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With the quick advancement of wireless communication networks, the need for massive multiple-input-multiple-output
(MIMO) to offer adequate network capacity has turned out to be apparent. As a portion of array signal processing,
direction-of-arrival (DOA) estimation is of indispensable significance to acquire directional data of sources and to empower
the 3D beamforming. In this paper, the performance of DOA estimation for massive MIMO systems is analyzed and
compared using a low-complexity algorithm. To be exact, the 2D Fourier domain line search (FDLS) MUSIC algorithm is
studied to mutually estimate elevation and azimuth angle, and arbitrary array geometry is utilized to represent massive
MIMO systems. To avoid the computational burden in estimating the data covariance matrix and its eigenvalue
decomposition (EVD) due to the large-scale sensors involved in massive MIMO systems, the reduced-dimension data matrix
is applied on the signals received by the array. The performance is examined and contrasted with the 2D MUSIC algorithm
for different types of antenna configuration. Finally, the array resolution is selected to investigate the performance of elevation
and azimuth estimation. The effectiveness and advantage of the proposed technique have been proven by detailed simulations

for different types of MIMO array configuration.

1. Introduction

The use of multiple antennas at the two finishes of wireless
links is the consequence of the natural progression of more
than four decades of advancement of adaptive antenna
technology. Key administrations, for example, e-banking,
e-learning, and e-well-being, will proceed to prosper and
end up being more mobile. On-demand data and entertain-
ment will steadily be conveyed over mobile and wireless
communication systems. These expansions will prompt an
avalanche of mobile and wireless traffic volume, antici-
pated to increase a thousandfold throughout the following
decade [1]. Late advances have shown that multiple-input-
multiple-output (MIMO) wireless systems can accomplish
great increments in the overall system performance. Such
frameworks are expected for the development of new
generations of mobile radio systems for future wireless

communication standards and applications. Subsequently,
it has gotten the consideration not just of the worldwide
research and development community but also of the wire-
less communications industry [2]. There are several signal
processing functions performed in MIMO systems, among
which 3D beamforming for link reliability enhancement has
gotten impressive consideration. To empower the 3D beam-
forming, precise estimation of both elevation and azimuth
angles of signals is of key significance [3].

Over the last four decades, numerous high-resolution
methods for estimating the DOA parameters of multiple
narrow-band far-field signal sources, such as multiple signal
classification (MUSIC), estimation of signal parameters via
rotational invariance techniques (ESPRIT), weighted sub-
space fitting (WSF), and maximum likelihood (ML), have
been proposed. A large number of these methods are applica-
ble only to specific array geometries such as uniform linear


https://doi.org/10.1155/2017/6794920

arrays (ULAs), uniform circular arrays (UCAs), or uniform
rectangular arrays (URAs). However, in practical cases,
the limitations of an array platform usually lead to an
unrealistic choice of array geometry from some specific
classes. Furthermore, nonuniform array geometries are
empowered to accomplish considerably enhanced resolution
performance as compared to uniform array geometries with a
similar number of sensors [4].

The automatic weighted subspace fitting (AWSF)
algorithm for DOA estimation is demonstrated in [5]. The
estimation accuracy is enhanced, but no implementation
has already been done in MIMO systems to assess the
performance. Algorithms based on sparse representative
(SR) procedures [6, 7] deal with the computational complex-
ity reduction of the 3D DOA estimation and handle the
issues of the assistant calibration for smart transportation
frameworks, yet it is substantial for a predefined (URA,
ULA, planar array, etc.) array configuration as a vast majority
of DOA algorithms [8, 9]. The DOA estimation task has been
recast to a probabilistic system in [8, 9], identifying the
smallest angular regions where the approaching signal is in
all likelihood. Although effective for some applications, the
method is insufficient for high-resolution analysis since spa-
tially close signals cannot be properly sensed. Therefore, a
multiresolution technique has been applied to improve the
system [10]. Notwithstanding the positive and appealing
highlights of previously mentioned approaches, every one
of them shares a similar bottleneck. Undoubtedly, they need
the assessment of the covariance matrix estimated from the
measurements of every sensor at different snapshots. This
includes a conspicuous increment in the receiver complexity
and a delay in the DOA recovery [11]. In [12], a two-stage
full-dimension DOA estimation scheme based on the
MUSIC algorithm is given. It requires an exhaustive mul-
tidimensional peak search, resulting in a relatively high
computational complexity as most 2D DOA estimation
algorithms. The performance of DOA estimation for
massive MIMO systems is assessed in [13] using a low-
complexity algorithm; good performance was achieved, but
this method is unsubstantial for arbitrary array structure.
Therefore, development of low-complexity DOA estimation
algorithms for massive MIMO systems in arbitrary array
configuration becomes extremely necessary for a practical
implementation perspective.

