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Adaptive Sparsity Non-Negative Matrix Factorization
for Single-Channel Source Separation

Bin Gao, W. L. Woo, Member, IEEE, and S. S. Dlay

Abstract—A novel method for adaptive sparsity non-negative
matrix factorization is proposed. The proposed factorization
decomposes an information-bearing matrix into two-dimensional
convolution of factor matrices that represent the spectral dic-
tionary and temporal codes. We derive a variational Bayesian
approach to compute the sparsity parameters for optimizing the
matrix factorization. The method is demonstrated on separating
audio mixtures recorded from a single channel. In addition,
we have proven that the extraction of the spectral dictionary
and temporal codes is significantly more efficient with adaptive
sparsity which subsequently leads to better source separation
performance. Experimental tests and comparisons with other
sparse factorization methods have been conducted to verify the
efficacy of the proposed method.

Index Terms—Audio processing, non-negative matrix factoriza-
tion (NMF), single-channel source separation, sparse features.

I. INTRODUCTION

I N recent years, many algorithms have been developed for
matrix factorization. These consist of principal compo-

nent analysis (PCA), independent component analysis (ICA)
[1]–[4] and non-negative matrix factorization (NMF) [5]–[8].
Comparing to PCA and ICA, NMF gives a more part-based de-
composition [7] and the decomposition is unique under certain
conditions [8], making it unnecessary to impose the constraints
in the form of orthogonality and independence. These proper-
ties have led to a significant interest in NMF lately, e.g., blind
source separation (BSS) [9]–[11], data classification [12], [13],
data mining [14], pattern recognition [15], object detection [16]
and dimensionality reduction [17]. In this paper, we propose a
new NMF method for solving BSS problem. In a conventional
NMF, given a data matrix with

, NMF factorizes this matrix into a product of two
non-negative matrices

(1)

where and where and represent the
total number of rows and columns in matrix , respectively. If
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is chosen to be , no benefit is achieved at all. Thus the
idea is to determine so that the matrix can be com-
pressed and reduced to its integral components such as
is a matrix containing a set of dictionary vectors, and is
an encoding matrix that describes the amplitude of each dictio-
nary vector at each time point. A popular approach to solve the
NMF optimization problem is the multiplicative update algo-
rithm by Lee and Seung [7]. Multiplicative update-based fami-
lies of parameterized cost functions such as the Beta divergence
[18], and Csiszar’s divergences [19] have also been presented as
well. A sparseness constraint [20], [21] can be added to the cost
function, and this can be achieved by regularization using the

-norm. Here, “sparseness” refers to a representational scheme
where only a few units (out of a large population) are effectively
used to represent typical data vectors [20]. In effect, this implies
most units taking values close to zero while only few take sig-
nificantly nonzero values. Several other types of prior over
and can be defined, e.g., in [22]–[25], it is assumed that the
prior of and satisfy the exponential density and the prior
for the noise variance is chosen as an inverse gamma density. In
[26], Gaussian distributions are chosen for both and . The
model parameters and hyperparameters are adapted by using the
Markov chain Monte Carlo (MCMC) [27]–[29]. In all cases, a
fully Bayesian treatment is applied to approximate inference for
both model parameters and hyperparameters. While these ap-
proaches increase the accuracy of matrix factorization, it only
works efficient when large sample dataset is available. More-
over, it consumes significantly high computational complexity
at each iteration to adapt the parameters and its hyperparame-
ters. Regardless of the cost function and sparseness constraint
being used, the standard NMF or SNMF models [30] are only
satisfactory for solving source separation provided that the spec-
tral frequencies of the analyzed audio signal do not change over
time. However, this is not the case for many realistic audio sig-
nals. As a result, the spectral dictionary obtained via the NMF
or SNMF decomposition is not adequate to capture the temporal
dependency of the frequency patterns within the signal. The re-
cently developed two-dimensional sparse NMF deconvolution
(SNMF2D) model [30]–[32] extends the NMF model to be a
two-dimensional convolution of and where the spectral
dictionary and temporal code are optimized using the following
cost functions with sparse penalty:

(2)

(3)
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Fig. 1. Estimated spectral dictionary and temporal code of piano and trumpet
mixture using SNMF2D.

for where ,

and can be any function with
positive derivative such as given by

. Here denotes the
downward shift which moves each element in the matrix down

by rows, and denotes the right shift which moves each
element in the matrix to the right by columns. The SNMF2D
separates music mixture based on log-frequency spectrogram.
The classic spectrogram decomposes signals to components
of linearly spaced frequencies. However, in western music,
the typically used frequencies are geometrically spaced. Thus,
obtaining an acceptable low-frequency resolution is absolutely
necessary, while a resolution that is geometrically related to
the frequency is desirable, although not critical. The constant

transform as introduced in [33], tries to solve both issues.
In general, the twelve-tone equal tempered scale which forms
the basis of modern western music divides each octave into
twelve half notes where the frequency ratio between each
successive half note is equal [31]. The fundamental frequency
of the note which is half note above can be expressed
as . Taking the logarithmic, this gives

. Thus, in a log-frequency
representation the notes are linearly spaced. In our method, the
frequency axis of the obtained spectrogram is logarithmically
scaled and grouped into 175 frequency bins in the range of
50 Hz to 8 kHz (given 16 kHz) with 24 bins per octave
and the bandwidth follows the constant- rule. Fig. 1 shows an
example of the estimated spectral dictionary and temporal
code based on SNMF2D method on the log-frequency
spectrogram.

