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Abstract—It is well known that Wi-Fi indoor positioning
accuracy is vulnerable to environmental fluctuations. In this
paper, we propose a novel Wi-Fi indoor positioning method which
applies signal strength order invariance (SSOI) to overcome
the problem of environment influence and hence improve the
positioning accuracy. In the off-line phase we save not only the
signal strength of reference points but also the corresponding
signal strength order. Then in the online phase, the measured
signal strength and the associated order are used jointly to
estimate the unknown point’s coordinate. Simulation and experi-
mental results both demonstrate that our proposed algorithm can
achieve better positioning accuracy than the methods using the
traditional nearest neighbor (NN) or K-nearest-neighbors (KNN)
fingerprinting algorithm only.

Keywords—indoor positioning; fingerprinting algorithm; re-
ceived signal strength statistical order invariance; weighted match-
ing.

I. INTRODUCTION

Recently almost all modern buildings are equipped with
Wi-Fi access points (AP), and thus indoor positioning using
IEEE 802.11 standard has become a realistic alternative.
Meantime, it is common for a smart phone to be equipped
with Wi-Fi sensors, which makes them capable to implement
an indoor positioning system. So far, two approaches have
been widely used for indoors Wi-Fi positioning. The first is
based on a mathematical modeling of the wireless channel
[1], [2], which makes the use of the measurements of the
received signal parameters, such as the received signal strength
(RSS) attenuation, the angle of arrival (AOA), the time of
arrival (TOA) and the time difference of arrival (TDOA).
The second is the well-known fingerprinting method [3], [4],
which seems to be adopted more often in wireless local area
network (WLAN) applications and be more likely to give
an accurate location in indoor environments. Generally, the
fingerprinting-based method consists of two phases: an offline
phase and an online phase. The purpose of the offline phase
is to collect information of the Wi-Fi AP signal strengths
at different locations. During the online phase, the measured
signal strengths are compared to the offline measurements to
estimate the user position.

Most existing fingerprinting localization algorithms have
not considered outliers, such as the accidental environment
changes, AP attacks. One way to overcome the above draw-
backs is to resist outliers, for example using robust and attack
resistant probabilistic fingerprinting localization method [5].

Another way is to use only the rankings of the RSS values
[6].

In this paper, we propose a novel fingerprinting positioning
algorithm which uses the property of signal strength order
invariance (SSOI) to improve positioning accuracy. In addition,
our proposed method can achieve the improved performance
without any increase in computational complexity.

II. SIGNAL STRENGTH ORDER INVARIANCE (SSOI)

A. Proof of SSOI

Assume that in region A, as shown in Fig. 1, without
obvious obstacles, there are K APs with same transmitter
power. Let us consider the Wi-Fi signal propagation model
as an exponential loss model given by [7]

PL = PL(d0) + 10γ lg
d

d0
+Xσ (1)

where γ is the path loss exponent indicating the rate at
which the path loss increases with distances, d0 is the close-
in reference distance which is determined from measurements
close to the AP, d is AP-L(x, y) separation distance, and Xσ

is a zero-mean Gaussian distributed random variable (in dB)
with standard deviation σ. L(x, y) denotes any point in region
A. The received signal strength of L(x, y) from K APs can
be expressed as

p =

⎛
⎜⎜⎝

P1 + 10γ lg d1 +Xσ

P2 + 10γ lg d2 +Xσ

...
PK + 10γ lg dK +Xσ

⎞
⎟⎟⎠ , K ≥ 3 (2)

where Pk = PL(d0)−10γ lg d0, 0 ≤ k ≤ K. Here we assume
that all APs have the same transmitter power, which leads to
P1 = P2 = . . . = PK . By defining P0 = Pk, 0 ≤ k ≤ K,
and sorting the vector p from the strongest to the weakest, we
obtain

p̃ =

⎛
⎜⎜⎜⎝

P0 + 10γ lg d
′
1 +Xσ

P0 + 10γ lg d
′
2 +Xσ

...

P0 + 10γ lg d
′
K +Xσ

⎞
⎟⎟⎟⎠ , d

′
i ∈ d, 1 ≤ i ≤ K (3)

Calculating the statistics mean of the vector p̃, we have
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Fig. 1. Assumed Region A.

E(p̃) = E

⎛
⎜⎜⎜⎝

P0 + 10γ lg d
′
1 +Xσ

P0 + 10γ lg d
′
2 +Xσ

...

P0 + 10γ lg d
′
K +Xσ

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

P0 + 10γ lg d
′
1

P0 + 10γ lg d
′
2

...

P0 + 10γ lg d
′
K

⎞
⎟⎟⎟⎠

(4)
where E(·) represents the expectation operator. Now we may
reach the conclusion that the order of the expectation of E(p̃)
keeps unchanged.

B. SSOI Algorithm

In the offline phase, the fingerprinting database is built up
first. The positioning area is divided into many small cells
with each cell referred to as reference point (RP). Devices
detect APs at each RP, then the signal strength order (from
the strongest to the weakest) and the corresponding averaged
signal strength values are stored in the following two vectors

s = [S1, S2, · · · , Sm], m ≥ 3 (5)

q = [Q1, Q2, · · · , Qm], m ≥ 3. (6)

In the online phase the user device measures the signal
strengths from all APs. Then the signal strength order is stored
in the vector s̃ and the corresponding signal strength values in
q̃ as follows

s̃ = [Sap1, Sap2, · · · , Sapn], n ≥ 3 (7)

q̃ = [Qap1, Qap2, · · · , Qapn], n ≥ 3 (8)

Then a correlation matrix of s̃ and s is defined as

R(s, s̃) =

⎛
⎜⎜⎝

C(Sap1, S1) C(Sap1, S2) . . . C(Sap1, Sm)
C(Sap2, S1) C(Sap2, S2) . . . C(Sap2, Sm)

...
...