In this paper, 2D Fourier domain line search MUSIC
(FDLSM) is introduced to jointly estimate elevation and
azimuth information for massive MIMO systems. The
motivation for applying this algorithm is threefold [14, 15].

(1) It reduces the computational complexity contrasted
with the conventional 2D space search MUSIC or
polynomial rooting strategies, by using 2D fast
Fourier transform (2D FFT) that avoids the polyno-
mial rooting step by replacing it with a computation-
ally simple line search procedure.

(2) It provides an improved DOA estimation perfor-
mance as compared to the manifold separation tech-
nique (MST).

International Journal of Antennas and Propagation

£
A

Y

( ) Incident source
Xivo Ve Zem

Y(xri’ Vriv Zri)

Y

(X4i> Viio Z13)

(%12 Vi th)Y

(%¢1 Y11 Z01) x\rl’yrl’zrl

N
N
~

N
N
N
N

(er’ yrZ’ ZrZ)

P

Y

(er’ YrNo ZrN)

/7

2z
A

FIGURE 1: System model of 2D massive MIMO with an MxN
arbitrary array configuration.

(3) It is formulated in terms of a reduced-dimension
technique throughout the whole estimation process
of the data covariance matrix, thus decreasing the
computational burden of estimating the covariance
matrix and its eigenvalue decomposition (EVD).

This paper fundamentally concentrates on a low-
complexity 2D DOA estimation using the 2D FDLSM
algorithm with a reduced-dimension transformation in
massive MIMO systems. Signal-to-noise ratio (SNR), source
number, and antenna configuration are chosen to assist the
evaluation of algorithm performance. Moreover, to the best
of our knowledge, 2D FDLSM is used for the first time to
examine the elevation and azimuth estimation in massive
MIMO systems.

The rest of this paper is sorted out as follows. The sys-
tem model and 2D FDLSM are described in Section 2 and
Section 3, respectively. The computer simulation and perfor-
mance evaluation are presented in Section 4. Section 5
concludes the paper.

2. System Model

We consider a MIMO system equipped with M transmit
array sensors and N receive array sensors at the base
station. Both transmit and receive arrays are assumed
to be closely located in the arbitrary space so that any
target located in the far field can be seen at the same
direction by both arrays. All the array sensors are omni-
directional. We assume that the number of incident
sources is known and there exist P distinct uncorrelated
signals coming from directions of (6, ¢,), p=1,2,...., P,
where 0, and ¢, are the elevation and azimuth angle of

the pth signal, respectively. The system model is depicted in
Figure 1.
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At the transmit side, M transmit sensors from an M
sensor (arbitrary) array and its steering vector a,(6, ¢) is
given by

a, (ep’ (/)P) _ [ejzf(xllsinﬂycosgbpﬁ-ynsinepsin¢p+z,1cosﬂp)

where A is the signal wavelength, j=+/-1 and (x,;, y,;» z;;)

are coordinates of the ith transmit sensor, and (- )" denotes
the transpose.

a, (ep’ ¢p) _ [ejo”(xrlsinﬂpcosgbp+y,lsin9Psin¢P+z,1c059P)

where (x,;, v, 2,;) are coordinates of the ith receive sensor.
The output of the matched filters at the receiver is given
by [16]

x(7) = A6, ¢)s(7) + n(7), (3)
where s(7) =[s,(7), 5,(7), ... ,SP(T)]T € CP1 is the vector of

signal waveforms with 7 denoting the time interval, n(7) is
the Bx 1 (B=MN) complex Gaussian white noise vector of
the zero mean and covariance matrix oI, and A(6, ¢) =
[a;,a,, ..., ap] is the Bx P steering matrix composed of
P steering vectors with

a,= a(ep, (/)P)
=a, (Gp, ¢P) ®a, (GP, ¢P> ,

being the B x 1 steering vector of the pth signal. ® represents
the Kronecker product.

