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Abstract In this paper, a novel robust adaptive beamforming is proposed in which both

the uncertainties of steering vector and covariance matrix are taken into account. First we

develop a min–max optimization problem which aims to find a steering vector with the

maximum output power under the worst-case covariance mismatch. Then we relax this

min–max optimization problem to a max–min optimization problem which can be solved

by using the Karush–Kuhn–Tucker optimality conditions. It is also shown that the pro-

posed technique can be interpreted in terms of variable diagonal loading where the optimal

loading factors are related to both the correlations (between the eigenvectors and the signal

of interest) and the eigenvalues of the data covariance matrix. The effectiveness of the

proposed approach is supported by computer simulation results.
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1 Introduction

A ubiquitous task in array signal processing is adaptive beamforming which has been widely

used in wireless communication, radar, sonar, acoustics, astronomy, medical imaging, and

other areas [1, 2]. By means of adaptive beamforming, we can recover the signal of interest

(SOI) in the presence of interferences and noise using an array of N sensors. Briefly stated,

adaptive beamforming intends to estimate the temporal waveform s(k) in the model

xðkÞ ¼ a0sðkÞ þ iðkÞ þ nðkÞ
with iðkÞ ¼ AiuðkÞ

ð1Þ

where a0 2 C
N stands for the steering vector (or signature) of the SOI, the matrix Ai ¼

a1 a2 . . . aM½ � 2 C
N�M collects the steering vectors of M interferences, uðkÞ 2 C

M

denotes the temporal waveforms of interferences, and nðkÞ represents the additive white

Gaussian noise with power r2
n.

The second-order statistics of the N � 1 signal-vector xðkÞ can be represented by the

covariance matrix R as

R ¼ E xðkÞxHðkÞ
� �

¼ r2
0a0a

H
0 þ

XM

m¼1

r2
mama

H
m þ r2

nI ð2Þ

where r2
0 and r2

m respectively denote the powers of the SOI and the mth interference, and

the matrix I stands for the identity matrix with proper size. The notations Ef�g and ð�ÞH ,

respectively, denote the expectation operator and the Hermitian transpose. In practical

applications, the theoretical covariance matrix in (2) is normally unavailable and we have

to estimate it from the observations as follows:

bR ¼ 1

K

XK

k¼1

xðkÞxHðkÞ ð3Þ

where K is the snapshot number. Using the N � 1 weight vector w, the output of an

adaptive beamformer is given by

yðkÞ ¼ wHxðkÞ:

The array output signal-to-interference-plus-noise ratio (SINR) is defined as

SINR,
r2

0jwHa0j
wHRiþnw

ð4Þ

where Riþn ,
PM

m¼1 r
2
mama

H
m þ r2

nI is the interference-plus-noise covariance matrix.

The Capon beamformer is a representative example of an adaptive beamformer, in

which the interferences and noise are suppressed as much as possible while the array

response gain for the SOI keeps unchanged. More specifically, the Capon beamformer can

be formulated by the following optimization problem

min
w

wHRw

s.t. wHa0 ¼ 1
ð5Þ

with the solution given by
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wc ¼
R�1a0

aH0 R
�1a0

: ð6Þ

The Capon beamformer performs well when the SOI steering vector a0 and the covariance

matrix R are both obtained accurately. In practical applications, however, the traditional

Capon beamformer may suffer substantial performance degradation in the presence of the

mismatch between the nominal and the true SOI steering vector (or covariance matrix).

The mismatch can include look direction errors, imperfect array calibration, source local

scattering, wavefront distortions, etc. In such case, the SOI is likely to be treated as an

interference and thus be suppressed, leading to ‘‘signal cancellation’’ Sometimes even a

small mismatch may result in a severe performance degradation.

