. They also cannot replicate the en-
tire process performed in the auditory system since the process
beyond the auditory nerve is not well studied. In addition, it is
difficult to group the sources if one of them is assumed to be
fully voiced. A different direction to unsupervised SCSS has
been proposed recently that bypasses the above limitations. The
non-negative matrix factorization (NMF) methods [19], [20]
have been developed for separating drums from polyphonic
music [21]. In addition, it has also been used for automatic
transcription of polyphonic music [22]. Families of parameter-
ized NMF cost functions such as the Beta divergence [23], and
Csiszar’s divergence [24] have been presented for the separa-
tion of audio sources [25]. Regardless of the cost function used,
in order to achieve audio source separation, some methods
require grouping of the basis functions according to the sources
or instruments. Different grouping methods have been proposed
in [26], but in practice, if the sources overlap in TF domain, it is
difficult to obtain the correct clustering. This issue is discussed
in [27]. Other problem where conventional NMF methods fail
is when two notes are played simultaneously in which case they
will be modeled as one component [28]. In addition, most of
the above techniques work only for music separation and have
crucial limitations that explicitly use some prior knowledge
about the sources [29], [30]. As a consequence, those methods
are able to deal only with a very specific set of sources and
situations. Finally, the empirical mode decomposition (EMD)
has recently gained reputation as a method for analyzing non-
linear and nonstationary time series data. By combining with
other data analysis tools, the EMD has been used to separate
the audio sources from a single mixture [31]. Molla and Hirose
[31] proposed a subspace decomposition-based method using
the EMD and Hilbert spectrum (HS). The performance of the
EMD-based SCSS techniques rely too heavily on the derived
independent basis vectors which are only stationary over time.
Therefore, good separation results can be obtained only if
basis vectors are statistical independent within the processing
window. For some sources, e.g., male and female speeches, the
features can be very similar and, hence, it becomes difficult to
obtain the independent basis vectors.

In this paper, a new framework for SCSS based on the
EMD and a novel variable regularized two-dimensional sparse
non-negative matrix factorization (v-SNMF2D) is proposed.
The proposed solution separates audio sources from a single
channel without relying on training information about the

original sources. Audio signals are mostly nonstationary and
the EMD decomposes the mixed signal into a collection of
oscillatory basis components termed as intrinsic mode func-
tions (IMFs) which contain the basic properties of the original
source (e.g., amplitude and frequency). In the proposed scheme,
instead of processing the mixed signal directly, the IMFs are
utilized as the new set of observations. The impetus behind
this is that the degree of mixing of the sources in the IMF
domain is now less ambiguous and thus, the dominating source
in the mixture is more easily detected. Moreover, the spectral
and temporal patterns (i.e., the spectral bases and temporal
codes, respectively) associated with each IMF are now sim-
pler and sparser than that of the mixed signal. As such, these
patterns can be extracted using a suitably designed sparse
algorithm. To this end, we propose a new algorithm based on
the two-dimensional sparse non-negative matrix factorization
(SNMF2D). However, contrary to conventional SNMF2D, our
proposed technique assigns a regularization parameter to each
temporal code, which is individually optimized and adaptively
tuned to yield the optimal sparse factorization. We term this
new algorithm as variable regularized two-dimensional sparse
non-negative matrix factorization (v-SNMF2D). The proposed
variable regularization benefits conventional SNMF2D in terms
of improved accuracy in resolving spectral bases and temporal
codes which were previously not possible by using SNMF2D
alone. This benefit has been extended to SCSS by merging the
proposed v-SNMF2D with EMD.

This paper is organized as follows. Section II introduces the
background of EMD and the SNMF2D algorithm. In Section III,
the new v-SNMF2D model is derived and the proposed source
separation framework is fully developed. Experimental results
coupled with a series of performance comparison with other
SCSS techniques are presented in Section IV. Finally, Section V
concludes the paper.

II. BACKGROUND

A. Empirical Mode Decomposition

EMD is a signal processing tool for decomposing any nonsta-
tionary signal into oscillating components by empirically iden-
tifying the physical time scales intrinsic to the data. These oscil-
lating components are termed as the IMFs. For in-depth infor-
mation on EMD, interested readers are referred to [33]. In prin-
ciple, the IMFs satisfy two fundamental conditions: Firstly, in
the whole dataset, the number of extrema (minima and maxima)
and the number of zero crossing must be same or differ at most
by one. Second, the mean value of envelop defined by the local
minima is always zero. The first condition is obvious; it is sim-
ilar to the traditional narrowband requirements for a stationary
Gaussian process. The second condition is a relatively new idea
for nonstationary data; it modifies the classical global require-
ment to a local one. The steps to decompose arbitrary data series
into IMF components can be found in [34]. At the end of decom-
position, the mixed signal can be represented simply as

(3)
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Fig. 1. EMD of male–female speech mixture showing the first six (out of ten)
IMFs.

where is the th IMF, is the total number of IMFs, and
is the final residue. Fig. 1 shows the EMD of a signal mix-

ture [panel (a)] generated from a male and a female speech. The
IMFs [panels (b)–(g)] are similar to the bandlimited functions
for representing the time series data. Therefore, the EMD is suit-
able for analyzing nonstationary data and can be considered as a
dyadic filterbank with each narrowband contains most energy of
one dominating source. Also, the frequency of IMFs decreases
as the order increases, e.g., the sixth IMF contains lower fre-
quency components of the mixture than that of the fifth IMFs.