Assume that all impinging signals and noises are uncor-
related with each other. Then, the B x B data covariance
matrix can be expressed as [16]

(4)

RXX:_
L

MHH

x(70)x"(z0), (5)

Il
—

where L is the snapshot number and (-)" stands for

the Hermitian.

3. 2D DOA Estimation Using Arbitrary
Arrays for Massive MIMO Systems

In this section, a low-DOA estimation algorithm based on
the FDLS MUSIC algorithm to jointly estimate the elevation
and azimuth is presented.

3.1. Reduced-Dimension Beamspace (RDBS) Cramer-Rao
Bound (CRB). The length of the steering vector a, is B,

, (1)

6127" (lesin 0, cos,+y, sinb, sing, +z, cos6, ) :| T

For simplicity of notation and without loss of generality,
we assume that the steering vector of the receive array is also
a function of (0, ¢), given by

. . A T
’e]ZT(x,Nsm@Pcosqﬁery,Nsmepsm(perz,Ncos@p):| , (2)

3 eee

which is too long and will add high computational burden.
Furthermore, it will make the latter estimation of the
covariance matrix in (5) and its EVD costly to implement
because of the matrix size. So, the reduced-dimension
transformation is necessary. It has been shown in [15]
that there exist a transformation matrix T that makes
CRBgpps(T) = CRBygp (see (5) for ESP data), which is based
on the following proven theorems [15]:

Theorem 1
e[{(23)-0.0}{(@5)- )|z crb. (@)

where

0,2

CRBy = = [Re{ (W'PLW) 0 (SA"R1AS) " ] G

Here, (8,9), (6, ¢), S, and ® denote the estimated DOAs,
the true DOAs, the signal covariance matrix, and the Schur
product, respectively.

PL=1;- A(ATA) T AH s the orthogonal projection onto
the null space of A" and

W=[w(0,¢,) ... W(0p ¢p)],
a(6,9,) (8)
W(GP,(/)p) = W,
p=1,..,P.

The expression of CRByps(T) is obtained by substitution
of A, W and R with THA, THW, and THR T, respectively.

Theorem 2. Assume that k > 2P and that T is the B X k matrix
fulfilling THT =1,. Then, if

V(A Q)W (0, 9)]} < ¥{T}, ©)
the relation CRBypps(T, (6, ¢)) = CRBggp((6, ¢)) holds true.



Here, ¥{ - } denotes the range space of the matrix and C is
read as “is contained in.”

The proofs of the above theorems can be found in [15] and
the references therein. After various simulations, k = 4P was
found to be the minimum value meeting the requirement in
terms of accuracy.

According to [15], the matrix T € CP** can be obtained
by applying the singular value decomposition (SVD) of
[A W]. Let

A W]=UzVv/ (10)
be the SVD of [A W] for the k largest singular values, where
U is the Bxk, =diag{c;,.... ¢}, and (¢ =¢ >+ >¢;)
and V is the k x k. Since U spans the range space of [A W],
one may take T = U.

Include the Bxk matrix T, P<k<B, and the map-
ping x—y =T"x from ESP to RDBS, a new set of observa-
tion result, comsisting of k-dimensional vectors. Then, in

RDBS, the representation of the signals received by the array
will be

=TH
y(r) =T"x(r) )
= THA(G, $)s(7) + THn(T).
For the signal model in (11), the covariance matrix Ry,
can be estimated with L snapshots by

R,y = 1 Y vy (e, (12)
£=1

The eigen decomposition of the sample covariance matrix
(12) yields
R, =EAE]+E,AE], (13)
where the sample eigenvalues are again sorted in descending
order (Ay>A,>--->A\); the matrices E =[e,e,,...,ep]
and E, = [ep,1, Apyss --- > €] contain in their columns the
signal and noise subspace eigenvectors of (13), respectively.
Correspondingly, the diagonal matrices Ay = diag(A, A, ...,
Ap) and A, = diag(Ap,,, Apsss --. » A) are built from the signal
and noise subspace eigenvalues of (13), respectively.