In the past decade, a number of robust adaptive beamforming (RAB) techniques have

been reported to combat the effects of these mismatches for the Capon beamforming and

therefore the RAB has been an intensive research topic in array signal processing. An

excellent review and comparison of the existing robust techniques have been provided

in [3, 4]; see also the references contained therein. Roughly speaking, these robust methods

can be categorized into two main groups [5]: methods based on previous mismatch as-

sumptions (such as [6–10]) and techniques that estimate the mismatch or equivalently the

actual steering vector (such as [4, 11–17]). Among these approaches, the diagonal loading

(DL) beamformer and its extension versions may be the most common.

While the majority of the literature focuses on the robustness against the mismatch in

the steering vector, relatively few researchers have investigated possible RAB techniques

with joint robustness against the uncertainties of both the covariance matrix and the

steering vector. From (6), it is clear that the weight vector is a function of the covariance

matrix and the SOI steering vector, which jointly affect the array output performance [18].

In many RAB methods, it is implicitly assumed that the uncertainty of the sample data

covariance matrix can be incorporated into the steering vector uncertainty. As stated

in [19], however, these two kinds of uncertainties are equivalent only under the condition

when both the sample size (i.e., K) and the array input signal-to-noise (SNR) are large.

Therefore, it is desired to design a RAB that is jointly robust against both the covariance

matrix and the steering vector mismatches, which is referred to as joint RAB (JRAB) in

this paper. To this end, some JRABs have been designed [18, 20, 21, 23]. The JRABs

presented in [20, 21] are based on worst-case optimization. In [20], the effect of the SOI in

the data covariance matrix is modeled as multi-rank for the spatially distributed source and

the uncertainties for the sample covariance matrix and the SOI-only matrix are assumed to

be with known uncertainty levels. The optimization problem solved in [21] has the fol-

lowing form:

min
w

max
kDxk� cx

kðXþ DxÞHwk s.t. jwHðaþ eÞj � 1 8 kek� � ð7Þ

where a represents the nominal (or presumed) SOI steering vector, the matrix

X, xð1Þ xð1Þ . . . xðKÞ½ � collects the received K snapshots, the error matrix Dx de-

notes the uncertainty in the samples, and e stands for the uncertainty in the SOI steering

vector. The notation k � k denotes the Euclidean norm. The parameters cx and � are the

preliminarily known uncertainty levels. The problem in (7) can be transferred to a second-

order cone programming (SOCP) problem and thus be solved by using some existing

MATLAB softwares, e.g., the CVX package [22]. The JRAB proposed in [18] combines

two existing techniques in a straightforward manner. One is the so-called linear shrinkage
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covariance matrix estimation reported in [24] and another is an iterative method proposed

in [25] in which each iteration is required to solve the following optimization problem

min
e?

ðak þ e?ÞH eR�1 ak þ e?ð Þ

s.t. P?ðak þ e?Þ ¼ 0; k ak þ e?ð Þk�
ffiffiffiffi
N

p
þ d

aHk e? ¼ 0; ðak þ e?ÞHCðak þ e?Þ� aHk Cak

ð8Þ

where eR is estimated by the linear shrinkage estimator [24], ak denotes the estimated SOI

steering vector at the kth iteration, and the value of d is preselected. The matrix P? denotes

the noise-subspace projector of the matrix C,

R h2

h1
aðhÞaHðhÞdh where ½h1; h2� is the ex-

pected SOI angular range, and the matrix C,

R
H aðhÞaHðhÞdh (where H denotes all the

directions lying outside the sector ½h1; h2�) represents the complement of C. The opti-

mization problem in (8) can also be rewritten as a SOCP problem and hence be solved by

using the CVX toolbox [22]. However, it is worth noting that this iterative process may be

time consuming since in each iteration the CVX has to be employed. The JRAB proposed

in [23] is also based on worst-case optimization, in which the beamformer is formulated by

the following problem

min
w

max
kDRk� cR

wH bR þ DR

� �
w s.t. wHa ¼ 1; wHQw� �q ð9Þ

where �q is a preselected small number. The matrix Q,

R Dh
2

�Dh
2

½aðhþ /Þ � aðhÞ�½aðhþ

/Þ � aðhÞ�H cos/ d/ where Dh denotes the SOI spatial sector and cos/ is used as a

weighting function. The constraint wHQw� �q in (9) aims to guarantee that the array

response gain in the presumed SOI angular location does not drop sharply. Also, the JRAB

proposed in [23] can be transferred to a SOCP problem and be solved by using the CVX

toolbox [22].