B. Sparse Non-Negative Matrix Factorization

Non-negative matrix factorization (NMF) [20] is a method
for factorizing a matrix into a product of two non-negative ma-
trices. The sources can be modeled by factorizing the power
spectrogram using the NMF and each instrument is modeled
by an instantaneous frequency signature which can vary over
time. Thus, the model can represent components with temporal
structure. In the source separation task, the TF representation of
mixture can be decomposed as

(4)

where is a power spectrogram data matrix of the
mixture, and , , and represent total
frequency bins and time slots in the TF domain, respectively.
If is chosen to be no benefit is achieved at all. Thus,
the idea is to determine so that the original dataset
can be compressed and reduced to its integral components such
as is a matrix containing a set of spectral basis vectors,
and is an encoding matrix that describes the amplitude of
each basis vector at each time point. The recently developed the
two-dimensional sparse NMF factorization (SNMF2D) model
[28] extends the NMF model to be a sparse two-dimensional
convolution of and . The factorization is based on a model
that represents temporal structure and pitch change which occur

when an instrument plays different notes. In audio source sep-
aration, the model represents each instrument compactly by a
single time–frequency profile convolved in both time and fre-
quency by a time–pitch weight matrix. This model dramatically
decreases the number of components needed to model various
instruments and effectively solves the SCSS problem. The two
basic cost functions with sparse penalty term on are given in
the following:

Least square

(5)

Kullback-Leibler

(6)

for where and

and can be any function with pos-
itive derivative such as given by

. Here denotes downward shift
which moves each element in the matrix down by rows, and

denotes right shift which moves each element in the ma-
trix to the right by columns. The and matrices can be
derived using the above cost functions (5) and (6). The param-
eter in both equations is important as it controls the sparsity
of the factorization. If it is uncontrolled, the solution rendered
by (5) or (6) will lead to either “under-sparse” or “over-sparse”
factorization which still contains the mixed components in each
estimated source. In this paper, we derive an efficient algorithm
to estimate the regularization parameters that yield the optimal
sparse factorization.

III. PROPOSED SEPARATION METHOD

In this section, we will establish the foundation of how EMD
and matrix factorization from Section II can be unified within
the context of SCSS. Three benefits will be obtained from this
merger. In SCSS, the audio mixtures of two sources in the time
domain can be modeled as , where

The EMD decomposes the audio mixture signal into
a collection of IMFs as follows:

(7)

These IMFs which are derived from the data can serve as the
basis of expansion, which can be linear or nonlinear as dictated
by the data. In addition, it is complete and almost orthogonal.
Thus, the extracted IMFs are real-valued signals [33] that con-
tain the basic properties of the original source. From the filtering
point of view, the EMD process can be considered as a dynamic
filterbank where the bandwidths are ranged automatically and
dependent on the input signal. This is unlike the conventional
filterbank which has fixed bandwidths that are independent of
the input signal. Given the nature of this dynamic filterbank,
the first benefit EMD brings to SCSS is as follows: for each
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Fig. 2. (a) and (b) denote the spectrogram of male and female speeches, respectively. (c) denotes the spectrogram of mixed speech (male + female). (d)–(f) denote
the spectrogram of the first three IMFs decomposed by EMD.

TABLE I
DOMINATE PROPORTION OF EACH SOURCE TO EACH IMF

IMF of the mixed signal, the degree of mixing from the original
sources is considerably reduced in that particular sub-band of
frequencies. To validate this finding, we define to measure
the dominating factor of the th original source on the th IMF
as follows:

(8)

In this analysis, a mixture of male and female
speeches is used. The domination factor of each source to each
IMF is tabulated in Table I. The higher value of , the more
contribution from the th source is to the th IMF. From Table I,
it is observed that the value is high on either or which
indicates that the mixing at the IMF levels is dominated either
by source 1 or source 2, respectively. In this example, it is clear

that source 1 dominates in the first and fifth–seventh IMFs while
source 2 dominates in the second–fourth IMFs. The second ben-
efit EMD brings to SCSS is that since each IMF corresponds to
a filtered signal bounded within a particular range of sub-band
frequencies, the complexity of the spectral and temporal pat-
terns associated with each IMF will be simpler and sparser than
that of the mixed signal. The degree of sparsity depends on the
sources and the order of the IMF. Not only that, we also found
that the sparsity varies across all the IMF order. This is shown in
Fig. 2. This effectively means that in the TF domain of each IMF
there is a relatively clear distinction of the spectral and temporal
patterns between the dominating source and the less dominating
one. As a result, lesser number of components is used in the
NMF and yet able to maintain a robust source separation perfor-
mance. This will be elaborated in Section IV-D. In addition, the
sparseness of the IMF suits the proposed v-SNMF2D method
since it enables the user to correctly select the model order for
the convolutive factors [ and in (15)]. Finally, the
third benefit is since all IMFs are almost orthogonal, the sta-
tistical contents in each IMF are relatively decoupled from each
other. Therefore, each IMF can be treated independently; when
any error is resulted from the processing, this will be confined
to that particular IMF only. At the source reconstruction stage,
this error will be averaged over all the IMFs; thus the contribu-
tion of this error to the reconstructed source will be minimized.

In Fig. 2, it is shown that the spectral and temporal patterns’
complexity associated with each IMF (d)–(f) is simpler and
sparser than the mixed speech (c). During the decomposi-
tion, the maximum IMF order is determined by assessing
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whether the th IMF is of acceptable quality as judged by its
power relative to the mixture’s power

. In this paper, a threshold has been set
at 5% of the mixture’s power. For example, if the th IMF
power is less than a pre-specified threshold of mixture signal,
this particular IMF will be rejected. By using this threshold
approach, we are able to consistently select the most significant
IMFs. For simplicity, we assume is the maximum order and
therefore, the mixture signal can be modeled as

(9)

In vector form, (9) can be written as

(10)

where , with

and
is a vector consist of components of

unit scalar. Similarly, the original sources can be decomposed
using the EMD as

and (11)

where and
which contains and number

of IMFs, respectively. We define and as the
sub-sources of and , respectively. The aim is to
estimate these sub-sources given only , assign each of
them to the correct source class and finally reconstruct the
estimated sources in the time domain.

