IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received August 23, 2019, accepted September 5, 2019, date of publication September 11, 2019,

date of current version September 24, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2940386

WiGrus: A Wifi-Based Gesture Recognition
System Using Software-Defined Radio

TAO ZHANG , TINGYU SONG, DAOLIN CHEN, TIAN ZHANG,

AND JIE ZHUANG ', (Member, IEEE)

School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China

Corresponding author: Jie Zhuang (jz@uestc.edu.cn)

This work was supported in part by the Sichuan Science and Technology Program under Grant 2017JY0223, and in part by the National

Natural Science Foundation of China (NSFC) under Grant 61571090.

ABSTRACT With the proliferation of WiFi devices and infrastructures, the ubiquitous WiFi signals are
used to transmit user data. Besides it is also capable of sensing and identifying human gestures. In this
paper, we propose a WiFi-based gesture recognition system, namely WiGrus, which solves the problems
of user privacy and energy consumption compared with the approaches using wearable sensors and depth
cameras. WiGrus leverages the fine-grained Channel State Information (CSI) extracted from WiFi signals
to recognize a set of hand gestures. First of all, we utilize timestamps attached to the extracted CSI values
to split continuously received WiFi packets into gesture instances. Second, a Principal Component Analysis
(PCA)-based method and the first order difference are employed to reduce the noise and mitigate multipath
effects caused by the environment changes. Then, massive features are extracted from the processed CSI
values to present the intrinsic characteristics of each gesture. Finally, a 2-stage-RF algorithm is proposed
to classify the gestures. Our experiments are implemented with a wireless router and a Software Defined
Radio (SDR) device, more specifically Universal Software Radio Peripheral (USRP), which are used as
WiFi signal transmitter and receiver respectively. The experimental results demonstrate that WiGrus can
achieve an average accuracy of 96% in Line-of-sight (LOS) scenario and 92% in Non-Line-of-Sight (NLOS)
scenario in the office environment and is robust to the environment changes.

INDEX TERMS Channel state information (CSI), gesture recognition, WiFi, random forest (RF), timestamp,

software defined radio (SDR), universal software radio peripheral (USRP).

I. INTRODUCTION

Human motion detection utilizes specific devices and
approaches to extract the characteristics of a person’s move-
ment states. In previous works, many researchers focus on
sensors to sense and detect human motions. Those methods
require people to be equipped with dedicated sensors, such
as motion sensors, accelerometer sensors, and gyroscopes,
to collect movement information [1]-[4]. However, equip-
ping with these sensors is inconvenient as it requires the coop-
eration of users, and is constrained by energy consumption
since these sensors are usually wireless and energy-limited.
Another prevalent method utilizes depth cameras [5]-[8].
Some commercial products, like Leap Motion [5] and
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Kinect [6], can detect human motions with exceedingly
high accuracy. However, this camera-based method only
works well in the line-of-sight (LOS) scenario. More-
over, it infringes the privacy of users, which is its main
limitation.

With the ubiquity of WiFi devices and infrastructures,
WiFi-based motion detection methods attract the interests
of considerable researchers, e.g., [9]-[13], which solve the
problems of privacy as well as requirements for specific
environments or sensors. Furthermore, they can detect human
motions passively, and are easily deployable. So far, many
human motion detection systems are based on Received Sig-
nal Strength Indicator(RSSI) which can be easily obtained
from WiFi wireless network adapters and smartphones.
Many researchers have concentrated on studying RSSI,
and relevant approaches [14]-[16] have been proposed
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to recognize coarse-grained motions (such as running, walk-
ing, and falling).

In recent years, fine-grained Channel State Information
(CSI)-based schemes are gradually prevalent. Compared with
RSSI, CSI contains detailed amplitude information as well
as phase information. Hand gesture recognition, as one crit-
ical part of human motion detection, has proliferated in
human-computer interfaces (HCI) fields for many years.
Some researchers [11], [16] focus on the commercial off-
the-shelf (COTS) WiFi devices to receive the WiFi signals,
however these devices are not precise enough and even
incur extra noise. Some researchers [17] utilize two Uni-
versal Software Radio Peripherals (USRP), which form a
transceiver pair, to recognize hand gestures, whereas they
do not adopt the WiFi protocol. Our gesture recognition
system combines WiFi protocol and USRP which is different
from previous works and the experimental results show that
it has good performance. Combining WiFi with USRP has
two advantages. Firstly, when we use USRP to receive the
WiFi signals, USRP can correct frequency and phase offsets
by means of the algorithm on the Orthogonal Frequency
Division Multiplexing (OFDM) receiver [18]. So the CSI
values we extracted are more refined than that extracted by
the Intel 5300 wireless card, which accounts for the fact that
both of the amplitude and phase information of CSI can be
used, whereas 5300 NIC-based methods usually only use
the amplitude information. Secondly, USRP can receive all
signals of 52 subcarriers, whereas only 30 subcarriers can be
detected by the Intel 5300 wireless card. Thus the CSI values
obtained by our method are more complete and reliable.