. . .
...

C(Sapn, S1) C(Sapn, S2) . . . C(Sapn, Sm)

⎞
⎟⎟⎠

(9)
with

C(Sapi, Sj) =

⎧⎨
⎩

0, Sapi �= Sj , i ∈ (1, n), j ∈ (1,m)

a, Sapi = Sj , i �= j, i ∈ (1, n), j ∈ (1,m)

1, Sapi = Sj , i = j, i ∈ (1, n), j ∈ (1,m)
(10)

The matching weight coefficient is computed by

r(s, s̃) =

m∑
i=1

n∑
j=1

C(Sapi, Sj). (11)

Then r(s, s̃) is used to evaluate the distance to the RP. The
larger r(s, s̃) the closer the unknown point to the reference
point. In order to reduce the computation complexity, here
the secondary matching weight calculation principle is used,
which can be described as: r(s, s̃) is zero if C(Sap1, S1)
and C(Sap2, S2) are both equal to zero. Using the secondary
matching weight calculation principle, we can effectively re-
duce the computation burden when the scope of the positioning
area is broadened or the fingerprinting RP distribution is
scattered. Now the SSOI algorithm consists of the following
steps.

1) In the offline phase the device measures signal
strength from all APs at different RPs. The signal
strength order is stored in the vector s and corre-
sponding signal strength values in the vector q.

2) In the online phase the user device measures signal
strength from all APs. Then the signal strength or-
der is stored in the vector s̃ and the corresponding
signal strength values in the vector q̃. The matching
weight coefficient r(s, s̃) is computed by (11) and the
secondary matching weight calculation principle.

3) The unknown point is estimated as the RP which has
the largest r(s, s̃). If there are more than one RP
with the largest r(s, s̃), the unknown point can be
estimated by the RP which has the least Euclidean
distance of the signal strength value to the unknown
point.

III. SIMULATION RESULTS

A. Theoretical data

The simulation scenario is a 100m×100m area covered
with 6 APs. The area is divided by 4m×4m block into 625 cells
and a RP is located in the cell center. In the offline phase, we
use a set of representative parameter setting: PL(d0) = 40.05,
γ = 1.26, and Xσ is a zero-mean Gaussian distributed random
variable (in dB) with stand deviation σ = 5 (also in dB).

In the online phase, we estimate the position of one point
using 100 samples with γ = 1.3, γ = 1.4, γ = 1.5 and
γ = 1.6. Fig. 2 and 3 display the improvement in estimation
error distribution to the nearest neighbor (NN) algorithm and
K-nearest-neighbors (KNN) algorithm [8] when our SSOI
algorithm is applied. As shown in Fig. 2 and 3, the error
improvements are significant and positive.

B. Experimental measurements in UESTC

In the first experiment, the data is measured at Classroom
A107 of Teaching Building A in University of Electronic
Science and Technology of China (UESTC). The floor plan
of the experimental Classroom A107 is depicted in Fig. 4
where black points stand for APs and red points for RPs. We
deploy six APs and 36 RPs in our experiment with each grid
2m×2m. Each RP samples 60 times with sampling interval of
one second. At point 1 and 2 160 samples are collected, in
which the first 60 samples are used as fingerprinting data and
the latter 100 samples are used as positioning test data.

The positioning accuracy probabilities using the NN algo-
rithm and KNN algorithm without and with the SSOI method
are illustrated in Table I and II respectively. It is clear that
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Fig. 2. Improved error distribution of NN algorithm using the SSOI method.

Fig. 3. Improved error distribution of KNN algorithm using the SSOI method.

X(m)

Y(m)

Fig. 4. Floor plan of the experimental Classroom A107.

TABLE I. POSITIONING ACCURACY PROBABILITY OF NN AND KNN
WITHOUT SSOI

error range (m) NN KNN
0 0.649 0

< 2 0.649 0
< 3 0.649 0.415
< 4 0.745 0.851
< 5 0.788 0.979
< 6 0.788 1
< 7 0.894 1

TABLE II. POSITIONING ACCURACY PROBABILITY OF NN AND KNN
WITH SSOI

error range (m) NN KNN
0 0.798 0

< 2 0.798 0.798
< 3 0.798 0.798
< 4 0.851 0.798
< 5 0.851 0.862
< 6 0.904 0.968
< 7 0.915 0.979

the NN algorithm and KNN algorithms with the SSOI method
outperform that without SSOI.

We also carry out another experiment in the 5th floor in the
dormitory of the School of Communication and Information
Engineering at UESTC. AS shown in Fig. 5, there are 32
rooms in this floor and 13 APs are employed. Experimental
measurements are operated in Room506 at 11:30am, 15:00pm
and 17:00pm. We collect 100 positioning data at each room
to evaluate the accuracy and stability of our SSOI algorithm.
The normalized average signal strength values at three time
slots are shown in Fig. 6. We can see that though the AP
signal strength values are fluctuant, the signal strength order
is invariant.

Fig. 5. The layout of positioning area.

IV. CONCLUSION

Compared with the traditional fingerprinting positioning
method, our proposed SSOI algorithm uses both the signal
strength order and the signal strength value. In the offline
phase the signal strength order and signal strength value are
all stored in the fingerprinting database. Then in the online
phase, after preprocessing fingerprinting points using a weight-
based matching algorithm, we select some RPs to estimate the
unknown point position. Simulation and experimental results
show that in comparison to the method using the traditional
NN or KNN algorithm only, the SSOI algorithm can improve
the positioning accuracy and stability.
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Fig. 6. The AP signal strength time slot 1 (11:30am), slot 2 (15:00pm) and
slot 3 (17:00pm).
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