A. Matrix Representation of Time–Frequency IMFs

To estimate the sub-sources, from (10) is projected into
the TF domain, in which the mixed signal becomes

for (12)

where , , and denote TF com-
ponents which are obtained by applying the STFT, e.g.,

for , and . In practice,
the frequency axis of the spectrogram for audio signals is
logarithmically scaled and this convention has been adopted
in the paper. The power spectrogram is defined as the squared
magnitude of (12)

(13)

where measures the projection of onto
[8]. For large sample size, we may assume

and are orthogonal and, hence, .
However, for finite sample size, may not
hold and we treat as the
residual noise. Note that in (13) each component is a function
of and variables. As such, we seek a matrix representation

for each component as where
row and column vector represents the time slots and frequency
bins, respectively. Hence, (13) becomes

(14)

where is the residual noise. Equation (14) is a synthesis
equation since it describes how is generated as a

mixing of , , and . Note that all elements

in and are non-negative whereas the ele-
ments in could be both positive and negative. However, the
overall sum in (14) is always nonnegative and therefore, we may
construct an analysis equation in a form of matrix factorization.
There exists a family of non-negative matrix factorization algo-
rithms. In this paper, we derive a new factorization algorithm
termed as the variable regularized two-dimensional sparse
non-negative matrix factorization (v-SNMF2D) which is given
as follows:

Analysis

subject to

(15)

It is worth pointing out that each individual element in is
constrained to a Laplacian distribution with independent decay
parameter . In (15), is the th column of .

is the th row of , denotes downward shift which moves

each element in the matrix down by rows, and denotes
right shift which moves each element in the matrix to the right
by columns. The terms , , and are the
maximum number of columns in , shifts, shifts and time
frame, respectively. In terms of interpretation, represents
the spectral basis of the th IMF of th source in the spectro-
gram domain and represents the temporal sparse code for
each spectral basis element. In our proposed algorithm, the two
matrices we seek to separate are and in the
synthesis equation. This estimation corresponds to the case of

in the analysis equation.
The proposed v-SNMF2D method gives significantly better

performance than traditional NMF methods. These are summa-
rized as follows. First, the NMF [35] can be considered as a
special case with convolutive factors . As such, the
NMF is a weak model since it does not take into account the
relative position of each spectrum thereby discarding the tem-
poral information. Second, the NMF does not model notes but
rather unique events only. Thus, if two notes are always played
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simultaneously they will be modeled as one component. Also,
some components might not correspond to notes but rather to the
model, e.g., background noise. Third, the structure of a factor
in can be input into the signature of the same factor in

and vice versa. Hence, this leads to ambiguity that can be
only resolved by forcing the structure on through imposing
sparseness on . This leads to the sparse NMF (SNMF)
and its extension to SNMF2D. However, the main drawback of
SNMF (and SNMF2D as well) originates from its lack of a gen-
eralized criterion for sparsity. Fourth, the v-SNMF2D model
allows overcomplete representation by allowing many
shifts which are not inherent in the NMF model. In this situation,
imposing sparseness is necessary to give unique and realistic
representations of the non-stationary audio signals. Finally, the
sparseness on is imposed element-wise in the v-SNMF2D

model so that each individual code in is optimally sparse in
the -norm. In the conventional SNMF or SNMF2D method,
the sparseness is not fully controlled but is imposed uniformly
on all the codes. The ensuing consequence is that the temporal
codes are no longer optimal and this results in “under-sparse”
or “over-sparse” factorization.

B. Formulation of the Proposed Variable Regularization
SNMF2D (v-SNMF2D)

To facilitate such spectral bases with variable sparse coding,
we first define , , and

, and then choose a prior distribution
over the factors in the analysis equation.

The posterior can be found by computing the maximum a pos-
teriori (MAP) estimate

(16)

where the denominator is constant and therefore, the log-poste-
rior can be expressed as

(17)

We assume the noise to be independently and identically
distributed with Gaussian distribution having variance .
Thus, the likelihood of the factors and can be
written1 as

where denotes the
Frobenius norm. The second term consists of the prior
distribution of and where they are jointly indepen-
dent. Each element of is constrained to be Laplacian
distributed with independent decay parameters, namely,

so

that . The prior over is flat
with each column constrained to have unit length. Hence, the

1To avoid cluttering the notation, we shall remove the upper limits from the
summation terms. The upper limits can be inferred from (15).

negative log likelihood serves as the least square (LS) cost
function which is defined as

(18)

The sparsity term forms the -norm regularization to
resolve the ambiguity by forcing all structure in onto .
Therefore, the sparseness of the solution in (18) is highly de-
pendent on the regularization parameter .

1) Estimation of the Spectral Basis and Temporal
Code: In the matrix factorization, each spectral basis
is constrained to be of unit length. Hence, we rep-

resent this by , where

is factor-wise nor-
malized to . The derivatives of (18) corresponding to
and of v-SNMF2D are given by

(19)

(20)

where is assumed equal to 1. Thus, by applying the standard
gradient decent approach, we have

(21)

where and are positive learning rates which can be
obtained by following the approach of Lee and Seung [20],
namely, and

.
Thus, in matrix notation, the multiplicative learning rules
become

(22)

(23)
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In (22), “ ” is the element wise product,
and at each iteration, the column vectors

of will be factor-wise normalized to unit length.