In this paper, both the uncertainties of steering vector and covariance matrix are taken

into account to develop a min–max optimization problem in which we aim to find a

steering vector with the maximum output power under the worst-case covariance mis-

match. Then we relax this min–max optimization problem to a max–min optimization

problem which can be solved by using the Karush–Kuhn–Tucker optimality conditions. It

is also shown that the proposed technique can be interpreted in terms of variable diagonal

loading where the optimal loading factors are related to both the correlations (between the

eigenvectors and the signal of interest) and the eigenvalues of the data covariance matrix.

The remainder of this paper is organized as follows. In Sect. 2, we revisit two classical

robust beamformers: the robust Capon beamformer (RCB) proposed in [17] and the signal-

subspace projection method proposed in [19]. Section 3 presents the proposed variable

diagonal loading beamforming. Simulations are given in Sect. 4, and conclusions are

drawn in Sect. 5.

2 Problem Formulation

Let us start with the classical robust Capon beamformers (RCB) propose in [17], in which

the SOI steering vector is estimated by
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baRCB ¼ min
a2A1

aH bR�1a with A1 ¼M aj ka� ak2 � �1

n o
ð10Þ

where a stands for the nominal (or presumed) SOI steering vector and the preselected

parameter �1 denotes the uncertainty level of the steering vector. The essence of (10) is to

find a vector which, within the uncertainty set A1, is associated with the maximum output

power [17]. The final weight vector used in [17] has a diagonal loading (DL) form as:

bwRCB ¼ abR�1baRCB

¼ a bR þ nIN
� ��1

a

¼ abR�1 nbR�1 þ IN

� ��1

a
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼4baDL

ð11Þ

where the loading factor n can be found by solving the equation kðIþ bRn Þ
�1ak2 ¼ �1.

Performing eigen-decomposition on bR yields

bR ¼ bUbC bUH ¼
X

i¼1

N

bcibeibe
H
i ð12Þ

where bU ¼ be1 . . . beN½ � collects all the eigenvectors, and bC ¼ diagfbc1; . . .;bcNg is a

diagonal matrix with the eigenvalues bc1 � � � � �bcN being nonincreasingly ordered. Thus,

baDL defined in (11) can be rewritten as

baDL ¼
XN

i¼1

bci
bci þ n

ðbeH
i aÞbei ð13Þ

From (13), we observe that for large eigenvalues the term
bc i
bc iþn

is approximately equal to

one whether n is loaded or not. However, for small eigenvalues the term
bc i
bc iþn

becomes quite

small when n is loaded, since the loading factor n is positive in general. This implies that

the effect of n is to deemphasize components corresponding to small eigenvalues.

Another robust beamformer is the signal subspace projection (SSP) method presented

in [19] with the weight vector given by

bwSSP ¼ abR�1PbEs

a

¼ abEsdiag
1

0 þ bc1

. . .
1

0 þ bcM

� 	
 �
bEH
s a

þ abEndiag
1

1þ bcMþ1

. . .
1

1þ bcN

� 	
 �
bEH
n a

ð14Þ

where PbEs

¼ bEs
bEH
s is a projection operator, bEs ¼ be1 . . . beMþ1½ � and

bEn ¼ beMþ2 . . . beN½ �, respectively, collect the eigenvectors corresponding to the signal

subspace and the noise subspace. Therefore, the SSP approach uses 1 as the loading factor

to punish the noise-subspace eigenvectors and zero loading factor for the signal-subspace
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eigenvectors, meaning that the noise-subspace eigenvectors are discarded and nothing is

done for the signal-subspace eigenvectors.

The above analysis tells us that the loading factor can be used to punish the eigenvectors

associated with small eigenvalues (i.e., subdominant eigenvectors) and thus let the esti-

mated steering vector stay away from these eigenvectors. This is reasonable because the

subdominant eigenvectors often contain more noise components than signal components.