The and matrices can be derived using the cost func-
tions (2) or (3). The SNMF2D is effective in single-channel
audio source separation (SCASS) because it is able to capture
both the temporal structure and the pitch change of an audio
source. However, the drawbacks of SNMF2D originate from its
lack of a generalized criterion for controlling the sparsity of

. In practice, the sparsity parameter is set manually. When
SNMF2D imposes uniform sparsity on all temporal codes, this
is equivalent to enforcing each temporal code to be identical to
a fixed distribution according to the selected sparsity parameter.

In addition, by assigning the fixed distribution onto each indi-
vidual code, this is equivalent to constraining all codes to be sta-
tionary. However, audio signals are nonstationary in the TF do-
main and have different temporal structure and sparsity. Hence,
they cannot be realistically enforced by a fixed probability dis-
tribution. These characteristics are even more pronounced be-
tween different types of audio signals. In addition, since the
SNMF2D introduces many temporal shifts, this will result in
more temporal codes to deviate from the fixed distribution. In
such situation, the obtained factorization will invariably suffer
from either under- or over-sparseness which subsequently lead
to ambiguity in separating the audio mixture. Thus, the above
suggests that the present form of SNMF2D is still technically
lacking and is not readily suited for SCASS especially mixtures
involving different types of audio signals

In this paper, a novel adaptive sparsity two-dimensional
non-negative matrix factorization is proposed. Our proposed
model allows the following: 1) overcomplete representation
by allowing many spectral and temporal shifts which are not
inherent in the NMF and SNMF models. Thus, imposing
sparseness is necessary to give unique and realistic representa-
tions of the non-stationary audio signals. Unlike the SNMF2D,
our model imposes sparseness on element-wise so that each
individual code has its own distribution. Therefore, the sparsity
parameter can be individually optimized for each code. This
overcomes the problem of under- and over-sparse factorization.
2) Each sparsity parameter in our model is learned and adapted
as part of the matrix factorization. This bypasses the need of
manual selection as in the case of SNMF2D. The proposed
method is tested on the application of single channel music
separation and the results show that our proposed method can
give superior separation performance.

The paper is organized as follows. In Section II, the new
model is derived. Experimental results coupled with a series of
performance comparison with other NMF techniques are pre-
sented in Section III. Finally, Section IV concludes the paper.

II. PROPOSED METHOD

In this paper, we derive a new factorization method termed
as the adaptive sparsity two-dimensional non-negative matrix
factorization. The model is given by

where (4)

In (4), it is worth pointing out that each individual element in
is constrained to an exponential distribution with indepen-

dent decay parameter . Here, is the th column of ,

is the th row of and is assumed to be independently
and identically distributed (i.i.d.) as Gaussian distribution with
noise having variance . The terms , , and
are the maximum number of columns in , shifts, shifts
and column length in , respectively. This is in contrast with the
conventional SNMF2D where is simply set to a fixed con-

stant, i.e., for all . Such setting imposes uniform
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constant sparsity on all temporal codes which enforces each
temporal code to be identical to a fixed distribution according
to the selected constant sparsity parameter. The consequence
of this uniform constant sparsity has already been discussed in
Section I. In Section III, we will present the details of the spar-
sity analysis for source separation and evaluate its performance
against with other existing methods.

A. Formulation of the Proposed Adaptive Sparsity NMF2D

To facilitate such spectral dictionaries with adaptive sparse
coding, we first define ,

, and ,

and then choose a prior distribution over the factors
in the analysis equation. The posterior can be found by

using Bayes’ theorem as

(5)

where the denominator is constant and therefore, the log-poste-
rior can be expressed as

(6)

Thus, the likelihood of the factors and can be written1 as

(7)
where denotes the Frobenius norm. The second term in
(6) consists of the prior distribution of and where they
are jointly independent. Each element of is constrained to
be exponential distributed with independent decay parameters,
namely,

so that (8)

We constraint which corresponds to the improper
prior

(9)

Hence, the negative log likelihood serves as the cost function
defined as

1To avoid cluttering the notation, we shall remove the upper limits from the
summation terms. The upper limits can be inferred from (4).

(10)

The sparsity term forms the -norm regularization
which is used to resolve the ambiguity by forcing all structure
in onto . Therefore, the sparseness of the solution in (8) is
highly dependent on the regularization parameter .

1) Estimation of the Dictionary and Temporal Code: In (10),
the last term constrains each spectral dictionary to unit length.
This can be easily satisfied by normalizing each spectral dic-

tionary according to for all
. With this normalization, the two-dimen-

sional convolution of the spectral dictionary and temporal codes

is now represented as . The derivatives
of (10) corresponding to and of the adaptive sparsity
factorization model are given by

(11)

(12)

Thus, by following the approach of Lee and Seung [5], in matrix
notation, the multiplicative learning rules become

here (13)

(14)

where . In (14), superscript “ ”
denotes matrix transpose, “ ” is the element wise product, and

denotes a matrix with the argument on the diagonal.
The column vectors of will be factor-wise normalized to
unit length.

2) Estimation of the Adaptive Sparsity Parameter: Since

is obtained directly from the original sparse code matrix , it
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suffices to compute just for the regularization parameters asso-

ciated with . Therefore, we can set the cost function in (10)
with as

(15)

with represents the column vectorization, “ ” is the
Kronecker product, and is the identity matrix. Defining the
following terms:

...
...