2) Estimation of the Variable Regularization Parameter:

Since are obtained directly from the original sparse code

matrix , it suffices to compute just for the regularization

parameters associated with . Therefore, we can set the cost
function in (18) with as

(24)

where representing the column vectorization, ‘ ’ is the
Kronecker product, is the identity matrix. Define the following
terms:

...
...

...
...

...
...

...
(25)

Thus, the (24) can be rewritten in terms of as

(26)

Note that and are vectors of dimension , where
. To determine , we use an

expectation–maximization (EM) algorithm and treat as the
hidden variable where the log-likelihood function can be opti-
mized with respect to . Using the Jensen’s inequality, it can
be shown that for any distribution , the log-likelihood
function satisfies the following:

(27)

One can easily check that the distribution that maxi-
mizes the right-hand side of (27) is given by

which is the posterior distribution of . In
this paper, we represent the posterior distribution in the form
of Gibbs distribution

where

(28)

The functional form of the Gibbs distribution in (28) is ex-
pressed in terms of and this is crucial as it will enable
us to simplify the variational optimization of [40]. The max-
imum-likelihood estimation of is given by

(29)

The Gibbs distribution treats as the dependent variable while
assuming all other parameters to be constant. As such, analyti-
cally solving (29) leads to

for (30)

where is the th element of . Despite the simple form of
(30), the integral is difficult to compute analytically and there-
fore, we seek an approximation to . We note that the
solution naturally partition its elements into distinct subsets

and consisting of components such that
, and components such that .

Hence, can be decomposed as

(31)

Since is on the boundary of the distribution, we need
to consider the effects of non-negativity constraints. This distri-
bution is represented by using Taylor expansion about the MAP
estimate , which is the mode of the distribution

(32)

where , is the sub-matrix of
that corresponds to . We use variational approximation to

by using the exponential distribution

(33)
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The variational parameters for are ob-
tained by minimizing the Kullback–Leibler divergence between

and

(34)

which leads to

(35)

where and

. The optimization of (35) can be
accomplished by using the non-negative quadratic program-
ming method [36] or Gaussian–Newton multiplicative updates
[37]. As for components , since none of the non-negative
constraints are active, we approximate as uncon-
strained Gaussian with mean . Thus, using the factorized
approximation in (30),
we obtain the following:

if
if

(36)

for and is the th element of sparse code
computed from (22).

C. Estimation of Sub-Sources

The th order sub-sources and

are estimated as and

. In the default setting,
is the th column of that corresponds to the th

row of , where for the case of two sources.
If more components are considered in the v-SNMF2D, e.g.,

, this necessitates an efficient
clustering method to group the column vectors to their
respective sources. The details of the clustering method will be
presented in Section IV-D. Once The sub-sources

and are estimated, the time-domain sub-sources
can be reconstructed as follows:

Resynthesize (37)

where “Resynthesize” denotes the inverse mapping of the log-
frequency axis to the original frequency axis and followed by
the inverse STFT back to the time domain [35]. The mask is
determined element wise by

if

otherwise.
(38)

The estimated sub-sources in (37) are subsequently clus-
tered into groups according to the number of sources. The
Kullback–Leibler divergence (KLd)-based -means clus-
tering algorithm [31] is used for grouping the subsets of the
sub-sources. The sub-sources are firstly represented as vectors
which are then normalized to unit length and transformed into

their corresponding probability mass function. They are then
grouped into clusters according to the entropy contained by
individual vectors. In this paper, the symmetric KLd is used
to measure the relative entropy between two probability mass
function and over a random variable :

(39)

After convergence, all sub-sources will be grouped into
their respective clusters which are given as

and . The
estimated time-domain signal of the th source is then obtained
by summing up the sub-sources from each cluster as

and

(40)

The core procedure of the proposed method is summarized in
Fig. 3. Given the single-channel mixture , the goal is to esti-
mate the sources based on the following steps. 1)
using (3); EMD decomposes the audio mixture signal into a
collection of IMFs. 2) using
(22), (23), and (36); for each IMF, construct TF representation
and then apply the v-SNMF2D method to update spectral bases

and temporal code . 3) using
(37)–(39); after calculating the mask, the sub-sources can
be reconstructed by using inverse STFT. Hence, the KLd-based

-means clustering technique is employed to group sub-sources
into two clusters. 4) using (40); the estimated
time-domain of th source is finally obtained by summing up
the sub-sources from each cluster.

Table II presents the main steps of the proposed v-SNMF2D.
and corresponding to the matrix representation of (36).

IV. RESULTS AND ANALYSIS

The proposed monaural source separation method is tested
by separating audio sources. Several experimental simulations
under different conditions have been designed to investigate
the efficacy of the proposed method. All simulations and
analyses are performed using a PC with Intel Core 2 CPU 6600
@ 2.4 GHz and 2 GB RAM. MATLAB is used as the pro-
gramming platform. To generate mixtures, 40 sentences of the
target speakers (20 male and 20 female sentences from 8 male
and 8 female subjects) are selected from the TIMIT speech
database and 20 music signals including 10 Jazz and 10 piano
signals are selected from the RWC [38] database. Three types
of mixture have been generated: 1) Jazz mixed with piano,
2) speech mixed with music, and 3) speech mixed with speech.
The sources are randomly chosen from the database and the
mixed signal is generated by adding the chosen sources. In all
cases, the sources are mixed with equal average power over the
duration of the signals. All mixed signals are sampled at 16 kHz
sampling rate and the audio mixture is divided into blocks of
length 0.65 s. Smaller-size blocks perform better when the
signal spectra are frequently changing. The TF representation is



GAO et al.: SCSS USING EMD-SUBBAND VARIABLE REGULARIZED SPARSE FEATURES 969

Fig. 3. Core procedure of the proposed algorithm.