3.2. 2D FDLS MUSIC-Based DOA Estimation. This section
extends the idea of [14] into the 2D DFT to solve efficiently
(14). The procedure is as follows:

By combining (4) and (13) and using the transforma-
tion matrix T, the MUSIC null spectrum in [17] can be
rewritten as

£(6,9) = (T"a(6, ¢)) "E,E}! (T"a(6, ¢))
= (a"(6, ¢)T)E,Ef (T"a(6, ¢)) (14)
= |EY'T"a(6, ¢)I1%,
where |- || is the vector 2-norm.

From (14), it can be seen that if (6, ¢) is the desired DOA,
f(6,¢) will be equivalent to zero. Given that f(6, ¢) is a
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periodic function in 6 and ¢ with the period 27, it can be
expressed using the finite 2D Fourier series as [18]

Z Z G,,eme?, (15)

==(Q~1) n==(Q,-1)

f(0.¢) =

where the Fourier coefficients are given by

Q-1

1 ~ m in
G,,~ 4_712 Z Z f(kpk Yelimk imke) - (16)
=—(Q~1) 4,=—(Q,—

with k, = q,A, k, = q,A¢, AO =271/(2Q, - 1), and A¢ = 27/
(2Q, — 1), where (2Q, — 1) and (2Q, — 1) represent the sam-
ple number in elevation and azimuth, respectively.

We notice that 2D FFT can be used to obtain the Fourier
coefficient matrix G € C?%~1*(2Q~1 rapidly. Once the Fou-
rier coeflicients are acquired, to ameliorate the resolution,
zero padding is applied efficiently as follows:

& G,, if|ml<2Q,—1landn|<2Q,-1,
"o if2Q,-1<|ml<Jyand2Q, ~1<|n| < ;.
(17)

Generally, we pick J, > 2Q, -1 and J, »2Q, — 1. The
new cost function f(6,¢) of every grid can be computed
effectively by applying 2D IFFT to the zero padded Fourier
coefficient matrix G € /1 in (17). Accordingly, no polyno-
mial rooting is required any longer as the polynomial rooting
step is replaced by a simple line search with 6 and ¢.

Recall that 1/f(6,¢) will assume a very large value
when (0, ¢) is equal to the DOA of one of the signals. Thus,
the P signals can be easily obtained by taking the P greatest
peaks of 1/f(6, ¢).

We also recall that the computational complexities of the
conventional 2D space search MUSIC algorithm and the
2D FFT-based technique are entirely unequal. For the con-
ventional 2D space search MUSIC algorithm, to obtain
suitable accuracy, the intrigued area has to be divided into
exceptionally dense grids. For instance, if the intrigued
area is 6 €[0°,45°] and ¢ € [-50°,50°] with 0.1°%0.1° as
the unit grid, we have to compute 451 x 1001 = 451451 times
the matrix-vector product [EXTHa(6, ¢) | in (14). However,
in the 2D FFT technique, only (2Q, - 1) X (2Q, — 1) matrix-
vector products in (14) need to be computed (Q,=Q, =77
was used for our test). For other grids, zero padding is
applied straightforwardly; hence, the computational com-
plexity is decreased significantly. Furthermore, this technique
has a lower complexity than the 2D polynomial rooting
strategy. For instance, to estimate the 2D DOAs in [19],
additional time is required to solve the high-order bivariate
nonlinear polynomials. Since rooting a bivariate nonlinear
polynomial is costly and the 2D FFT/IFFT method for
real-time implementation is promptly accessible, the 2D
FFT-based approach comes out to be competitive.
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TaBLE 1: Computational complexity.

Algorithm Using reduced-dimension matrix Without using reduced-dimension matrix
SVD O(min(B%*k, Bk?*)) —

Covariance matrix O(K*L + P*) O(B’L + P?)