...
...

...
...

...

(16)

Thus, (15) can be rewritten in terms of as

(17)

Note that and are vectors of dimension 1 where
. To determine , we use

the Expectation-Maximization (EM) algorithm and treat as
the hidden variable where the log-likelihood function can be
optimized with respect to . Using the Jensen’s inequality, it
can be shown that for any distribution , the log-likelihood
function satisfies the following:

(18)
One can easily check that the distribution that maximizes the
right-hand side of (18) is given by
which is the posterior distribution of . In this paper, we repre-
sent the posterior distribution in the form of Gibbs distribution:
as follows:

where

(19)
The functional form of the Gibbs distribution in (19) is ex-
pressed in terms of and this is crucial as it will enable us to
simplify the variational optimization of . The maximum-like-
lihood estimation of can be expressed by

(20)

Similarly,

(21)

Since each element of is constrained to be exponential
distributed with independent decay parameters, this gives

and therefore, (20) becomes

(22)

The Gibbs distribution treats as the dependent variable
while assuming all other parameters to be constant. As such,
the functional optimization of in (22) is obtained by differen-
tiating the terms within the integral with respect to and the
end result is given by

for (23)

where is the th element of . Since

where
, the iterative update rule for is given by

(24)

Despite the simple form of (23) and (24), the integral is difficult
to compute analytically and therefore, we seek an approxima-
tion to . We note that the solution naturally partition its
elements into distinct subsets and consisting of compo-
nents such that , and components such
that . Thus, the can be expressed as follows:

(25)

In (25), the term in is a constant and the cross-term

measures the orthogonality between
and , where is the sub-matrix of that

corresponds to , is the sub-matrix of that corresponds
to . In this paper, we intend to simply the expression in (25)
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by discounting the contribution from these terms and let
be approximated as . Given this
approximation, can be decomposed as

(26)

with and
. Since is on the boundary of

the distribution, this distribution is represented by using the
Taylor expansion about the MAP estimate, :

(27)

where , . We perform
variational approximation to by using the exponential
distribution

(28)

The variational parameters for are obtained
by minimizing the Kullback–Leibler divergence between
and

(29)

which leads to

(30)

where and

. The optimization of (30) can be accom-
plished by using the non-negative quadratic programming
method [34] or Gaussian–Newton multiplicative updates [35].
As for components , since none of the non-negative con-
straints are active, we approximate as unconstrained
Gaussian with mean . Thus, using the factorized approx-
imation in (23), we obtain the
following:

if

if
(31)

for and is the th element of sparse code
computed from (13) and its covariance is given by

if

Otherwise.
(32)

Thus, the update rule for computed from (24) can be obtained
as

(33)

where
if
if

. In order to test the effi-

cacy of our proposed method, we evaluate and compare the pro-
posed method with other existing sparse NMF methods in the
application of single channel audio source separation in the fol-
lowing section. The specific steps of the proposed method can
be summarized as: 1) initialize and with nonnegative

values; 2) normalize and com-

pute . 3). Minimize (30) with respect
to ; 4) calculate and using (31) and (33); 5). update

using (13) and re-compute ; and
6) update using (14).

III. SINGLE-CHANNEL SOURCE SEPARATION

A. Time-Frequency Representation

The SCASS problem can be treated with one observation
and several unknown sources, namely ,
where denotes the sources number and

denotes the time index. The goal is to estimate the
sources when only the observation signal is avail-
able. The time–frequency (TF) representation of the mixture

is given by , where
and denote the TF components obtained by applying
the short time Fourier transform (STFT) on and ,
respectively, e.g., . The time slots
are given by while frequency bins by

. Since each component is a function of and ,
we represent this as and

. The power spectrogram is defined as the
squared magnitude STFT and hence, its matrix representation is
given by where the superscript “ ” repre-
sents element wise operation. The matrices we seek to determine

are which will be obtained by using our proposed

matrix factorization as with and

estimated using (13) and (14). Once these matrices are esti-
mated, we form the th binary mask according to

if and zero otherwise. Fi-
nally, the estimated time-domain sources are obtained as

, where de-
notes the th estimated audio sources in the time-domain.
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B. Efficiency of Source Extraction in TF Domain

In this subsection, we will analyze how different sparsity fac-
torization methods impact on the source extraction performance
in TF domain for SCASS. For separation, one generates the TF
mask corresponding to each source and applies the generated
mask to the mixture to obtain the estimated source TF repre-
sentation. In particular, when the sources have no overlap in the
TF domain, an optimum mask (optimal source ex-
tractor) exists which allows one to extract the th original source
from the mixture as

(34)

Given any TF mask (source extractor) such that
for all , we define the efficiency of source

extraction (ESE) in the TF domain for target source in the
presence of the interfering sources as

(35)
where and are the TF representations of

and , respectively. The above represents the normal-
ized energy difference between the extracted source and inter-
ferences. We also define the ESE of the mixture with respect to
all the sources as

(36)

Equation (35) is equivalent to measuring the ability of extracting
the th source from the mixture given the
TF mask . Equation (36) measures the ability of ex-
tracting all the sources simultaneously from the mixture.
To further study the ESE, we use the following two criteria [36]:
1) preserved signal ratio (PSR) which determines how well the
mask preserves the source of interest and 2) signal-to-interfer-
ence ratio (SIR) which indicates how well the mask suppresses
the interfering sources:

(37)