TABLE II
PROPOSED V-SNMF2D ALGORITHM

computed by normalizing the time-domain signal to unit power
and computing the STFT using 1024–point Hanning window
FFT with 50% overlap. The frequency axis of the obtained
spectrogram is then logarithmically scaled and grouped into
175 frequency bins in the range of 50 Hz to 8 kHz with 24
bins per octave. This corresponds to twice the resolution of the
equal tempered musical scale. For the v-SNMF2D parameters,
the convolutive components in time and frequency are selected
to be and , respectively. The
corresponding sparse factor was determined by (36). The
distortion measure between the original and estimated source
is computed by using the improvement of signal-to-noise ratio
(ISNR) [31] which is defined as

(41)

The ISNR is used as the quantitative performance measure
for separation, and the average ISNR will be tabulated in the
evaluation graphs. The ISNR represents the degree of suppres-
sion of the interfering signals to improve the quality of the
target one. The higher value of ISNR indicates better separation
performance.

A. Effects on Audio Mixtures Separation With/Without EMD
Preprocessing

In this section, we first investigate the performance of our pro-
posed method without using the EMD preprocessing for sep-
arating audio mixtures. This is motivated by the fact that in
the IMF subband domain, the spectral and temporal patterns of
each IMF are simpler and sparser than that of the mixed signal.
Therefore, the spectral and temporal patterns of the dominating
source and the less dominating one can be separated by using the
matrix factorization methods (i.e., SNMF2D or v-SNMF2D).
In addition, any error resulted in the IMF subband during the
source separation can be alleviated at the source reconstruc-
tion stage. Thus, it is hypothesized that with the EMD prepro-
cessing, the audio source separation will be significantly en-
hanced. Figs. 4 and 5 show the performance of our proposed
method without and with the EMD preprocessing, respectively,
under various audio mixtures. Fig. 4 shows that without the
EMD preprocessing, the ISNR is degraded substantially since
the mixing ambiguity has been highly affected by the level of
spectral overlap between and (TF representation of

and , respectively). This is evidenced in Fig. 5 which
illustrates the mixture of original male and female speeches (top
panels), the single channel mixed signal (middle panel), and
the separated speeches (bottom panels) using the v-SNMF2D
without the EMD preprocessing. The ISNR for the separated
speeches, on average, is calculated to be 2.7 dB per source. The
ambiguity between the two speeches is highlighted in the red
box marked area. Fig. 8(d) and (e) further illustrate this observa-
tion on the TF plane by means of another mixture of male speech
and Jazz music. By visual inspection, a considerable level of
spectral overlap has not been correctly separated. On the other
hand, Fig. 5 shows a large improvement gain in ISNR by in-
corporating the EMD preprocessing. An average improvement
of 2.5 dB per source has been obtained across all the different
type of mixtures by using the v-SNMF2D with EMD prepro-
cessing as compared to using the v-SNMF2D alone. Similarly,
an average improvement of 2 dB per source is obtained for the
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Fig. 4. Overall separation results of different mixtures without EMD prepro-
cessing.

Fig. 5. Overall separation results of different types of mixtures with EMD pre-
processing.

Fig. 6. Separation results without applying EMD preprocess.

SNMF2D with EMD preprocessing as compared to using the
SNMF2D alone.

In the following, we show the results of the v-SNMF2D
with EMD preprocessing. Figs. 6 and 7 show the time-do-
main separation results. In both figures, subplot (a) shows
the estimated sub-sources by exploiting the hybrid EMD and
v-SNMF2D while subplot (b) shows the reconstructed speech
signals and the error between the original and the reconstructed
signals based on the four estimated sub-sources. The mean
square error (MSE) between the original and the reconstructed
speech is 0.34 and 0.32 for male speech and female speech,
respectively. We also found that as the number of estimated
sub-sources increases (e.g., 6), the error becomes progressively
smaller (MSE and 0.28 for male and female speeches,
respectively).

Fig. 7. (a) Estimated sub-sources for male speech. (b) Reconstructed male
speech and error. (c) Estimated sub-sources for female speech. (d) Recon-
structed female speech and error.

TABLE III
ASSIGNMENT OF REGULARIZATION PARAMETER

B. Impact of Sparsity Selection

In this section, the impact of sparsity selection is investigated.
Choosing as well as each of the scalar regularization pa-
rameter in , will have significant impact on the
matrix factorization and the final separation results. Our pro-
posed algorithm resolves this difficulty by using the EMD to re-
duce the mixing ambiguity in each sub-band. In addition, since
the sparsity of each IMF on the TF plane varies across different
IMF order, the sparseness constraint of that impacts each
IMF ought to be optimally controlled. Table III shows the value
of the sparse regularization parameter that corresponds to each
IMFs of different mixtures. In Table III, represent
Jazz, piano music, male, and female speech.

