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Abstract—The traditional signal-subspace projection (SSP)
method combats the problem of array manifold uncertainty to
gain the robustness by means of projecting the nominal manifold
vector onto the signal subspace so as to eliminate the errors
lying in the noise subspace. The main contribution of this paper
is to extent the SSP approach from one dimension to multi-
dimension. We assume that the actual manifold vector of the
desired signal can be expressed as a product of a known matrix
and an unknown coordinate vector. Then it is shown that the
SSP method can be derived from the perspective of a problem
of canonical correlation analysis (CCA) where the dimension of
one subspace is one. When the dimension of the subspace (which
the actual manifold of the desired signal belongs to) increases to
multi-dimension, a novel projection method is developed, which
can be viewed as the extension of the SSP method from one
dimension to multi-dimension. Numerical results demonstrate
the superiority of the proposed beamformer relatively to the
conventional SSP method.

Keywords—Array processing; signal-subspace projection (SSP)
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I. INTRODUCTION

Consider an array of N sensors collecting M+1 uncorrelat-

ed narrowband signals (one desired signal and M interference

signals) located in the far-field. The second order statistics of

the received N × 1 signal-vector x(t) is represented by the

covariance matrix R

R = E{x(t)xH(t)} = σ2
dada

H
d +

M∑

i=1

σ2
i aia

H
i + σ2

nIN

︸ ︷︷ ︸
M

=Ri+n

(1)

where E{·} denotes the expectation operator, σ2
d and {σ2

i , i =
1, . . . ,M} are the powers of the desired signal and the

interferences, and IN represents the N × N identity matrix.

ad and {ai, i = 1, . . . ,M} stand for the manifold vectors (or

steering vectors) of the desired signal and the M interferences

respectively, which are the array response at the direction-of-

arrival (DOA) of θd and {θi, i = 1, . . . ,M}. The matrix Ri+n

is referred to as the desired-signal-absent covariance matrix in

which the effects of the desired signal are totally removed.

In practical applications, the theoretical covariance matrix is

normally unavailable and we have to use its estimated version

instead, which may be obtained as follows

R̂ =
1

K

K∑

l=1

x(tk)x
H(tk) (2)

where {x(tk), k = 1, . . . ,K} denote the K received snapshot-

s. Performing eigen-decomposition on R yields

R =
N∑

i=1

γieie
H
i

= EsDsE
H
s +EnDnE

H
n (3)

where the eigenvalues {γi, i = 1, . . . , N} are arranged in

decreasing order (i.e., γ1 ≥ . . . ≥ γN ), ei is the eigenvector

associated with γi. R can be split into two parts where

Ds = diag{γ1, · · · , γM+1} and Dn = diag{γM+2, · · · , γN}
are diagonal matrices, Es and En contain, respectively, the

M +1 dominant eigenvectors and the remaining eigenvectors,

i.e.,

Es =
[
e1 · · · eM+1

]

En =
[
eM+2 · · · eN

]
(4)

Commonly Es and En are referred to as the signal-subspace

eigenvectors and noise-subspace eigenvectors.

An important topic in array signal processing is concerned

with maximizing the signal-to-interference-plus-noise ratio

(SINR), which can be expressed as the following optimization

problem

SINRmax = max
w

σ2
dw

Hada
H
d w

wHRi+nw
(5)

The optimal solution is easily derived:

wopt = βR−1
i+nad (6)

where the scalar constant β does not affect the array output

SINR. In practical applications, the received signals often con-

sist of the desired signal and the interferences simultaneously,

which means that the desired-signal-absent covariance matrix

Ri+n is unavailable or difficult to find. Therefore the desired-

signal-present covariance matrix R is used instead of Ri+n,

i.e.,

wCapon = βR−1ad (7)
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which is the solution of the well known Capon beamformer

or the minimum variance distortionless response (MVDR)

beamformer when β is chosen such that the array gain in the

desired direction θd is unity (i.e., | wH
Caponad |= 1 ⇒ β =

(aHd R−1ad)
−1). Substituting (1) into (7) and using the matrix

inversion lemma [1], it is found

wCapon =
β

1 + σ2
da

H
d R−1

i+nad
R−1

i+nad (8)

The above equation shows that if the perfect R and ad are

used, the weight vectors in (6) and (7) differ by a scalar factor

only and therefore the maximum SINR can also be achieved

by using (7). However, the weight vector actually used by the

beamformers is given by

ŵCapon = βR̂−1a0 (9)

where the vector a0 denotes the presumed manifold vector cor-

responding to the nominal DOA θ0. The SINR performance of

the Capon beamformers may suffer a substantial degradation

in the case when there exist mismatch between the presumed

a0 (or R̂) and its actual value ad (or R) [2]. It has been

shown in [3] that the average of the output SINR loss due to

the difference between the covariance matrices R̂ and R is

analogous to the SINR loss caused by the mismatch between

a0 and ad.