Using (37), (35) can be expressed as
. Analyzing the terms in (34), we have

if
if

if
finite if

(38)

where “ ” denotes the support. When (i.e.,
and ), this indicates that the

mixture is separable with respect to the th source .
In other words, does not overlap with
and the TF mask has perfectly separated the th

source from the mixture . This corresponds
to in (34). Hence, this is the max-
imum attainable value. For other cases of and

, we have . Using the above concept, we
can extend the analysis for the case of separating sources.
A mixture is fully separable to all the sources if and
only if in (36). For the case , this implies that some
of the sources overlap with each other in the TF domain and
therefore, they cannot be fully separated. Thus, provides the
quantitative performance measure to evaluate how separable
the mixture is in the TF domain. In the following, we show the
analysis of how different sparsity factorization methods affect
the ESE of the mixture

IV. RESULTS AND ANALYSIS

A. Experiment Setup

The proposed method is tested by separating music sources.
Several experimental simulations under different conditions
have been designed to investigate the efficacy of the proposed
method. All simulations and analyses are performed using a
PC with Intel Core 2 CPU 6600 at 2.4 GHz and 2 GB RAM.
MATLAB is used as the programming platform. To generate
mixed signal, we have analyzed a 4-s polyphonic music con-
taining trumpet and piano. The mixed signal is sampled at
16–kHz sampling rate. In addition to above polyphonic music
mixture, we have also tested the proposed method in the wider
types of music mixtures. Thirty music signals including ten
jazz, ten piano, and ten trumpet signals are selected from the
RWC [37] database. Three types of mixture have been gener-
ated: 1) jazz mixed with piano; 2) jazz mixed with trumpet;
and 3) piano mixed with trumpet. The sources are randomly
chosen from the database and the mixed signal is generated by
adding the chosen sources. In all cases, the sources are mixed
with equal average power over the duration of the signals. The
TF representation is computed by normalizing the time-domain
signal to unit power and computing the STFT using 2048 point
Hanning window FFT with 50% overlap. The frequency axis
of the obtained spectrogram is then logarithmically scaled and
grouped into 175 frequency bins in the range of 50 Hz to 8 kHz
with 24 bins per octave. This corresponds to twice the resolution
of the equal tempered musical scale. For the proposed adaptive
sparsity factorization model, the convolutive components in
time and frequency are selected to be 1) for piano and trumpet
mixture and , respectively; 2)
for piano and jazz mixture and ,
respectively; 3) for trumpet and jazz mixture
and , respectively. The corresponding sparse
factor was determined by (31). We have evaluated our sepa-
ration performance in terms of the signal-to-distortion ratio
(SDR) which is one form of perceptual measure. This is a
global measure that unifies source-to-interference ratio (SIR),
source-to-artifacts ratio (SAR), and source-to-noise ratio
(SNR). MATLAB routines for computing these criteria are
obtained from the SiSEC’08 webpage [38], [39].

B. Impact of Adaptive and Fixed Sparsity

In this implementation, we have conducted several experi-
ments to compare the performance of the proposed method with
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Fig. 2. Time-domain representation and spectrogram of the piano music (top
panels), trumpet music (middle panels), and mixed signal (bottom panels).

Fig. 3. Estimated� and� for Case 1).

SNMF2D under different sparsity regularization. To investigate
the impact of sparsity regularization on source separation per-
formance, three cases2 are conducted:

Case 1) Uniform constant sparsity with low sparseness,
for all .

Case 2) Uniform constant sparsity with high sparseness,
for all .

Case 3) Proposed adaptive sparsity according to (31).
Fig. 2 shows the time and TF domains of the original trumpet,
piano music and its mixture. The trumpet and the piano play a
different short melodic passage each consisting of three distinct
notes. However, both trumpet and piano overlap in time, and the
piano notes are interspersed in frequency with the trumpet notes.
Hence, this is a challenging task for single-channel separation
which will test the impact of sparsity for matrix factorization.

1) Estimated Spectral Dictionary and Temporal Codes:
Figs. 3–5 show the matrix factorization results in terms of the
spectral dictionary and temporal codes for Cases 1)–3),
respectively. Fig. 3 shows the case of “under-sparse” factoriza-
tion which is clearly evident by the spreading of the estimated

2Cases 1) and 2) correspond to the two-dimensional sparse non-negative ma-
trix deconvolution (SNMF2D) [30], [31]. This section therefore presents the
comparison of our proposed method with the SNMF2D with uniform constant
sparsity.

Fig. 4. Estimated� and� for Case 2).

Fig. 5. Estimated� and� for Case 3).

temporal codes. Fig. 4 shows the case of “over-sparse” factor-
ization where some of the temporal codes have been discarded.
On the other hand, Fig. 5 shows the case of “optimally-sparse”
factorization based on the proposed adaptive tuning of the
sparsity parameter.