For mixture of piano and speech, the regularization param-
eters can be set similarly to the ones used for jazz and speech
mixture. Table III shows that as the IMF order increases, lower
values can be assigned to for each type of mixture. This is ev-
idenced from the fact that the EMD can automatically range the
bandwidths so that in each sub-band only one source with the
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Fig. 8. (a) and (b) denote the original spectrogram of male speech and Jazz
music, respectively. (c) denotes the spectrogram of the mixture. (d)–(h), (i) de-
note the reconstructed spectrogram of male speech and Jazz music by directly
using the SNMF2D method (without EMD), EMD SNMF2D method, and EMD
v-SNMF2D method, respectively.

most energy is retained. This allows the selection of the sparse-
ness in each . It is also found that different types of audio
mixtures require different selection of the sparseness regulariza-
tion. Using the mixture of music and speech as an example, it
is well documented that music pitches jumped discretely while
speech pitches do not so that can be set to zero from the sixth
IMF onwards since these correspond to the lower frequency
bands and are dominated with most energy from the speech
components. In the lower frequency bands, very little mixing
exists between the music and speech signal so that imposing
sparseness will lead to over-sparse code and eventually render
less efficiency in estimating the speech signal components. On
the contrary, it is difficult to set equal to zero for mixture of
male and female speeches since the fundamental pitches of both
signals are too similar for the SNMF2D to separate. It should
be noted that the above regularization parameters are set empir-
ically and by no means, are the optimal values. Our proposed
method resolves this issue by adaptively updating these sparse
regularization parameters while the spectral bases and the tem-
poral codes are still being learned. To study the effects of spar-
sity regularization on the separation results, Fig. 8 shows the
spectrograms computed using the EMD SNMF2D and EMD
v-SNMF2D.

In Fig. 8, it is noted that errors still present in the estimated
male speech spectrogram by using the SNMF2D and the EMD
SNMF2D methods. The components in the red box marked
region in (d) and (f) definitely belong to the Jazz music but
have been attributed to the male speech instead. As a result,
the estimated male speech contains interference from the Jazz
music whereas the estimated Jazz music loses some of its
information. Because of the “under- or over-sparse” resolu-
tion, the estimates are only coarse by using the EMD with
SNMF2D. Consequently, this leads to ambiguity in the TF
region which reduces the separation efficiency. On the other
hand, the performance has been significantly improved when

Fig. 9. Separation results of EMD-SNMF2D by using different uniform
regularization.

Fig. 10. Separation results of EMD-based SNMF2D using regularization
schemes.

the decomposition of spectral bases and temporal codes are
performed using the variable sparse regularization. We note that
the level of mixing ambiguity has been progressively reduced
from using the SNMF2D without EMD preprocessing to the
proposed v-SNMF2D with EMD preprocessing.

Fig. 9 shows the impact of sparsity regularization on the sepa-
ration results in terms of the ISNR under different uniform regu-
larization. In this implementation, the uniform regularization is
chosen as for all IMF, i.e.,

Fig. 10 summarizes the average separation results of the
EMD-NMF2D, EMD-SNMF2D, selective uniform regulariza-
tion EMD-SNMF2D based on Table III and EMD v-SNMF2D
methods.

For comparison purpose, we have summarized the average
performance improvement of our proposed method based on
Fig. 10 as follows: 1) for mixture of music signals, the average
improvement is 1.4 dB per source, 2) for mixture of speech and
music signal, the average improvement is 1.6 dB per source,
and 3) for mixture of speech signals, the average improvement
is 1.7 dB per source. The above results clearly indicate that the
best performance is achieved by the EMD preprocessing with
v-SNMF2D.

C. Comparison With Other SCSS Methods

1) Underdetermined-Based ICA SCSS Method: In the un-
derdetermined-ICA SCSS method [11], [32], the key point is
to exploit the prior knowledge of the sources such as the basis
functions to generate the sparse codes. In this work, these basis
functions are obtained in two stages: 1) Training stage: the basis
functions are obtained by performing ICA on each concatenated
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Fig. 11. (a)–(c) denote the original male, female speeches and mixture, respec-
tively. (d) and (e) denote the recovered male and female speeches by using the
underdetermined-ICA SCSS method. (f) and (g) denote the recovered male and
female speeches by using the Hilbert SCSS method.

sources. In our experiments, we derive a set of 64 basis func-
tions for each type of source.2 For example, to generate the
ICA speech basis functions, ten male and ten female speeches
from TIMIT speech database are used. Similarly, to generate
the ICA music basis functions, five Jazz and five piano signals
from RWC database are used. These training data exclude the
target sources which have been exclusively used to generate the
mixture signals. 2) Adaptation stage: the obtained ICA basis
functions from the training stage are further adapted based on
the current estimated sources during the separation process. At
this stage, both the estimated sources and the ICA basis func-
tions are jointly optimized by maximizing the log-likelihood of
the current mixture signal until it converges to the steady-state
solution.

2) Hilbert Subspace Decomposition SCSS (Hilbert SCSS)
Method: The method of [31] performs source separation
without training information by decomposing the Hilbert spec-
trum of the mixed signal into independent source subspaces.
Once a set of independent basis vectors is obtained by means
of PCA and ICA, the KLd-based -means clustering algorithm
is utilized for grouping purpose and the Hilbert spectrum of
individual source is constructed by each group subset. The
time-domain estimated sources are calculated from the Hilbert
spectrum of each of the extracted signals.

3) Comparison Results: Fig. 11 shows the separated male
and female speeches based on the above two SCSS methods.
Fig. 12 shows the comparison results between the proposed
method and the above two SCSS methods in terms of the ISNR.
In the case of the underdetermined-ICA SCSS method, we
note that the recovered sources have not been clearly separated
and the mixing ambiguity region is still large when compared
with the original speeches in Fig. 11 (top panels). Our pro-
posed method has yielded considerable improvement over the
underdetermined-ICA SCSS method and this is summarized as
follows: 1) for mixture of music signals, our proposed method
results in an average improvement of 2.3 dB per source, 2) for

2Here the types of source signals are the male speech, female speech, Jazz,
and piano music.