However, in some practical applications, the SOI steering vector may have more corre-

lations with some subdominant eigenvectors than the dominant eigenvectors. For instance,

when the signal-to-interference ratio (SIR) is quite small, rather than the dominant

eigenvectors, it is highly possible that the weak SOI is close to some eigenvectors with

eigenvalues in the order of noise level. In such situation, it is unreasonable to let baDL

approach the dominant eigenvectors since the dominant eigenvectors contain much of the

strong interference signals.

3 New Robust Beamformer with Variable Diagonal Loading

The majority of the existing RCB methods consider only the steering vector uncertainty

and implicitly assume that the uncertainty of the sample data covariance matrix can be

incorporated into the steering vector uncertainty. However, these two kinds of uncertainties

are equivalent only under the condition when both the sample size (i.e., K) and the array

input signal-to-noise (SNR) are large [19]. In this paper, not only the steering vector

uncertainty but the covariance matrix uncertainty are also taken into account. The opti-

mization problem that we consider has the following form:

min
a

max
D

aHðbR þ DÞ�1a

s.t. ka� ak2 � �1

kDk2 � �2:

ð15Þ

where the inner maximization corresponds to the worst array output power due to the

covariance matrix uncertainty and �2 represents the uncertainty level of the covariance

matrix. Equation (15) means that we would like to find a vector a to maximize the worst-

case array output power. The global optimal solution for (15) is difficult to find. What we

look for in the next, instead, is an efficient heuristic solution, although there is no guarantee

on its optimality.

Let Uða;DÞ ¼ aHðbR þ DÞ�1a denote the reciprocal of the power. Due to the weak max–

min inequality (see p. 281 of [26]), we always have

sup
D

inf
a
U a;Dð Þ� inf

a
sup
D

U a;Dð Þ ð16Þ

which implies that supD infa Uða;DÞ corresponds to an upper bound for the power.

Therefore, the min–max problem in (15) can be relaxed to a max–min problem heuristi-

cally. Furthermore, we assume that the Hermitian matrix D can be reparameterized as

D ¼ bUdiag b1; . . .; bNf gbUH ð17Þ

where fbigNi¼1 are real numbers. Strictly speaking, it is generally not the case that the

matrices bR and D have the same eigenvectors. However, as shown in the next, this
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assumption can result in a suboptimal solution which can be computed in a simple manner.

Now we can transform (15) to the following problem

max
bi

min
a

aH eR�1a

s.t. ka� ak2 � �1

XN

i¼1

bi
2 � �2

ð18Þ

where eR ¼ bR þ D ¼ bUeC bUH and eC ¼ diagf bc1 þ b1; . . .;bcN þ bNg. It is clear that if

fbigNi¼1 are fixed, the minimization problem over the variable a is equivalent to the RCB

problem in [17], implying that we can directly use the result in [17]. Hence, letting z ¼
bUHa and zi be the magnitude of the ith element of z (i.e., zi ¼ j½z�ij), the result of the

minimization problem of (18) can be given by (see Eq. (30) of [17])

LD ¼ aH bUeCðk�2Iþ 2k�1eC þ eC2Þ�1 bUHa

¼
XN

i¼1

z2
i ðbci þ biÞ

ðbci þ bi þ 1
kÞ

2

ð19Þ

where k satisfies

gðkÞ ¼
XN

i¼1

z2
i

1 þ k bci þ bið Þ½ �2
¼ �1: ð20Þ

Therefore, (18) is rewritten as

max
bi

XN

i¼1

z2
i bci þ bið Þ
bci þ bi þ 1

k

� 2

s.t.
XN

i¼1

b2
i � �2:

ð21Þ

Next, we will use the Karush–Kuhn–Tucker (KKT) optimality conditions to solve (21).

Defining

f ¼ �
XN

i¼1

z2
i bci þ bið Þ
bci þ bi þ 1

k

� 2 ð22Þ

and modifying the objective function in (21) to minimize f, we can write the Lagrangian of

that problem as

L ¼ f þ m
XN

j¼1

b2
j � �2

 !