2) Audio Source Separation Results: In above, the analysis of
the sparsity factorization was presented in terms of and .
In the following, the audio source separation results for each
case are shown. In particular, Figs. 6 and 7 show the separated
sources in terms of spectrogram and time-domain representa-
tion, respectively. Panels (C)–(H) in both Figs. 6 and 7 clearly
show that better source separation results require careful selec-
tion of the sparsity regularization. In the case of “under-sparse”
factorization [e.g., (C)-(D)], the factorization still contains the
mixed components (as indicated by the red box marked area)
in each separated source. In the case of over-sparse factoriza-
tion [e.g., (E)-(F)], the spectral dictionary of the source occurs
too rarely in the spectrogram and this results in lesser informa-
tion which do not fully recover the original source as noted in
the middle panels (indicated by the red box marked area). In
the case of the proposed method [e.g., (G)-(H)], it assigns a
regularization parameter to each temporal code which is indi-
vidually and adaptively tuned to yield the optimal number of
times the spectral dictionary of a source recurs in the spectro-
gram. The sparsity on is imposed element-wise in the pro-
posed model so that each individual code in is optimally
sparse in the -norm. In the conventional SNMF2D method,
the sparsity is not fully controlled but is imposed uniformly
on all the codes. The ensuing consequence is that the temporal
codes are no longer optimal and this leads to “under-sparse” or
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Fig. 6. Separated signals in spectrogram. (A)–(B): original piano and trumpet
music. (C)–(D): piano and trumpet music for Case 1). (E)–(F): piano and
trumpet music for Case 2). (G)–(H): piano and trumpet music for Case 3).

Fig. 7. Separated signals in time-domain. (A)–(B): piano and trumpet music
for Case 1). (C)–(D): piano and trumpet music for Case 2). (E)–(F): piano and
trumpet music for Case 3).

“over-sparse” factorization which eventually results in inferior

Fig. 8. Time-domain representation and spectrogram of the jazz music (top
panels), trumpet music (middle panels), and mixed signal (bottom panels).

Fig. 9. Separated signals in time and TF domain.

separation performance. Figs. 8 and 9 shows another example
of separating jazz and trumpet mixture based on the proposed
method.

In Fig. 8, it is shown that both trumpet and jazz music overlap
in time, and the jazz notes are cross interspersed in frequency
with the trumpet notes (e.g., both notes mixed together between
0 to 0.5 s, 0.8 to 1.4 s, and 1.7 to 2.3 s). Fig. 9 shows the separated
sources in terms of the spectrogram and time-domain represen-
tation, respectively.

In Fig. 9, it is clearly shown that all cross interspersed notes
associated with each source have been successfully separated by
using the proposed adaptive method. The overall comparison re-
sults between the adaptive and uniform sparsity methods have
been summarized in Table I. According to the table, SNMF2D
with adaptive sparsity tends to yield better result than the uni-
form sparsity-based methods. We may summarize the average
performance improvement of our method against the uniform
constant sparsity method: 1) For the piano and trumpet music,
the improvement per source in terms of the SDR is 2 dB, SAR
1.8 dB, and SIR 2.2 dB. 2) For the piano and jazz music, the im-
provement per source in terms of SDR is 1.3 dB, SAR 1.1 dB,
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TABLE I
PERFORMANCE COMPARISON BETWEEN ADAPTIVE AND UNIFORM SPARSITY METHODS

Fig. 10. Separation results of SNMF2D by using different uniform regulariza-
tion.

and SIR 1.7 dB. 3) For the trumpet and jazz music, the improve-
ment per source in terms of SDR is 1.1 dB, SAR 1.5 dB, and SIR
1.8 dB.

On a point of interest, the analyses for Cases 1) and 2) in
Figs. 6 and 7 are based on the single fixed uniform sparsity pa-
rameter where is set to be either too high and too low,
respectively. From these results, it could be argued that such
settings of uniform sparsity parameter are unrealistic for source
separation. To investigate this further, the impact of sparsity reg-
ularization on the separation results in terms of the SDR under
different uniform regularization has been undertaken and the re-
sults are plotted in Fig. 10. In this implementation, the uniform
regularization is chosen as for all sparsity
parameters i.e., . The best result is retained and
tabulated in Table I.

In Fig. 10, the results have clearly indicated that there are
certain values of where the SNMF2D performs with excep-
tionally good results. In the case of piano and trumpet mixtures,
the best performance is obtained when ranges from 0.5 to 2
where the highest SDR is 8.1 dB. As for jazz and piano mix-
tures, the best performance is obtained when ranges from 1.0
to 2.5 where the highest SDR is 7.2 dB and for jazz and trumpet
mixtures, the best performance is obtained when ranges from
2 to 3.5 where the highest SDR is 8.6 dB. On the contrary, when

Fig. 11. Convergence trajectory of the sparsity: (A) � , (B) � , (C)
� , (D) � .

is set too high, the separation performance tends to degrade. It
is also worth pointing out that the separation results are coarse
when the factorization is non-regularized Here, we see that 1)
for piano and trumpet mixtures, the SDR is only 6.2 dB, 2) for
jazz and piano mixtures, the SDR is only 5.6 dB, and 3) for jazz
and trumpet mixtures, the SDR is only 4.7 dB. From above, it is
evident that uniform sparsity scheme gives varying performance
depending on the value of which in turn depends on the type of
mixture. Hence, this poses a practical difficulty in selecting the
appropriate level sparseness necessary for matrix factorization
to resolve the ambiguity between the sources in the TF domain.

