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ABSTRACT
Direction-of-arrival (DOA) estimation is a ubiquitous task
in array processing. In this paper, we propose an adaptive
2-dimensional direction finding framework to track multiple
moving targets by using the subspace fitting method. First,
we expand the steering vectors of the current snapshot in
a Taylor series around the DOAs of the previous snapshot.
Then we transform the subspace fitting problem into a set of
linear equations. As a result, the DOAs of each snapshot can
be updated by solving a set of linear equations and we no
longer need to search the 2-D spatial spectrum. In compar-
ison with the traditional 2-D MUSIC, the proposed method
not only reduces the computational complexity considerably
but also has better estimation performance.

Index Terms— 2-D DOA Estimation, subspace fitting,
DOA tracking.

1. INTRODUCTION

Direction-of-arrival (DOA) estimation is a ubiquitous task
concerned in array processing, which has been widely used in
wireless communication, radar, sonar, acoustics, astronomy,
medical imaging, and other areas. In this paper, both the
azimuth and elevation angles are of interest and we assume
that they are time-varying.

Consider an array of N sensors operating in the presence
of M uncorrelated narrowband signals via unknown direc-
tions. The N × 1 signal vector received at the time instant t
can be expressed as

x(t) = A(t)m(t) + n(t) (1)

where m(t) collects the M complex narrowband signal en-
velopes and n(t) represents the additive white Gaussian noise
with covariance σ2

nI (σ2
n is the noise power). The notation I

denotes an identity matrix. The matrix A(t) has the steering
vectors of the M signals, i.e.,

A(t) = [a(θ1(t), φ1(t)), . . . ,a(θM (t), φM (t))] (2)
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where θ ∈ [0, 2π) and φ ∈ [0, π] denote the azimuth and
elevation angle respectively. The n-th element of the N × 1

steering vector am
�
= a(θm(t), φm(t)) is given by

[am]n = e−jπ(xn sin θm sinφm+yn cos θm sinφm+zn cosφm)

(3)
where {xn, yn, zn} are the coordinates of the n-th array sen-
sor in units of half-wavelengths. The notation [·]n denotes the
n-th element of a vector.

In practical applications, the time-varying covariance ma-
trix of the received vector x(t) can be obtained as follows [1]

R̂(t) =

t∑
k=1

βt−kx(k)xH(k) = βR̂(t−1)+x(t)xH(t) (4)

where β ∈ (0, 1] is commonly known as the forgetting factor.
Eq. (4) tells us that all the received sample vectors available
in the time interval 1 ≤ k ≤ t are involved in the estimation
and the data in the distant past should be downweighted. Then
performing eigenvalue decomposition on R̂(t) produces

R̂(t) = Es(t)Λs(t)E
H
s (t) +En(t)Λn(t)E

H
n (t) (5)

where Es(t) ∈ CN×M is the eigenvectors associated with
the largest M eigenvalues and En(t) ∈ CN×(N−M) repre-
sents the eigenvectors corresponding to the remaining small
eigenvalues. Commonly Es(t) and En(t) are referred to as
the signal-subspace eigenvectors and noise-subspace eigen-
vectors. The diagonal matrices Λs(t) and Λn(t) have diago-
nal elements associated with the signal and noise eigenvalues
respectively.

In order to find the true DOAs, a null-spectrum cost func-
tion is formed as follows

(θ̂, φ̂) = argmin
θ,φ

{a(θ, φ)HEn(t)E
H
n (t)a(θ, φ)}. (6)

Due to the orthogonality between the signal and noise sub-
space, the steering vectors of the source signals correspond
to the minima of the above cost function. Therefore, we can
find the true DOAs by searching the continuous array mani-
fold vector over the area of θ and φ. This is the basic idea
of the well-known MUltiple SIgnal Classification (MUSIC)



method [2]. However, such spectral search process may be
unaffordable for some real-time implementations since a ma-
trix product of a(θ, φ)HEn(t)E

H
n (t)a(θ, φ) has to be com-

puted for each search point. This drawback becomes partic-
ularly apparent in joint estimation of azimuth and elevation
since we have to search over two dimensions [3, 4]. More-
over, eigen-decomposition operation is also computationally
expensive and thus in many real-time applications we cannot
conduct it when each new snapshot arrives.