Fig. 12. Overall results between the proposed method, underdetermined-ICA,
and Hilbert SCSS methods.

mixture of speech and music signal, an average improvement
of 2.9 dB per source, and 3) for mixture of speech signals,
an average improvement of 4.1 dB per source. The perfor-
mance of the underdetermined-ICA SCSS method relies on
the ICA-derived time domain basis functions. Fig. 12 indicates
that high level performance is achieved only when the basis
functions of each source are sufficiently distinct. The result
becomes considerably less robust in separating mixture where
the original sources are of the same type, e.g., mixture of
speeches [31]. Speech basis functions learned from the ICA
exhibit waveforms that resemble Gabor wavelets; however, the
set of basis functions from the male speech has high degree of
correlation with that of the female speech. Therefore, these two
sets of basis functions overlap significantly with each other.
Hence, this method is less efficient in resolving the mixing
ambiguity in portions of the speech mixture where the basis
functions for the male and female are very similar.

In Fig. 12, “U-ICA SCSS” and “H-SCSS” denote the Un-
derdetermined-ICA SCSS and Hilbert SCSS methods, respec-
tively. The decomposition obtained by the Hilbert SCSS method
shows that this technique leads to better separation results than
the underdetermined-ICA SCSS method. However, we note that
the separated speeches still contain high level of mixing am-
biguity and, therefore, it degrades the separation performance.
This is evidenced in Fig. 12 which shows the comparison of our
method with the Hilbert SCSS method: 1) for mixture of music
signals, the average improvement is 2.4 dB per source, 2) for
mixture of speech and music signal, the average improvement
is 2.5 dB per source, and 3) for mixture of speech signals, the
average improvement is 3.2 dB per source. The performance
of the Hilbert SCSS method relies too heavily on the derived
frequency independent basis vectors which are stationary over
time. Therefore, good separation results can be obtained only
if the basis vectors are statistical independent within the pro-
cessing window. The distinctiveness of the corresponding am-
plitude weighting vectors is also highly dependent on the inde-
pendence of the basis vectors. Thus, if the frequency features
are too similar, it becomes difficult to obtain the independent
basis vectors by using the ICA. This explains the reason Fig. 12
shows a relatively poorer performance when separating mixture
that contains speech sources. Comparing with the Hilbert SCSS
method, our proposed v-SNMF2D yields an optimally sparse
part-based decomposition that is unique under certain condi-
tions e.g., sparse and nonnegative component, making it unnec-
essary to impose constraints in the form of statistical indepen-
dence between the sources. Furthermore, the spectral bases
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and sparse code in our proposed method are derived sep-
arately at each individual IMF. Thus, these spectral bases and
temporal codes are nonstationary over time leading to more ro-
bust separation results compared with the stationary basis vec-
tors obtained from the Hilbert SCSS method.

D. Comparison With NMF-Based SCSS Methods

In this evaluation, the following NMF-based unsupervised
SCSS methods are used for comparison.

• NMF with Temporal Continuity and Sparseness Criteria
[26] (NMF-TCS) is based on factorizing the magnitude
spectrogram of the mixed signal into a sum of components,
which include the temporal continuity and sparseness cri-
teria into the separation framework.

• SNMF2D (as described in Section II).
• Automatic Relevance Determination NMF (NMF-ARD)

[39] exploits a hierarchical Bayesian framework SNMF
that amounts to imposing an exponential prior for pruning
and thereby enables estimation of the NMF model
order. The NMF-ARD assumes prior on , namely,

. The prior
model in the v-SNMF2D can be converted to the ARD
prior model by setting and summing all
the column elements, i.e., and

. Hence, the NMF-ARD method is
somewhat a special case of our proposed v-SNMF2D.

Currently, there is no reliable NMF method for automatic esti-
mation of the number of components and normally, this has to be
set manually. As discussed in Section III, each IMF is separated
into a number of components that corresponds exactly to the
number of sources. However, in this implementation, more com-
ponents than the number of sources are used for evaluating the
efficiency of our proposed method. In order to obtain the base-
line comparison of each method, all NMF algorithms are tested
by factorizing the mixture signal into com-
ponents. In the case of NMF-ARD, the threshold has been mod-
ified such that it accepts all the initialized components. Since
more than two components are used and the tested methods are
blind, there is no information to tell which component belongs
to which source. Thus, we utilize the clustering method pro-
posed in [26], where the original sources are used as reference
to create component clusters for each source. However, a large
number of components, i.e., may not necessarily pro-
duce better results since more sub-sources need to be classified.
If the recovered sub-sources are incorrectly clustered, then these
sub-sources will become interference to the supposedly correct
estimated source. We have carried out additional analysis to
compare the KLd-based -means clustering method [31] with
the supervised clustering method in [26]. Our finding shows that
if the sub-sources are too sparse, both methods will introduce
errors during the clustering process. For example, beyond the
seventh stage decomposition by the EMD, the TF sub-sources
are too sparse to assign them to the correct sources. If wrongly
clustered, this particular sub-source will become interference to
the intended source. To mitigate this situation, we have set a
power threshold as described in Section III to judge whether
the IMF is of acceptable quality. Our findings have shown that

Fig. 13. Average ISNR using different number of components.

the results based on KLd -means clustering method are iden-
tical to the supervised clustering method in [26] except in spe-
cial circumstances where the sub-sources are overly too sparse
in the TF domain. Fig. 13 shows the ISNR performance be-
tween the proposed method and the NMF-TCS, SNM2D and
NMF-ARD methods under different mixture types, and the in-
creasing number of components from 2,4,6,8,10.