3) Adaptive Behavior of Sparsity Parameter: In this subsec-
tion, the adaptive behavior of the sparsity parameters by using
the proposed method will be demonstrated. Several sparsity pa-
rameters have been selected to illustrate its adaptive behavior.
Fig. 11 shows the convergence trajectory of four adaptive spar-
sity parameters , , , and corresponding to
their respective element codes. All sparsity parameters are ini-
tialized as for all and are subsequently adapted
according to (31). After 300 iterations, the above sparsity pa-
rameters converge to their steady-states. By examining Fig. 11,
it is noted that the converged steady-state values are signifi-
cantly different for each sparsity parameter e.g., ,

, , and even though
they started at the same initial condition. This shows that each
element code has its own sparseness. In addition, it is worth
pointing out that in the case of piano and trumpet mixture the
SDR result rises to 10 dB when is adaptive. This represents
a 2 dB per source improvement over the case of uniform con-
stant sparsity (which is only 8.1 dB in Table I). On the separate
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TABLE II
OVERALL ESE PERFORMANCE

Fig. 12. Separated signals in spectrogram. (A)-(B): piano and trumpet music
using SNMF. (C)-(D): piano and trumpet music using NMF-ARD. (E)-(F):
piano and trumpet music using NMF-TCS.

hand, when no sparsity is imposed onto the codes the SDR result
immediately deteriorates to approximately 6 dB. This represents
a 4 dB per source depreciation compared with the proposed
adaptive sparsity method. From above, the results are ready to
suggest that the performances of source separation have been
undermined when the uniform constant sparsity scheme is used.
On the contrary, improved performances can be obtained by al-
lowing the sparsity parameters to be individually adapted for
each element code. This is evident based on source separation
performance as indicated in Table I.

4) Efficiency of Source Extraction in TF Domain: In this
subsection, we will analyze the efficiency of source extraction
based on the three cases previously enunciated at the beginning
of Section IV-B. Binary masks are constructed using the ap-
proach discussed in Section III-A for each of the three cases.
To ensure fair comparison, we generate the ideal binary mask

Fig. 13. Separated signals in time-domain. (A)-(B): piano and trumpet music
using SNMF. (C)-(D): piano and trumpet music using NMF-ARD. (E)-(F):
piano and trumpet music using NMF-TCS.

(IBM) [40] from the original source which is used as a refer-
ence for comparison. The IBM for a target source is found for
each TF unit by comparing the energy of the target source to
the energy of all the interfering sources. Hence, the ideal binary
mask produces the optimal signal-to-distortion ratio (SDR) gain
of all binary masks and thus, it can be considered as an optimal
source extractor in TF domain. The comparison results between
IBM, uniform sparsity and proposed adaptive sparsity are tabu-
lated in Table II.

In Table II, the results of PSR, SIR, and ESE for each mixture
type are obtained by averaging over 100 realizations. From lis-
tening performance test, any indicates acceptable
quality of source extraction performance in TF domain. There-
fore, it is noted from the results in Table II that both IBM and
the proposed method satisfy this condition. In addition, the pro-
posed method yields better ESE improvement against the uni-
form sparsity method. The average improvement results have
been summarized as follows: 1) for the piano and trumpet music,
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TABLE III
PERFORMANCE COMPARISON BETWEEN OTHER NMF BASED SCASS METHODS AND PROPOSED METHOD

TABLE IV
ESE COMPARISON BETWEEN OTHER NMF-BASED SCASS METHODS AND THE PROPOSED METHOD

18.4%; 2) for the piano and jazz music 26.5%; 3) for the trumpet
and jazz music, 20.6%. In addition, the average SIR of the pro-
posed method exhibits much a higher value than the uniform
sparsity SNMF2D. This clearly shows that the amount of in-
terference between any two sources is lesser for the proposed
method. Therefore, the above results unanimously indicate that
the proposed adaptive sparsity method leads to higher ESE re-
sults than the uniform constant sparsity method.

C. Impact of Adaptive and Fixed Sparsity

In Section IV-B, analysis has been carried out to investigate
effects between adaptive sparsity and uniform constant sparsity
on source separation. In this evaluation, we compare the pro-
posed method with other sparse NMF-based source separation
methods. These consist of the following:

• SNMF (a multiplicative update algorithm by Lee and
Seung [5]). The uniform constant sparsity parameter is
progressively varied from 0 to 10 with every increment
of 0.1 (i.e., ) and the best result is
retained for comparison.

• Automatic relevance determination NMF (NMF-ARD)
[41] exploits a hierarchical Bayesian framework SNMF
that amounts to imposing an exponential prior for pruning
and thereby enables estimation of the NMF model
order. The NMF-ARD assumes prior on , namely,

and uses au-

tomatic relevance determination (ARD) approach to

determine the desirable number of components in . The
initialization number of components in is 10.

• NMF with temporal continuity and sparseness criteria [42]
(NMF-TCS) is based on factorizing the magnitude spectro-
gram of the mixed signal into a sum of components, which
include the temporal continuity and sparseness criteria into
the separation framework. In [42], the temporal continuity

is chosen as , sparseness weight is
chosen as . The best separation result
is retained for comparison.

In Figs. 12 and 13, panels (A)-(F) show that the above
methods did not fully separate the music mixture. Many spec-
tral and temporal components are missing from the recovered
sources and these have been highlighted (marked red box) in all
panels. The above methods fail to take into account the relative
position of each spectrum and thereby discarding the temporal
information. Better separation results will require a proper
model that can represent both temporal structure and the pitch
change which occurs when an instrument plays different notes
simultaneously. If the temporal structure and the pitch change
are not considered in the model, the mixing ambiguity is still
contained in each separated source. Table III further gives the
SDR, SAR, and SIR comparison results between our proposed
method and the above three sparse NMF methods.