In this paper, we propose a computation attractive 2-D
DOA estimator. First, we employ existing signal subspace
tracking methods to update the signal subspace when each s-
napshot arrives, thereby avoiding the computationally expen-
sive eigen-decomposition process. Then a subspace fitting
problem is formulated to find the DOAs for each snapshot.
The trick to solve such subspace fitting problem is that we
expand the array steering vectors of the current snapshot in a
Taylor series around the DOAs of the previous snapshot. In
doing so, the subspace fitting problem is transformed to a set
of linear equations. Thus, the DOAs of each snapshot can be
updated by solving a set of linear equations and we no longer
need to search the 2-D spatial spectrum.

2. PROPOSED ADAPTIVE 2-D DOA ESTIMATOR

Here we assume that both the azimuth and elevation angles
change constantly due to the moving targets. This section pro-
vides an adaptive 2-D direction finding framework of tracking
multiple moving targets. Next, we will introduce how to ex-
pand the array steering vectors of the current snapshot in a
Taylor series around the DOAs of the previous snapshot.

2.1. Steering Vector Expansion

Let η = [θ1(t), φ1(t), . . . , θM (t), φM (t)]T denote the full an-
gular parameter vector. Suppose that our knowledge of the
angles is inaccurate, viz. we wrongly assume that the DOAs
are η0 = [θ1,0(t), φ1,0(t), . . . , θM,0(t), φM,0(t)]

T in lieu of
the true values η. Using the Taylor expansion and retaining
the terms up to the first order, the true array steering vectors
can be approximated by

A(t) ≈ A0(t) +
2M∑
k=1

Δk
∂A

∂[η]k

∣∣∣∣
η0

(7)

where A0(t) can be computed by (2) using the inaccurate in-
formation η0 and Δk = [η]k − [η0]k. The partial derivatives
of the array steering matrix with respect to the m-th DOAs
are given by

∂A

∂θm
=

[
0, . . . ,

∂am
∂θm

. . . ,0

]
,

∂A

∂φm
=

[
0, . . . ,

∂am
∂φm

. . . ,0

]
(8)

where only the m-th column is non-zero and[
∂am
∂θm

]
n

= jπ[am]n(yn sin θm sinφm − xn cos θm sinφm)

(9)
and [

∂am
∂φm

]
n

= −jπ[am]n(xn sin θm cosφm

+yn cos θm cosφm − zn sinφm). (10)

2.2. Subspace Fitting

In the presence of moving sources, we have to compute the
signal and noise subspaces repeatedly since they vary con-
stantly with time. This implies that the usefulness of the
block-processing-based subspace techniques may not be re-
alistic due to the high computational complexity associated
with either the eigen-decompositions of the covariance da-
ta matrix or searching the minima over 2-D MUSIC spatial
spectrum.

In order to overcome the above difficulties, we employ
the subspace tracking technique [5] to update the eigenba-
sis recursively on the arrival of a new data snapshot. In our
proposed approach, the Fast Approximated Power Iteration
(FAPI) method presented in [6] is adopted for the recursive
signal subspace estimation. The FAPI algorithm is a fast im-
plementation of the classical power iteration method. When
each new snapshot arrives, the FAPI method can produce an
arbitrary orthonormal basis of the signal subspace, represent-
ed by W(t) ∈ CN×M . In other words, despite W(t) �=
Es(t), the associated subspace projection matrices are equal,
i.e., W(t)WH(t) = Es(t)E

H
s (t). For more details, refer to

[6].
Once we have the knowledge of the signal subspace, we

can obtain the DOAs of each snapshot by solving the follow-
ing multidimensional fitting problem [7]:

η̂ = arg min
η,T

‖ W(t)−A(η)T ‖2 (11)

which aims to find an A(η) such that the two subspaces s-
panned by A(η) and W(t) are as close as possible. This
method suffers from a costly multidimensional optimization.
However, we can observe that there are no mixed constraints
in (11) for the two variables A(η) and T, which implies that
(11) is separable in A(η) and T. In other words, we can fix
either A(η) or T and optimize the other, which is easier to
solve than (11) in its entirety [8, 9]. For instance, if we fix
A(η), the optimal solution for T can be readily obtained by

T� = A†(η)W(t) (12)

where A†(η) = (AH(η)A(η))−1AH(η). Then we assume
that T is known and rewrite the cost function of (11) as fol-
lows

f = Tr
{
(W(t)−A(η)T)

H
(W(t)−A(η)T)

}
(13)



where the notation Tr{·} denotes the trace of the matrix be-
tween brackets. Differentiating f with respect to the i-th ele-
ment of η, we have

∂f

∂[η]i
= Tr

⎧⎨⎩−
(

∂A

∂[η]i

∣∣∣∣
η0

T

)H

(W(t)−A(η)T)

⎫⎬⎭+(· · · )H

(14)
where the notation (· · · )H means the same expression ap-
pears again with conjugate transpose. Then inserting (7) into
(14) produces (15) where the notation Re{·} denotes the real
part. By setting (15) to zero, we have (16).