To mitigate the array performance degradation caused by

the difference between the actual manifold ad and its nominal

version a0, a popular robust beamformer called the signal-

subspace projection (SSP) method has been proposed in [3],

in which the presumed manifold a0 is projected onto the signal

subspace so as to eliminate the mismatch lying in the noise

subspace. The weight vector of the SSP can be written as

ŵSSP = βR̂−1P
Ês

a0 (10)

where P
Ês

= ÊsÊ
H
s is the orthogonal signal-subspace pro-

jection matrix. What follows is our proposed method in which

the traditional SSP method is extended from one dimension to

multi-dimension by using the technique of canonical correla-

tion analysis (CCA).

II. PROPOSED METHOD USING CANONICAL

CORRELATION ANALYSIS (CCA)

A. Steering Vector Uncertainty

Let us consider the fact that in many cases the true manifold

vector ad can be assumed to belong to a p-dimension linear

subspace 〈H〉 spanned by a known matrix H ∈ CN×p with

full column rank (where p < N ). However, how to combine

ad using the base of 〈H〉 is otherwise unknown [4], [5]. That

is

ad = Hb (11)

where H is known, but the coordinate vector b ∈ Cp×1

is unknown to the beamformers. The most obvious example

may be the case of the look direction error. Using the Taylor

expansion and retaining the terms up to the second order, the

actual manifold can be approximated by

a(θd) ≈ a(θ0) + (θd − θ0)ȧ(θ0) +
(θd − θ0)

2

2
ä(θ0) (12)

where ȧ(θ0) and ä(θ0) denote the first and second derivatives

with respect to the nominal DOA θ0. Thus we can readily

derive a subspace matrix H1 =
[
a(θ0) ȧ(θ0) ä(θ0)

]
such

that a0 ∈ 〈H1〉. The example of local scattering can be found

in [5] and more examples are discussed in [4].

Also, in [6], [7] the flat ellipsoidal uncertainty set has been

investigated, in which the true manifold vector is expressed as

ad = a0 +Bbfe =
[
a0 B

] [
1 bT

fe

]T
, ‖bfe‖ ≤ 1 (13)

where the known N × (p − 1) matrix B is full column rank

and the vector bfe is unknown. Clearly the flat ellipsoidal

uncertainty set can be transformed to the model of (11) with

H2 =
[
a0 B

]
.

B. Extension of the SSP Method to Multi-Dimension

Firstly let us look at the problem stated as follows: find a

vector aSSP lying in the signal subspace such that it has the

maximum correlation with the nominal manifold vector a0. By

denoting aSSP as aSSP = Esbs, this problem can be expressed

as

ρs = max
bs

(Esbs)
Ha0

‖Esbs‖ ‖a0‖
(14)

where ρs denotes the maximum correlation between aSSP and

a0. In this paper, we assume that the norm of manifold vectors

satisfies ‖a‖
2
= N . Thus the optimization problem in (14) is

equivalent to

max
bs

bH
s EH

s a0 s.t. bH
s bs = N (15)

where bH
s bs = bH

s EH
s Esbs = ‖Esbs‖

2
= N . Then the

corresponding Lagrangian is

L(λ,bs) = bH
s EH

s a0 −
λ

2
(bH

s bs −N) (16)

Differentiating (16) with respect to bs and setting the result

to zero produces

bs =
1

λ
EH

s a0 (17)

where λ can be determined by the constraint bH
s bs = N .

Thus the optimal solution is

aSSP = Esbs =
1

λ
EsE

H
s a0 =

1

λ
PEs

a0 (18)

Replacing ad in (7) with aSSP above, we can obtain (10).

This implies that the SSP method can be derived from the

perspective of the problem of maximizing correlation.

Now we consider the following CCA problem: find two

vectors located in the subspaces 〈H〉 and 〈Es〉 respectively

such that the correlation between them is maximized. Let the

vector belonging to 〈H〉 be represented by ah = Qhbh, where

Qh ∈ CN×p is the orthonormal base for 〈H〉 (i.e., QH
h Qh =

Ip) and bh ∈ Cp×1 is the combination vector. The matrix Qh



can be obtained by QR decomposition of H [1]. Thus the

above CCA problem can be expressed as

ρsh = max
bs,bh

(Esbs)
H
Qhbh

‖Esbs‖ ‖Qhbh‖
(19)

where ρsh denotes the maximum correlation between two

vectors located in 〈H〉 and 〈Es〉 respectively. Following the

work of [8], the optimization problem in (19) is equivalent to

maximizing the numerator subject to keeping the denominator

unity, meaning that (19) can be transformed to

max
bs,bh

bH
s EH

s Qhbh s.t. bH
s bs = N

bH
h bh = N (20)

The associated Lagrangian is

L(λs, λh,bs,bh) = bH
s EH

s Qhbh (21)

−
λs

2
(bH

s bs −N)−
λh

2
(bH

h bh −N)

Taking derivatives with respect to bs and bh respectively and

equating them to zero, we have

∂L

∂bs

= EH
s Qhbh − λsbs = 0 (22a)

∂L

∂bh

= QH
h Esbs − λhbh = 0 (22b)

Subtracting bH
h times (22b) from bH

s times (22a), it is found

bH
s EH

s Qhbh − λsb
H
s bs − bH

h QH
h Esbs + λhb

H
h bh = 0

⇒ λhb
H
h bh = λsb

H
s bs

⇒ λh = λs (23)

Also, from (22a) we have

bs =
EH

s Qhbh

λs

(24)

Substituting (24) into (22b) gives

QH
h EsE

H
s Qhbh = λ2

sbh (25)

Left multiplying the above with Qh at both sides produces

PHPEs
ah = λ2

sah (26)

where PH = QhQ
H
h , PEs

= EsE
H
s , and ah = Qhbh.