The improvement of our method compared with NMF-TCS,
SNMF and NMF-ARD can be summarized as follows: 1) for the
piano and trumpet music, the average improvement per source
in terms of the SDR is 6.3 dB, SAR 4.8 dB, and SIR 5.1 dB;
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2) for the piano and jazz music, the average improvement per
source in terms of SDR is 5 dB, SAR 3.9 dB, and SIR 4.7 dB;
3) for the trumpet and jazz music, the average improvement per
source in terms of SDR is 5.4 dB, SAR 4.2 dB, and SIR 4.3
dB. In the case of ESE (see Table IV), the proposed method
exhibits much better average ESE of approximately 106.9%,
138.8% and 114.6% improvement with NMF-TCS, SNMF
and NMF-ARD, respectively. Analyzing the separation results
and ESE performance, the proposed method leads to the best
separation performance for both recovered sources. The SNMF
method performs with poorer results whereas the separation
performance by the NMF-TCS method is slightly better than the
NMF-ARD and SNMF methods. Our proposed method gives
significantly better performance than the NMF-TCS, SNMF
and NMF-ARD methods. The spectral dictionary obtained via
NMF-TCS, SNMF and NMF-ARD methods are not adequate
to capture the temporal dependency of the frequency patterns
within the audio signal. In addition, the NMF-TCS, SNMF
and NMF-ARD do not model notes but rather unique events
only. Thus, if two notes are always played simultaneously they
will be modeled as one component. Also, some components
might not correspond to notes but rather to the model, e.g.,
background noise.

V. CONCLUSION

The paper presents a new adaptive sparsity non-negative ma-
trix factorization. The impetus behind this work is that the spar-
sity achieved by SNMF and SNMF2D is not enough; in such
situations it might be useful to control the degree of sparseness
explicitly. In the proposed method, the regularization term is
adaptively tuned using a variational Bayesian approach to yield
desired sparse decomposition, thus enabling the spectral dictio-
nary and temporal codes of nonstationary audio signals to be es-
timated more efficiently. This has been verified concretely based
on our simulation results. In addition, the proposed method has
yielded significant improvements in single channel music sep-
aration when compared with other sparse NMF-based source
separation methods.
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non-negative matrix factorization: Family of new algorithms,” in Proc.
Int. Conf. Ind. Compon. Anal. Blind Signal Separat. (ICABSS’06),
Charleston, SC, Mar. 2006, vol. 3889, pp. 32–39.

[20] P. O. Hoyer, “Non-negative matrix factorization with sparseness con-
straints,” J. Mach. Learn. Res., vol. 5, pp. 1457–1469, 2004.

[21] T. Virtanen, “Monaural sound source separation by non-negative
matrix factorization with temporal continuity and sparseness cri-
teria,” IEEE Trans. Audio, Speech, Lang. Process., vol. 15, no. 3, pp.
1066–1074, Mar. 2007.

[22] E. Vincent, “Musical source separation using time–frequency source
priors,” IEEE Trans. Audio, Speech, Lang. Process., vol. 14, no. 1, pp.
91–98, Jan. 2006.

[23] A. Ozerov and C. Févotte, “Multichannel nonnegative matrix factor-
ization in convolutive mixtures. With application to blind audio source
separation,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process.
(ICASSP’09), 2009, pp. 3137–3140.

[24] G. Mysore, P. Smaragdis, and B. Raj, “Non-negative hidden Markov
modeling of audio with application to source separation,” in Proc. 9th
Int. Conf. Latent Variable Anal. Signal Separat. (LCA/ICA), 2010.

[25] M. Nakano et al., “Nonnegative matrix factorization with Markov-
chained bases for modeling time-varying in music spectrograms,” in
Proc. 9th Int. Conf. Latent Variable Anal. Signal Separat. (LCA/ICA),
2010.

[26] A. T. Cemgil, “Bayesian inference for nonnegative matrix factorization
models,” Comput. Intell. Neurosci., no. Doi: 10.1155/2009/785152,
2009.

[27] S. Moussaoui, D. Brie, A. Mohammad-Djafari, and C. Carteret,
“Separation of non-negative mixture of non-negative sources using
a Bayesian approach and MCMC sampling,” IEEE Trans. Signal
Process., vol. 54, no. 11, pp. 4133–4145, Nov. 2006.

[28] M. N. Schmidt, O. Winther, and L. K. Hansen, “Bayesian non-negative
matrix factorisation,” in Proc. Int. Conf. Ind. Compon. Anal. Signal
Separat., 2009.

[29] R. Salakhutdinov and A. Mnih, “Bayesian probabilistic matrix fac-
torization using Markov chain Monte Carlo,” in Proc. 25th Int. Conf.
Mach. Learn., 2008, pp. 880–887.

[30] M. Morup and M. N. Schmidt, Sparse Non-Negative Matrix Factor
2-D Deconvolution. Copenhagen, Denmark: Technical Univ. of Den-
mark, 2006.

[31] M. N. Schmidt and M. Morup, “Nonnegative matrix factor 2-D decon-
volution for blind single channel source separation,” in Proc.Int. Conf.
Ind. Compon. Anal. Blind Signal Separat. (ICABSS’06), Charleston,
SC, Mar. 2006, vol. 3889, pp. 700–707.

[32] B. Gao, W. L. Woo, and S. S. Dlay, “Single channel source separation
using EMD-subband variable regularized sparse features,” IEEE Trans.
Audio, Speech, Lang. Process., vol. 19, no. 4, pp. 961–976, May 2011.