Now the equations
[

∂f
∂[η]1

, . . . , ∂f
∂[η]2M

]T
= 0T can be

written more compactly as

HΔ = b (17)

where

[H]i,k = Tr

⎧⎨⎩Re

⎧⎨⎩TH

(
∂A

∂[η]i

∣∣∣∣
η0

)H
∂A

∂[η]k

∣∣∣∣
η0

T

⎫⎬⎭
⎫⎬⎭
(18)

and

[b]i = Tr

⎧⎨⎩Re

⎧⎨⎩TH

(
∂A

∂[η]i

∣∣∣∣
η0

)H

(W(t)−A0T)

⎫⎬⎭
⎫⎬⎭
(19)

with i, k = 1, 2, . . . , 2M . Consequently, the error vector can
be readily computed by

Δ = H−1b. (20)

2.3. Summary of the Proposed Method

We summarise the proposed DOA estimation method in Al-
gorithm 1. Theoretically speaking, iterating between Step 1
and 2 may not lead to the global solution to (11). However,
this work can yield an estimate of the steering vectors closer
to the signal subspace than the steering vectors of the previ-
ous snapshot. In the simulation part, it is found that the av-
erage of iteration times is less than five. Although the matrix
inverse operation is involved in each iteration, the computa-
tional complexity is low since the dimensions of the matrices
(AH(η)A(η)) and H (whose inverses we need to compute)
are of M and 2M only. Before closing this section, we would
like to point out that our framework is not limited to the FAPI
method. Other subspace tracking approaches can be accom-
modated in our framework as well.

3. SIMULATION RESULTS

In this section we evaluate the effectiveness of the proposed
adaptive 2-D DOA estimation approach. Consider an L-

Algorithm 1 Proposed Subspace-Fitting-Based Method
For each time step do:
Input: signal eigenvectors W(t) and previous DOA estima-
tions η0 = η(t− 1).
Iterate the following steps until convergence:

1. Compute the matrix T by (12) with η0,

2. Compute the error vector Δ using (20) where H and b
are defined in (18) and (19),

3. Update η0 = η0 +Δ,

4. Repeat Step 1, 2 and 3 a few times.

shaped array of N = 10 sensors with x-y Cartesian coordi-
nates (measured in half-wavelength) given by

x = [−2,−2,−2,−2,−2,−2,−1, 0, 1, 2]

y = [5, 4, 3, 2, 1, 0, 0, 0, 0, 0].

We assume that the forgetting factor is β = 0.7 and the signal
number is M = 2.

In the first example, we consider the Gauss-Markov mo-
bility model [10] in which the true azimuth and elevation are
generated as follows:

θ(t) = αθ(t− 1) + (1− α)θ(t) +
√

1− α2θx

φ(t) = αφ(t− 1) + (1− α)φ(t) +
√

1− α2φx (21)

where θ(t) and φ(t) represent the mean azimuth and eleva-
tion, θx and φx are two random variables drawn from a Gaus-
sian distribution N (0, 1), and α ∈ [0, 1] is the tuning param-
eter which determines the degree of randomness. When α is
zero, completely random movement (i.e. Brownian motion) is
obtained. If α is set to be 1, movement becomes predictable,
losing all randomness. Here we choose α = 0.7. Moreover,
we set θ(t) = θ(t−1)+0.2◦ and φ(t) = φ(t−1)+0.2◦, which
means that at each new arrival snapshot, the mean angles are
increased by 0.2◦. The mean angles at the first snapshot are
(θ1(1), φ1(1)) = (30◦, 20◦) and (θ2(1), φ2(1)) = (50◦, 40◦)
for the two targets. In Fig. 1 and 2, the true and estimated
azimuths and elevations are illustrated for one trial when the
snapshot number varies from 10 to 100 and the input signal-
to-noise ratio (SNR) is fixed at 10dB. As shown in Fig. 1
and 2, the proposed subspace-fitting-based adaptive direction
finding approach works well for both moving targets.