EVD O(k) O(B%)

2D FDLS MUSIC O(QQKL +Jo], log 2(Jo],)) O(QQu(B)L+JoJ, log 2(J,],))
Total 0(72, 815, 745) 0(235,920, 561)

TaBLE 2: Elapsed time of the two methods (100-simulation time,
AMD E-450 APU 2*1.65GHz, Windows 7 pro 64 bit, 2GB
memory, Matlab 8.4).

Method Total time (seconds)
49.471815

104.942036

Using reduced-dimension matrix

Without using reduced-dimension matrix

3.3. Summary. The major steps of the proposed algorithm for
2D DOA estimation in arbitrary geometry for the MIMO
system are as follows:

(1) Obtain the RDBS matrix T from the SVD of (10) (for
k =4P); then, apply the mapping x—y=T"x to
acquire the new representation of the array observa-
tions (11).

(2) From (11), construct the covariance matrix Ry, in

(12) and perform the eigenvalue decomposition to
obtain the noise subspace E,,.

(3) Use (2Q,-1)x(2Q, —1) samples to compute the
cost function in (14).

(4) Compute the Fourier coefficient matrix Ge
C2Q1x(2Q=1) by applying the 2D FFT.

(5) Employ the zero padding technique described in (17)
to shape the extensive matrix G € C/v*/1,

(6) Apply the 2D IFFT to G to obtain the new cost
function f(6, ¢).

(7) Estimate the desired DOAs from the null spectrum
1/f(0, ¢) by taking the P largest peaks.

3.4. Computational Complexity. The order of computational
complexity of the proposed FD line search MUSIC for
MIMO systems with a reduced-dimension matrix is com-
pared with that of the case where the reduced-dimension
matrix is not used. The results are shown in Table 1.

The last row of Table 1 shows the total number of opera-
tions (addition and multiplication) needed for both cases (i.e.,
B=256,P=5,L=100,and J, = J; =2000). We can easily see
that, despite the fact that our approach uses the SVD, the
computational complexity is reduced by 53% as compared
with the case where the mapping matrix is not used.

TaBLE 3: Simulation parameters.

Parameters Setting
Antenna configuration Arbitrary array
Antenna elements 256
Center frequency 3.0Ghz
Snapshots 100
Number of Monte Carlo 100
Directivity of the base station antennas Omnidirectional

Table 2 gives the elapsed time by the two methods, from
which it can be easily seen that the enhancement of the speed
of our method is considerable.

4. Simulation Results

To get a more quantitative understanding of how the 2D
Fourier domain (FD) line search MUSIC algorithm performs
in massive MIMO systems, Monte Carlo simulations are
conducted in this section. In the simulation, the total
number of antenna elements is set to 256, which is consid-
ered one possible dimension of massive MIMO [1]. The
case where there are 5 sources is used with ¢ = [-70°, —40°,
-13°,60°, 80°] and 6 = [40°, 31°, 60, 70°, 50°]. The simulation
parameters are listed in Table 3.

Figure 2 shows the 2D spectrum of the null-spectrum
function of arbitrary geometry (SNR=10dB) for different
MIMO configurations with 256 antennas (16 x 16,64 x 4,
4% 64,32 % 8,and 8 x 32).

4.1. Performance Evaluation. The root-mean-squared error
(RMSE) has been used to measure the effectiveness of our
proposed 2D DOA estimation algorithm, which is defined
as [13]

b 52 B-0) s ()] 09

where ép,n is the estimated elevation angle 6, at the nth
Monte Carlo trial, which is similar for $p,n' P is the estimated

source number and N, represents the Monte Carlo simula-
tion times. The results are shown in Figure 3.

From the RMSE results for massive MIMO DOA
estimation that are illustrated in Figure 3, we can see that
the RMSE values of our proposed 2D FDLS MUSIC are
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F1cure 2: 2D FDLS MUSIC spectrum for MIMO in different antenna configurations.

below 0.065 with SNR ranging from 0dB to 30 dB. Further-
more, the DOA can be clearly observed; therefore, we can
conclude that the proposed algorithm works well in massive
MIMO systems. Different curves correspond to different
types of antenna configuration as indicated in the legend.
As the SNR increases, the performance of each array config-
uration becomes much more better. It is interesting to see
that the 64 x4 and 4 x 64 arrays have produced excellent
quality compared with other array configurations.