ð23Þ

where m is the Lagrange multiplier. In the ‘‘Appendix’’, we show that

of

obi
¼ k2z2

i

1 þ k bci þ bið Þ½ �2
ð24Þ

A Variable Diagonal Loading Beamformer with Joint Uncertainties... 1005

123



and therefore

oL

obi
¼ k2z2

i

1 þ k bci þ bið Þ½ �2
þ 2mbi: ð25Þ

Hence, the complete KKT conditions can be written as [26, 27]

m� 0 ð26aÞ

m
XN

j¼1

b2
j � �2

 !

¼ 0 ð26bÞ

k2z2
i

1 þ k bci þ bið Þ½ �2
¼ �2mbi i ¼ 1; . . .;N ð26cÞ

Obviously, we know that m[ 0 ðm 6¼ 0Þ and bi\0 from (26c) as k 6¼ 0 and zi 6¼ 0. Then

(26) can be recast as

m[ 0 ð27aÞ

XN

j¼1

b2
j ¼ �2 ð27bÞ

k2z2
i

1 þ kðbci þ biÞ½ �2
¼ �2mbi; i ¼ 1; . . .;N ð27cÞ

Theoretically, (27) can be solved since we have N þ 2 equations [i.e., (27b), (27c)

and (20)] for N þ 2 variables (i.e., fbigNi¼1; k and m). However, it is difficult to have closed-

form solutions because (27c) is actually a cubic equation with respect to bi. Moreover, how

to choose the covariance matrix uncertainty level �2 is unclear. In order to find the loading

factors in a simple way, we present the following N þ 2 equations to replace (27):

XN

i¼1

z2
i

1 þ kðbci þ biÞ½ �2
¼ �1 ð28aÞ

1

k
þ bi ¼

ziffiffiffiffiffiffiffiffiffiffiffiffiffi
�2mbi

p � bci ; for i 6¼ em ð28bÞ

1

k
þ bem ¼ zmffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2mbem
p � bcem ¼ 0 ð28cÞ

where (28a) is identical to (20), (28b) is derived from (27c), and the subscript em in (28c) is

equal to the subscript i with the maximum of fzigNi¼1. In Sect. 2, we have shown that the

loading factor does not affect the dominant eigenvectors almost in the diagonal loading

methods. Inspired by this, we argue that it is reasonable to assume that the loading factor
1
k þ bem , corresponding to the maximum of fzigNi¼1, is equal to zero. This implies that the

loading factor should not affect the eigenvector that has the maximum correlation with the

SOI. Besides, another benefit offered by this reasonable assumption is that the problem of

how to set the covariance matrix uncertainty level �2 is circumvented. From (28b), we can
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observe that the loading factor 1
k þ bi is variable for each eigenvector. The larger eigen-

value, the less loading factor. The larger correlation (i.e., zi), the less loading factor (or the

larger absolute value of bi).
So far, our proposed RCB approach can be presented as the following steps.

1. Perform eigen-decomposition on the estimated covariance matrix to produce bR ¼
bUbC bUH and compute z ¼ bUHa.

2. Compute the upper bound of 1
k (denoted by 1

k

� 
u
) by letting all fbigNi¼1 be equal to zero

and solving (28a) (which is identical to the loading factor of the RCB in [17]) and set

the lower bound 1
k

� 
l
¼ 0.

3. Choose 1
k ¼ 1

2
1
k

� 
l
þ 1

k

� 
u

� �
and set bem ¼ � 1

k to compute the variable m by using (28c).

4. Compute the rest variables bi’s by using (28b).

5. Substitute the results of 1
k and fbigNi¼1 into the left side of (28a). If the sum in the left

side is greater than �1, set the upper bound 1
k

� 
u
¼ 1

k; otherwise, set the lower bound
1
k

� 
l
¼ 1

k.