GAO et al.: ADAPTIVE SPARSITY NMF FOR SINGLE-CHANNEL SOURCE SEPARATION 1001

[33] J. C. Brown, “Calculation of a constant � spectral transform,” J.
Acoust. Soc. Amer., vol. 89, no. 1, pp. 425–434, 1991.

[34] L. Yuanqing, “� -Norm sparse Bayesian learning: theory and applica-
tions,” Ph.D. dissertation, Univ. of Pennsylvania, Philadelphia, 2008.

[35] F. Sha, L. K. Saul, and D. D. Lee, “Multiplicative updates for nonnega-
tive quadratic programming in support vector machines,” in Proc. Adv.
Neural Information Process. Syst., 2002, vol. 15, pp. 1041–1048.

[36] O. Yilmaz and S. Rickard, “Blind separation of speech mixtures via
time-frequency masking,” IEEE Trans. Signal Process., vol. 52, no. 7,
pp. 1830–1847, Jul. 2004.

[37] M. Goto, H. Hashiguchi, T. Nishimura, and R. Oka, “RWC music data-
base: Music genre database and musical instrument sound database,”
in Proc. Int. Symp. Music Inf. Retrieval (ISMIR), Baltimore, MD, Oct.
2003, pp. 229–230.

[38] Signal Separation Evaluation Campaign (SiSEC 2008), 2008. [On-
line]. Available: http://sisec.wiki.irisa.fr

[39] E. Vincent, R. Gribonval, and C. Fevotte, “Performance measurement
in blind audio source separation,” IEEE Trans. Speech Audio Process.,
vol. 14, no. 4, pp. 1462–1469, Jul. 2005.

[40] D. L. Wang, “On ideal binary mask as the computational goal of audi-
tory scene analysis,” in Speech Separation by Humans and Machines,
P. Divenyi, Ed. Norwell, MA: Kluwer, 2005, pp. 181–197.

[41] M. Mørup and K. L. Hansen, “Tuning pruning in sparse non-negative
matrix factorization,” in Proc. 17th Eur. Signal Process. Conf. (EU-
SIPCO’09), Glasgow, U.K., 2009.

[42] T. Virtanen, “Monaural sound source separation by non-negative
matrix factorization with temporal continuity and sparseness cri-
teria,” IEEE Trans. Audio, Speech, Lang. Process., vol. 15, no. 3, pp.
1066–1074, Mar. 2007.

Bin Gao received the B.S. degree in communications
and signal processing from Southwest Jiao Tong Uni-
versity, Chengdu, China in 2005, the M.Sc. degree
(with distinction) in communications and signal pro-
cessing from Newcastle University, Newcastle upon
Tyne, U.K., in 2007, and the Ph.D. degree from New-
castle University in 2007 and his research topic was
single-channel blind source separation under the su-
pervision of Dr. Woo and Prof. Dlay.

Currently, He is a Research Associate at Newcastle
University. His research interests include audio and

image processing, machine learning, structured probabilistic modeling on audio
applications such as audio source separation, feature extraction, and denoising.

W. L. Woo (M’11) was born in Malaysia. He
received the B.Eng. degree (first class honors) in
electrical and electronics engineering and the Ph.D.
degree from the Newcastle University, Newcastle
upon Tyne, U.K.

He is currently a Senior Lecturer with the School
of Electrical, Electronics, and Computer Engi-
neering, Newcastle University. His major research
is in the mathematical theory and algorithms for
nonlinear signal and image processing. This in-
cludes areas of blind source separation, machine

learning, multidimensional signal processing, signal/image deconvolution,
and restoration. He has an extensive portfolio of relevant research supported
by a variety of funding agencies. Prior to joining the school, he worked on
source separation techniques supported by QinetiQ on signal processing-based
applications. He has published over 250 papers on these topics on various
journals and international conference proceedings. Currently, he serves on the
editorial board of the many international signal processing journals.

Dr. Woo was awarded the IEE Prize and the British Scholarship in 1998 to
continue his research work. He actively participate in international conferences
and workshops, and serves on their organizing and technical committees. In
addition, he acts as a consultant to a number of industrial companies that in-
volve the use of statistical signal and image processing techniques. He is also a
member of the Institution Engineering Technology (IET)

S. S Dlay received the B.Sc. (honors) degree in
electrical and electronic engineering and the Ph.D. in
VLSI design from Newcastle University, Newcastle
upon Tyne, U.K., in 1979 and 1983, respectively.

In 1984, he was appointed as a Post-Doctoral
Research Associate at Newcastle University and
helped to establish an Integrated Circuit Design
Centre, funded by the EPSRC. In November 1984,
he was appointed as a Lecturer in the Department
of Electronic Systems Engineering at the University
of Essex. In 1986 he rejoined Newcastle University

as a Lecturer in the School of Electrical, Electronic, and Computer Engi-
neering, then in 2001 he was promoted to Senior Lecturer. In recognition of
his major achievements he has been appointed to a Personal Chair in Signal
Processing Analysis. He is currently Head of the Signal Processing theme. He
has published over 250 research papers and his research interests lie in the
mathematical advancement and application of modern signal processing theory
to biometrics and security, biomedical signal processing and implementation
of signal processing architectures.

Prof. Dlay held a Scholarship from the Engineering and Physical Science
Research Council (EPSRC) and the Charles Hertzmann Award. He serves on
many editorial boards and has played an active role in numerous international
conferences in terms of serving on technical and advisory committees as well
as organizing special sessions. He is a College Member of the EPSRC.