The ISNR improvement of our method compared with
NMF-TCS, SNMF2D and NMF-ARD can be summarized as
follows: 1) for mixture of music signals, the average improve-
ment is 3.3 dB per source, 2) for mixture of speech and music
signal, the average improvement is 2.6 dB per source, and
3) for mixture of speech signals, the average improvement is
2.3 dB per source. Analyzing the separation results, NMF-ARD
performs with poorer results whereas the separation perfor-
mance by NMF-TCS is comparable with the SNMF2D. The
common feature among these three methods is that they do not
incorporate the preprocessing step that benefits the nonneg-
ative matrix factorization. This renders the performance less
efficient especially in terms of separating mixture that contains
speech sources. The result indicates that without the EMD
preprocessing, it becomes difficult to obtain the unique spectral
basis especially when the spectral overlapping between the
sources in TF domain is large since each column in may
contain the combination spectral information of both sources.
In this case, by directly using NMF methods, the separation of
sources is no longer efficient.

E. Proposed Method as De-Noising Algorithm

The primary aim of this paper is to develop effective signal
processing method to separate mixed signal into the original
sources. These sources represent the signals that contain infor-
mation that the end user wishes to extract. However, the pro-
posed method can be used as a de-noising tool on recordings
whereby one source is the informative signal while the other
source is the unwanted signal such as noise. In this setting, the
testing speech or music signal is normalized to unit power (i.e.,

is the normalized speech or music in (1)) and corrupted
by unwanted signal such as white noise, multi-talker babble,
street or car noise (i.e., is one of these unwanted signals)
taken from the AURORA database [41]. The input SNR ranges
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Fig. 14. De-noising results using the proposed method, EMD-MMSE, and
Spectral Subtraction (SS) methods.

from 0 to 30 dB and the de-noised result is measured in terms of
the output SNR [42]. We have compared the de-noising results
using our proposed method with EMD-MMSE method [43] and
spectral subtraction method [44]. Fig. 14 shows the comparison
of all the results.

Fig. 14 indicates that the proposed method can be applied to a
wide range of SNR values. The speech and music are the target
signals to be denoised. In the case of low input SNR (from 0 to
20 dB), good improvements in terms of output SNR have been
obtained. On the other hand, for the case of high input SNR
(from 20 to 30 dB) the output SNR has been maintained at a
relatively high level which indicates that the signal’s informa-
tion is still retained in the denoised signal. This shows the noise
adaptability of the proposed method. From the figure, the av-
erage performance improvement of our method compared with
the EMD-MMSE and SS methods are as follows: 1) For speech
source, across all input SNR levels, the average percentage of
output SNR improvement is 30% for babble noise, 39.2% for
car noise, 39.7% for street noise and 9.6% for white noise. 2) For
music source, the average percentage of output SNR improve-
ment is 27.8% for babble noise, 36.9% for car noise, 37.4% for
street noise and 8.1% for white noise. Fig. 15 shows the spectro-
grams of the original female speech, speech corrupted by white
noise at high SNR, and the recovered female speech using the
above three methods. The figure clearly indicates that there is
virtually no speech degradation by using the proposed method,
whereas the EMD-MMSE and SS methods degrade some of the
source information. Some of the errors have been marked in
the red box region. In summary, the proposed method has re-
sulted in significantly higher output SNR values than the SS
and EMD-MMSE methods across the various types of noise.
The only exception is the case of white noise interference (input
SNR at 0, 5, and 10 dB) where the SS method yields slightly
higher output SNR values. This is because the white noise power

Fig. 15. Example of de-noising results (female speech corrupted by white noise
with 25-dB input SNR) using the proposed method, EMD-MMSE, and Spectral
Subtraction (SS).

spectrum is uniform which can be accurately estimated and up-
dated by the SS method during periods when the target signal is
absent. However, for other types of noise, it is difficult to obtain
precisely the noise power spectrum since the frequencies change
randomly from frame to frame. This leads to poorer efficiency in
the de-noising process using the EMD-MMSE and SS methods.
Our proposed method focuses on the idea of source separation
to track the target signal in the TF domain and avoids directly
estimating the noise power spectrum; as such it becomes more
efficient to deal with noise whose frequencies change randomly
from frame to frame.

V. CONCLUSION

This paper has presented a novel framework of amalgamating
EMD with v-SNMF2D for single channel source separation.
In this paper, it is shown that the IMFs have several desirable
properties unique to single channel source separation problem:
1) the degree of mixing in each IMF is less ambiguous than
the mixed signal, 2) the IMFs has simpler and sparser spectral
and temporal patterns which allows the proposed v-SNMF2D
algorithm to efficiently track them, and 3) the IMFs serve as
the orthogonal temporal bases for signal separation; hence, er-
rors resulted from any IMF will be averaged over all the IMFs
leading to smaller errors at the signal reconstruction stage. In
the proposed v-SNMF2D algorithm, the sparsity parameters are
individually optimized and adaptively tuned using the varia-
tional Bayesian approach to yield the optimal sparse codes. The
proposed framework enjoys at least two significant advantages:
First, it avoids the strong constraints of separating blind source
without training knowledge. Second, the v-SNMF2D algorithm
gives a robust sparse decomposition and under non-negativity
condition, the decomposition is unique making it unnecessary
to impose constraints in the form of statistical independence of
the sources.
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