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By using the manifold separation techniques, root-MUSIC designed
for uniform linear arrays has been extended to arbitrary geometries at
the cost of increased computational complexity. A fast algorithm is pro-
posed that exploits the Laurent structure of the polynomial to conduct
fast spectral factorisation via the Schur algorithm. Then Arnoldi iter-
ation is employed to compute only a few of the largest eigenvalues.
This implies that a large number of the unwanted eigenvalues (or
roots) are exempt from the calculation and therefore the computational
complexity is reduced significantly.

Introduction: Conventional root-MUSIC is under the assumption of
uniform linear arrays. However, root-MUSIC has been extended to
operate with any arbitrary arrays by using manifold separation
techniques (MST) [1, 2]. In [3] an alternative technique, called
Fourier-domain root-MUSIC, can also extend the root-MUSIC to arbi-
trary arrays with improved performance-to-complexity tradeoffs.
Unfortunately, these extensions are achieved at the cost of increased
computational complexity because the degree of the polynomial is a
significantly large number. A computationally efficient method, called
line-search root-MUSIC, has been proposed in [3]. Nevertheless this
method is essentially identical to the conventional MUSIC, implying
that the resolution ability is inferior to the root-based methods [4].
In this Letter, a new algorithm is proposed, which provides the same
resolution ability with smaller computational burden.

Extended root-MUSIC: Consider an array of N sensors, with sensor
geometry r (planar or linear), operating in the presence of M uncorre-
lated narrowband sources. By using MST, the manifold vector S(r, u)
can be written as follows:

Sðr; uÞ ¼ GðrÞdðuÞ þ 1 ð1Þ

where the matrix G (r) [CN�Q depends on array geometry only. For the
details of G(r), see [1, 2]. The Vandermonde structured vector d(u) [
CQ�1 is a function of direction-of-arrival (DOA) only, defined as

dðuÞ ¼
e jðQ�1=2Þuffiffiffiffiffiffi

2p
p ½1; z; . . . ; zQ�1�

T
ð2Þ

where z ¼ e 2ju and u is the DOA. (.)T denotes transpose operation. Note
that only the azimuth angle u [ [08, 3608), measured anticlockwise with
respect to the x-axis, is considered in this Letter. The modelling error 1
can be safely neglected, provided that Q is a sufficiently large number.

Performing eigenvalue decomposition on the covariance matrix of the
received data yields Es and En, which are eigenvectors corresponding to
the M largest eigenvalues and the remaining (N 2 M ) eigenvalues,
respectively.

Then a polynomial is constructed as follows:

f ðzÞ ¼ SH ðr; uÞðEnEH
n ÞSðr; uÞ

¼ dH ðuÞ ðGH
ðrÞEnEH

n GðrÞÞ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
WA
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¼
1
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PQ�1

i¼�ðQ�1Þ

biz
�i
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where (.)H denotes conjugate transpose. The coefficient bi is the sum of
entries of A along the ith diagonal, i.e.

bi ¼
P
8m�n¼i

Amn ð4Þ

with Amn denoting the (m, n)th entry of A. f (z) is a polynomial of degree
(2Q 2 2), meaning that there are (2Q 2 2) roots. Since S(r, u) lies in the
signal subspace, the projection of S(r, u) onto the noise subspace EnEn

H is
zero, implying that z corresponding to the true DOA is the root of the
above polynomial. Therefore, the DOAs can be obtained as the phase
angles of the roots closest to the unit circle. This method is referred to
as the extended root-MUSIC in this Letter.

However, the requirement of computing all the (2Q 2 2) roots of (3),
coupled with the fact that Q is significantly large, may render this
method computationally expensive. Instead, only M roots need to be
calculated in the algorithm presented next. Note that the proposed
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method is also applicable to the Fourier-domain root-MUSIC technique,
which yields a polynomial similar to (3).

Proposed algorithm: Taking into account the Hermitian property of A,
one obtains bi ¼ b�2i, where (.)� represents complex conjugate operation.
This implies that f (z) is a Laurent polynomial [5]. Also, f (z) is non-nega-
tive because f (z) ¼ kEn

H S(r, u)k2 � 0, where k.k denotes the Euclidean
norm of a vector. According to Lemma 1 of [5], f (z) can be factorised as

f ðzÞ ¼ c1 f1ðzÞ f
�

1 ð1=z
�Þ ð5Þ

where c1 is a positive constant. From (5), one can observe that the roots
of f (z) appear in conjugate reciprocal pairs, i.e. if z1 is a root of f (z), then
(z1