In the second simulation experiment, we investigate the
root-mean-square errors (RMSEs) between the estimated and
real DOAs. The snapshot number also changes from 10 to
100. The initial angles of the second source moves close to
the first source with (θ2(1), φ2(1)) = (40◦, 30◦). In Fig 3,
we plot both the azimuth and the elevation estimation RMSEs
versus the SNR for the proposed method and the traditional 2-
D MUSIC method (see (6)), where the SNR varies from 5dB



∂f

∂[η]i
= Tr

⎧⎨⎩−TH

(
∂A

∂[η]i

∣∣∣∣
η0

)H (
W(t)−A0T−

2M∑
k=1

Δk
∂A

∂[η]k

∣∣∣∣
η0

T

)⎫⎬⎭+ (· · · )H (15)

= −2Tr

⎧⎨⎩Re

⎧⎨⎩TH

(
∂A

∂[η]i

∣∣∣∣
η0

)H

(W(t)−A0T)

⎫⎬⎭
⎫⎬⎭+ 2

2M∑
k=1

Tr

⎧⎨⎩Re

⎧⎨⎩TH

(
∂A

∂[η]i

∣∣∣∣
η0

)H
∂A

∂[η]k

∣∣∣∣
η0

T

⎫⎬⎭
⎫⎬⎭Δk

2M∑
k=1

Tr

⎧⎨⎩Re

⎧⎨⎩TH

(
∂A

∂[η]i

∣∣∣∣
η0

)H
∂A

∂[η]k

∣∣∣∣
η0

T

⎫⎬⎭
⎫⎬⎭Δk = Tr

⎧⎨⎩Re

⎧⎨⎩TH

(
∂A

∂[η]i

∣∣∣∣
η0

)H

(W(t)−A0T)

⎫⎬⎭
⎫⎬⎭ (16)
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Fig. 1. True and estimated azimuths of two moving targets;
first example.
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Fig. 2. True and estimated elevations of two moving targets;
first example.
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Fig. 3. Azimuth and elevation estimation RMSEs versus input
SNR; second example.

to 30dB and the search grid of MUSIC is 0.1◦. Each simu-
lation point is averaged from 100 Monte-Carlo independent
runs. We can see that when the input SNR is above 5dB our
algorithm outperforms the 2-D MUSIC method.

4. CONCLUSION

We propose an adaptive 2-D direction finding framework to
track multiple moving targets. The subspace tracking tech-
nique is applied to update the eigenbasis recursively on the
arrival of a new data snapshot. Then a subspace fitting prob-
lem is formed to find the DOAs of each snapshot. We find
that the costly multidimensional optimization problem can be
solved by computing the solution of a set of linear equation-
s. From the simulation results, it has been demonstrated that
the proposed subspace-fitting-based algorithm is capable of
tracking target DOAs with very good accuracy.



5. REFERENCES

[1] W. Li, “Cooperative arrayed wireless sensor networks,”
PhD Thesis, Imperial College London, Apr. 2011.

[2] R. Schmidt, “Multiple emitter location and signal param-
eter estimation,” IEEE Trans. Antennas Propagat., vol.
34, no. 3, pp. 276–280, Mar. 1986.

[3] J. Zhuang, H. Xiong, W. Wang, and X. Cai “FFT-based
Adaptive 2-D DOA Estimation for Arbitrary Array Struc-
tures,” in International Conference on Digital Signal Pro-
cessing, pp. 2229–2232, Aug. 2017.

[4] J. Zhuang, C. Duan, W. Wang and Z. Chen, “Joint Es-
timation of Azimuth and Elevation via Manifold Separa-
tion for Arbitrary Array Structures,” IEEE Trans. Veh.
Technol., vol. 67, no. 7, pp. 5585–5596, Jul. 2018.

[5] B. Yang, “Projection approximation subspace tracking,”
IEEE Trans. Signal Process., vol. 43, no. 1, pp. 95–107,
Jan. 1995.

[6] R. Badeau, B. David, and G. Richard, “Fast approximated
power iteration subspace tracking,” IEEE Trans. Signal
Process., vol. 53, no. 8, pp. 2931–2941, Aug. 2005.

[7] M. Viberg, and B. Ottersten, “Sensor array processing
based on subspace fitting,” IEEE Trans. Signal Process.,
vol. 39, no. 5, pp. 1110–1121, May 1991.

[8] M. W. Trosset, “Extensions of classical multidi-
mensional scaling: Computational theory”, De-
partment of Mathematics, College of William & Mary,
www.convexoptimization.com/TOOLS/TrossetPITA.pdf,
2001.

[9] S. Boyd, and L. Vandenberghe Convex Optimization ,
Cambridge University Press, 2004.

[10] J. P. Rohrer, E. K. Cetinkaya, H. Narra, D. Broyles,
K. Peters, and J.P.G. Sterbenz, “AeroRP performance
in highly-dynamic airborne networks using 3D Gauss-
Markov mobility model,” in Military communications
confernece (MILCOM), pp. 834–841, Nov. 2011.