6. If j 1
k

� 
u
� 1

k

� 
l
j � f where f is a preselected threshold (say 10�3), go to Step 7;

otherwise, go to Step 3.

7. Construct the weight vector by

bw ¼ bUdiag bc1 þ b1 þ
1

k
; . . .;bcN þ bN þ 1

k

� �
bUHa: ð29Þ

Although we have not proven mathematically that gðkÞ is a monotonic function of k if

the variables bi’s are considered, in the simulations we find the fact that in our proposed

algorithm gðkÞ monotonically decreases with respect to k and hence we use the bisection

method to iteratively compute k. In addition, (28b) is a cubic equation with respect to bi
and three solutions can be found for bi. We use the following rules to choose one solution

from three possible values. The first rule is that bi is a negative real number which satisfies
1
k þ bi [ 0 (since the least loading factor is 1

k þ bem ¼ 0). The second rule is that we choose

the real solution with the minimum absolute value so that we have the least covariance

matrix uncertainty. If we cannot find any solution satisfying the aforementioned conditions,

bi is set to be zero, which means we choose the largest penalty for the ith eigenvector.

4 Simulation Results

Assume that one SOI and three interferers are incident on a uniform linear array with

N = 10 isotropic sensors and half-wavelength sensor spacing. The three interference

signals are from ½h1; h2; h3� ¼ ½�10�; 10�; 50�� with the input interference-to-noise ratios

(INRs) in a single sensor 0, 10 and 20 dB. Unless stated otherwise, the input SNR is

�10 dB, the nominal direction-of-arrival (DOA) of the SOI is h ¼ 3� and 50� snapshots

are collected to construct the matrix bR. The actual SOI DOA is different and will be stated

in each simulation scenario. Four other robust methods are compared with our proposed

approach in terms of the array output SINR: (1) the RCB proposed in [17] where the

uncertainty level �1 in (10) is equal to 5; (2) the JRAB presented by Gu [18] where the

assumed SOI angular range is ½�5�; 5�� and the parameter d in (8) equals to 0.1; (3) the

JRAB proposed by Song [23] where Dh
2
¼ 5� is used to compute the matrix Q, and �q ¼
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0:03 and cR ¼ 10 are utilized; (4) the JRAB presented by Vorobyov [21] where we choose

the steering vector uncertainty level � ¼
ffiffiffi
5

p
and the snapshot matrix uncertainty level

cx ¼ kXk � 5%. For each scenario, the average of 200 independent runs is used to plot

each simulation point. For reference, the optimal SINR is also plotted where the theoretical

covariance matrix R and actual steering vector a0 are used. Note that this optimal SINR

cannot be obtained in practical due to the uncertainties of the steering vector and co-

variance matrix.

4.1 Example 1: Look Direction Mismatch

In the first example, we consider the look direction error scenarios. We begin with com-

paring two RABs (both of which use only the steering vector uncertainty level �1): the RCB

in [17] and our proposed method. The actual SOI DOA h0 ¼ 0� is taken here (i.e., 3� look

direction error). The array output SINR versus the uncertainty level �1 is plotted in Fig. 1.

We can see that the proposed method maintains the output performance almost for dif-

ferent �1, whereas the RCB suffers if �1 is greater than 5. This means that our proposed

method is less sensitive to the choice of �1 than the RCB beamformer. In the rest of our

simulation scenarios, we choose �1 ¼ 5 for both robust approaches.

Figure 2 shows the performance of the five methods versus look direction error for the

fixed actual DOA h0 ¼ 0� and the nominal DOA h varying from �5� to 5�. It can be seen

from Fig. 2 that the proposed method outperforms other four robust methods tested within

4� look direction errors, and only JRAB of Gu [18] is better than ours when the look

direction error is larger than 4�. Then we examine the effects of the snapshot number in

Fig. 3 and the input SNR in Fig. 4, where the actual and nominal DOA are fixed at 0� and

3� respectively. As depicted in Figs. 3 and 4, the proposed method is also better than the

other methods in terms of the array output SINR.
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Fig. 1 Array output SINR versus steering vector uncertainty level �1; first example
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4.2 Example 2: Coherent Local Scattering