Figure 2 also compares our proposed algorithm with the
2D MUSIC (using uniform circular array (UCA) structure).
It shows that for SNR ranging from 10 to 30 dB, both algo-
rithms provide almost the same accuracy (for 64 x 4, 4 x 64,
8 x 32, and 32 x 8 configurations) while our approach uses
less complexity as explained in Section 3.2.

From Figure 4, we can clearly observe that for the number
of sensors varying from 50 to 256 elements, our approach still
offers better performance than the traditional 2D MUSIC
(UCA and SNR =20 dB were used).

4.2. Performance Comparison between Elevation and
Azimuth Estimation. Figure 3 shows that two identical
antenna configurations can have different performance. To
better understand it, we have plotted the RMSE comparison
between elevation and azimuth estimation of five sources
with four types of array configuration (notice that 16 x 16
array configuration is not included due to its higher RMSE
values); the results are shown in Figure 5.

It is easy to see from this figure that the overall perfor-
mance of angle estimations weighs more in some cases while
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MUSIC algorithms for massive MIMO DOA estimation versus
SNR for five sources with different types of array configuration.
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the accuracy of azimuth/elevation angles is more valued in
other cases. Thus, the antenna array configuration can be
adjusted as an efficient way to better satisfy the requirements
of DOA estimation. Based on the simulations above, the
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F1GURE 5: RMSE comparison between elevation and azimuth of five
sources with eight types of array configuration.

64 x4 and 4 x 64 have the best performance of the overall
DOA estimation. It is interesting to see that in the aspect
of azimuth estimation, the 64 x4 and 4 x 64 perform well
while the 32x8 and 8x32 have good performance in
elevation estimation. Figure 6 presents angle (azimuth and
elevation) estimation results of our algorithm for all fives
sources with SNR=10dB using 64 x 4 configuration.

4.3. Performance Comparison between Array Configuration
and Source Number. Figure 7 depicts the RMSE versus source
number for SNR =10 dB with different types of sensor con-
figuration. It shows that the RMSE increases gradually along
with the growth of sources. Particularly, the 64 x 4 and 4 x 64
have the best performance.

4.4. Performance Comparison between Array Configuration
and Snapshot Number. The RMSE for massive MIMO
DOA estimation versus snapshot number for SNR=10dB
with different types of array configuration is plotted in
Figure 8. It shows that the DOA estimation performance
is getting better with the increase in the number of snap-
shots. That is because the error in estimating the signal
covariance matrix in (12) is reduced with the increase in
the snapshot number.

5. Conclusion

In this paper, a 2D DOA estimator in arbitrary array
geometry for massive MIMO has been analyzed and mod-
eled based on low-complexity 2D Fourier domain line
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F1GURE 7: RMSE for massive MIMO DOA estimation versus source
number for SNR =10 dB with different types of array configuration.

search MUSIC algorithm. The algorithm utilizes the 2D
FFT to compute the null-spectrum function. It does not
require a polynomial root-finding procedure to jointly esti-
mate elevation and azimuth information, and it performs
in a high quality in massive MIMO as shown in simula-
tion results. Moreover, to avoid a large size of the covari-
ance matrix and further decrease the computational
complexity of its EVD, the reduced-dimension transforma-
tion has been applied on the received signals. The effec-
tiveness and advantage of the proposed technique have
been shown by detailed simulations for different types of
MIMO array configuration.

RMSE (degrees)

Snapshot number

-<- 2D FDLS with array configuration (16 x 16)
-8~ 2D FDLS with array configuration (8 x 32)
—a— 2D FDLS with array configuration (32 x 8)
—o— 2D FDLS with array configuration (4 x 64)
-~ 2D FDLS with array configuration (64 x 4)

FiGure 8 RMSE for massive MIMO DOA estimation versus
snapshot number for SNR=10dB with different types of array
configuration.
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