Importantly, (26) tells us that ah is corresponding to an eigen-

vector of the matrix product PHPEs
. Hence the proposed

estimated manifold vector is the vector lying in 〈H〉 along

which the canonical correlation with 〈Es〉 is maximized, i.e.,

âh = αP{PHPEs
} (27)

where P{·} represents the principal eigenvector of the matrix

within the braces, and the constant α is chosen such that

‖ah‖
2 = N .

It is easy to understand that the vector which lies in 〈Es〉
and has maximum canonical correlation with 〈H〉 can be given

by

as = αP{PEs
PH} (28)

If the N × p matrix H reduces to one column a0, then (28)

may be rewritten as

a(1)s = αP{PEs
a0a

H
0 } (29)

In addition, we have

PEs
a0a

H
0 (PEs

a0) = PEs
a0(a

H
0 PEs

a0)︸ ︷︷ ︸
scalar

= (aH0 PEs
a0)PEs

a0

(30)

The above equation shows that PEs
a0 is equal to the principal

eigenvector of the rank-1 matrix PEs
a0a

H
0 up to a scaling

factor and hence a
(1)
s reduces to aSSP in (18). Therefore our

proposed estimation algorithm can be viewed as the extension

of the SSP method from one dimension to p-dimension.

The proposed beamformer aims to maximize the array

output SINR, with the weight vector given by

ŵprop = βR̂−1P{PHP
Ês

} (31)

III. SIMULATION RESULTS

In order to evaluate the effectiveness of the proposed

matched subspace beamforming, three simulation studies have

been carried out using, without any loss of generality, a

uniform linear array with N = 10 sensors placed along

the x-axis and half-wavelength sensor spacing. The array

operates in the presence of three equally-powered uncorrelated

source signals where one is the desired signal and two are

interferences. The input SNR is 10dB. The DOAs of the

desired signal the first interference signal are, respectively,

fixed at 90◦ and 110◦, which are measured anticlockwise

from the x-axis. Three beamformers are simulated: the SSP

beamformer, Capon beamformer, and the proposed one. The

weight vector of Capon beamformer is obtained by using the

nominal a0 instead of ad in (7). Also, the optimal SINR curve

is plotted in all the following figures for reference, which is

computed by using the optimal weight vector in (6). Note that

this is impractical because the exact knowledge of Ri+n and

ad is used.

In the first example, the nominal DOA of the desired signal,

θ0, changes from 85◦ to 95◦ by the step of 1◦. The second

interference signal is from the direction of 75◦. The matrix

H is composed of the nominal manifold and the first two

derivatives with respect to the nominal DOA. Fig.1 shows the

array output SINR versus the look direction errors, where we

can see that our proposed method gains higher SINR than the

SSP method except the case where θ0 = 95◦. The performance

of Capon method is the worst because the traditional Capon

beamformer does nothing to achieve the robustness.

The nominal DOA θ0 is fixed at 87◦ (i.e., −3◦ look direction

error) in the second example. The DOA of the second interfer-

ence signal varies from 75◦ to 85◦. The remaining parameters

are the same as that in the first example. Fig.2 illustrates the

output SINR against the direction of the second interference

signal. To degrade the performance of the proposed method,

the DOA of the second interference is needed to be closer to

θd than that for the SSP method.
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Fig. 1. Array output SINR versus look direction error; the first example.
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Fig. 2. Array output SINR versus the azimuth of the second interference;
the second example.

In the final example, we test the effect of finite snapshots

where the covariance matrix is formed by using (2). The

parameters here are the same as that in the second example

except the DOA of the second interference signal fixing at

75◦. Fig. 3 displays the SINR versus the available snapshot

number where the averages of 500 independent Monte-Carlo

runs are used to plot each simulation point. We can see that

when the snapshot number is relatively large (over 150 in this

example) the proposed method outperforms the SSP method

in terms of array output SINR.

IV. CONCLUSION

Under the assumption that the manifold vector of the desired

signal belongs to a known linear subspace, we extend the SSP

method from one dimension to multiple dimension by means

of the CCA technique. The proposed estimated manifold is
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Fig. 3. Array output SINR versus the snapshot number; the fourth example.

scaled to the principal eigenvector of the product of the signal-

subspace projector and the linear subspace projector. The

simulations reveal that our proposed method can achieve better

performance than the SSP approach. A future area of research

consists of improving the proposed method so that it gains

better performance in the case of quite few snapshots, say, the

order of array sensor number.
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