In the second example, the actual SOI steering vector is formed by five coherent signal

path as [6, 20]

a ¼ aðh0Þ þ
X

i¼1

4

ej/iaiðehiÞ ð30Þ

where h0 is the DOA of the direct path, whereas ehi corresponds to the ith coherently

scattered path. Here we assume that h0 and h are both 3�. The parameter f/ig represent the
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Fig. 2 Array output SINR versus look direction error; first example
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Fig. 3 Array output SINR versus snapshot number; first example
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path phases that are independently and uniformly drawn from the interval ½0; 2p� in each

simulation run. The angles fehig; i ¼ 1; 2; 3; 4 are independently drawn in each simulation

run from a random generator with mean equal to 3� and standard deviation (or scatter

angular spread) equal to 5�. Note that fehig and f/ig vary from run to run while keeping

unchanged from snapshot to snapshot.

The performances versus the snapshot number and the input SNR are displayed in

Figs. 5 and 6 for the uniform distribution and in Figs. 7 and 8 for the Gaussian distribution.

These four figures clearly demonstrate that our proposed robust beamformer consistently

enjoys the best performance among all the tested robust approaches. In addition, the JRAB

of Gu presented in [18] is another well-performing method which is comparable with ours

when we examine the effect of input SNR in Figs. 4, 6 and 8. It is worthwhile to note that

the JRAB of Gu must employ a process of the CVX optimization in each iteration and the
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Fig. 5 Array output SINR versus snapshot number; uniform distribution; second example
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convergence may be slow, whereas our proposed method is much more computationally

effective.

5 Conclusion

Considering both the uncertainties of steering vector and covariance matrix, a min–max

optimization problem is designed to find a steering vector corresponding to the maximum

power under the worst covariance matrix mismatch. Such problem can be relaxed to a

max–min optimization problem and then be solved by using the KKT optimality
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Fig. 6 Array output SINR versus input SNR; uniform distribution; second example
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Fig. 7 Array output SINR versus snapshot number; Gaussian distribution; second example
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conditions. Different than the traditional DL methods, the diagonal loading factors in our

proposed approach are variable and dependent on the correlations (between the eigen-

vectors and the SOI) and the eigenvalues.
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Appendix: Proof of (24)

Let us start with the equation

XN

j¼1

z2
j

1 þ k bcj þ bj
� � �2 ¼ �1: ð31Þ

Differentiating with respect to bi, we have

XN

j¼1

�2z2
j bcj þ bj
� 

ok
obi

þ kdði� jÞ
h i

1 þ k bcj þ bj
� � �3 ¼ 0 ð32Þ

where dðiÞ is the impulse function. Therefore,

ok
obi

¼ �

kz2
i

1þk bc iþbi

� � �3

PN
j¼1

z2
j
bc jþbj

� 

1þk bc jþbj

� � �3

ð33Þ
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Fig. 8 Array output SINR versus input SNR; Gaussian distribution; second example
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Using (22) and differentiating it with respect to bi, we have

� of

obi
¼
XN

j¼1

z2
j dði� jÞ

bcj þ bj þ 1
k

� 2

þ
XN

j¼1

�2z2
j bcj þ bj
� 

dði� jÞ � 1
k2

ok
obi

h i

bcj þ bj þ 1
k

� 3

¼
z2
i k2 � k3ðbci þ biÞ
� �

1 þ kðbcj þ bjÞ
� �3 þ 2k

ok
obi

XN

j¼1

z2
j bcj þ bj
� 

1 þ kðbcj þ bjÞ
� �3

ð34Þ

Substituting ok
obi

from (33), we have

� of

obi
¼
z2
i k2 � k3 bci þ bið Þ
� �

1 þ k bci þ bið Þ½ �3
þ �2k2z2

i

1 þ k bci þ bið Þ½ �3

¼� k2z2
i

1 þ k bci þ bið Þ½ �2

ð35Þ

which is equivalent to (24).
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