21)� is also a root. This property suggests that computing half of the
roots (i.e. roots of f1(z)) is sufficient to find the roots of interest. To
this end, a fast spectral factorisation method based on the Schur algor-
ithm [5] is applied, which can be implemented in the following steps:

1. Initialise a (Q � 2) matrix B0, using bi calculated from (4):

B0 ¼
b0 b�1 � � � b�ðQ�2Þ b�ðQ�1Þ

b�1 b�2 � � � b�ðQ�1Þ 0

� �T

ð6Þ

2. For k ¼ 1, 2, ... until convergence, iterate the following steps:
(a) Bk ¼ Bk21Uk, where Uk is a (2 � 2) matrix defined as

Uk ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� jgj2
p 1 �g

�g� 1

� �
ð7Þ

with g ¼ [Bk21]1,2/[Bk21]1,1, i.e. the ratio of the two entries of the first
row of Bk21.
(b) Shift up the second column of Bk by one element while keeping the
first column unaltered.
(c) Test for convergence kb1,k 2 b1,k21k, threshold, where b1,k and
b1,k21 denote the first column of Bk and Bk21, respectively. If
converged, go to (3), else return to step 2a.
3. The coefficients of f1(z) are b�1,k.

Now the polynomial factor f1(z), which has all its roots on or inside the
unit circle, is obtained. To find the roots, one can construct an unsym-
metric companion matrix M the eigenvalues of which correspond to
the roots of f1(z) (p.348, [6]). Because the eigenvalues of interest must
be the largest ones, one can make use of the Arnoldi iteration to calculate
only the M largest eigenvalues (pp.499–503, [6]). Note that the function
eigs.m of MATLAB has implemented the Arnoldi iteration.

To summarise, the proposed fast root-MUSIC algorithm for arbitrary
arrays can be accomplished via the following steps:

1. Compute the sampling matrix G(r). Note that this offline process
requires to be done only once for a given array.
2. Form the received data covariance matrix and perform eigenvalue
decomposition to obtain the noise subspace En and construct A in (3).
Then the coefficients of f (z) can be calculated from A using (4).
3. Perform fast spectral factorisation on f (z) via the Schur algorithm to
obtain the polynomial factor f1(z) and the corresponding companion
matrix M.
4. Apply the Arnoldi iteration method to calculate the M largest eigen-
values of M. Then DOAs can be estimated by the phase angles of these
eigenvalues.

Simulation results: Assume M ¼ 2 uncorrelated equally-powered
signals impinge on an arbitrary array of N ¼ 6 sensors. The signal-to-
noise ratio (SNR) is 20 dB. The x-y Cartesian coordinates of the array
sensors, in units of half-wavelengths, are given by

r ¼
0:5; 0:2; 0:5; 1:0; 1:5; 2:0
0; �0:5; 0:2; 0:3; �0:3; 0:1

� �

Q ¼ 43 is used in the simulations, which provides the modelling error
k1k , 10210. Monte Carlo simulations of 1000 trials have been per-
formed in the simulations. Fig. 1 shows the DOA estimation root-
mean-square-errors (RMSEs) of three methods (MUSIC, the extended
root-MUSIC and the proposed method) against the snapshot number,
with DOAs [u1, u2] ¼ [1008, 1058]. In Fig. 2, the DOA of the second
source varies from 1018 to 1108. The two Figures demonstrate that the
proposed algorithm provides an asymptotically similar performance in
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DOA estimation to the extended root-MUSIC. Also, the proposed algor-
ithm has superior capability to MUSIC when two signal sources are
closely spaced or the snapshot number is quite small. This is because
root-based methods are immune to radial errors [4]. It is important to
point out that the proposed method achieves this performance by calcu-
lating only two roots instead of the complete (2Q 2 2 ¼ 84) roots
required by the extended root-MUSIC.
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Fig. 1 DOA estimation RMSEs against snapshot number with SNR ¼ 20 dB
([u1, u2] ¼ [1008, 1058])

MUSIC
extended root·MUSIC
proposed fast root·MUSIC

10–1

101 102 103 104 105 106 107 108 109 110

100

101

102

θ2, deg

R
M

S
E

, d
eg

Fig. 2 DOA estimation RMSEs for u1 ¼ 1008 and u2 varying from 1018
to 1108
Number of snapshots ¼ 100, SNR ¼ 20 dB
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Conclusions: Rather than computing all roots as in the conventional
approaches, the proposed fast root-MUSIC algorithm computes only
the roots of interest (those corresponding to the true DOAs).
Simulation results reveal that the proposed algorithm, with less compu-
tational complexity, asymptotically exhibits the same performance in
DOA estimation as the extended root-MUSIC.
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