In this paper, the main contribution of our work is that we
build a gesture recognition system called WiGrus. Details are
as follows:

e To the best of our knowledge, we are the first to combine
USRP and WiFi for gesture recognition. At the same time,
the phase and the amplitude information are creatively uti-
lized for recognition.

e We present a method that directly extracts the CSI values
located in the preamble of OFDM frames, based on a modi-
fied IEEE 802.11g OFDM receiver.

e We propose a classification algorithm called 2-stage-RF
algorithm. Experimental results manifest that our algorithm
is superior to other classification algorithms with an average
accuracy of 96% in LOS, and 92% in NLOS scenarios.

Il. RELATE WORK

On the whole, WiFi-based gesture recognition approaches are
divided into two categories: specialized hardware-based and
commercial hardware-based [11]. Theoretically, these meth-
ods implement gesture recognition by means of capturing the
changes caused by body movements in the wireless channel
metrics.

A. SPECIALIZED HARDWARE-BASED GESTURE
RECOGNITION

The fine-grained radio signals can be collected by specialized
hardware devices, such as USRP. WiSee [17] employs the
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USRP to capture the Doppler shifts of the received WiFi sig-
nals, and then uses them to identify 9 kinds of human motion
gestures. It works well in 3 different scenarios: LOS, NLOS,
and through the wall. AllSee [19] requires a specified analog
circuit to extract the amplitudes of the received signals, and
then finds out the characteristics of the signals to match
the corresponding gestures. However, these methods require
complex analog circuits and facilities, and are not integrated
with the ubiquitous WiFi Infrastructures, which makes it
difficult to be widely used in home and office environments.

B. COMMERCIAL HARDWARE-BASED

GESTURE RECOGNITION

Many researchers employ the commercial hardwares for
gesture recognition. CARM [13] employs a laptop with
5300 NIC to receive the WiFi signals. Then it extracts the
CSI values to build a CSI-speed model and a CSI-activity
model which are used to recognize 3 basic human activities.
WiGest [16] uses the RSSI of the received WiFi signals
to recognize a set of gestures, however, it requires 3 WiFi
access points (APs) to achieve excellent performance. Ref-
erences [10], [11], [20]-[22] all utilize a laptop with NIC to
obtain CSI values from the received WiFi signals to imple-
ment gesture recognition or localization. The accuracy of
all the above researches is unsatisfied for the fact that only
the amplitudes of CSI values are used in these studies and
phases are not taken into account, which are indeed sensitive
to environment changes and hard to deal with.

Compared with the existing approaches, WiGrus can
extract more fine-grained CSI values from the received WiFi
signals, with the USRP working as the 802.11g OFDM
receiver [18]. Both amplitude and phase are used to extract
gesture features, which markedly promote the precision and
robustness of our recognition system.

lll. PRIMER

A. CHANNEL STATE INFORMATION

According to the IEEE 802.11g protocol [23], CSI can be
obtained in each used OFDM subcarrier (52 in total, including
48 data subcarriers and 4 pilot subcarriers). We denote X (f, )
and Y (f, ) as the transmitted and received signal respectively
in the frequency domain on a certain subcarrier, where f
denotes the carrier frequency and ¢ denotes the time. Then
we have:

Y, )=X({,t) x H{f, 1) (1)
where H(f, t) is the channel frequency response (CFR) of
wireless channel.

CSlis actually the sample of CFR on each subcarrier. It can
express the variations of the WiFi channel. Taking multipath
propagation into consideration, CFR is formulated as:

n
H(f, 1) = e TN " ai(f, 1)e 2/ m0 )

i=1
where n denotes the number of propagation paths, e 727 Af
denotes the phase shift caused by frequency offset Af since
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FIGURE 2. Signal processing procedure of the OFDM receiver.

the local oscillators of sender and receiver might work on
slightly different frequencies, a;(f, t) and 7;(¢) are the com-
plex attenuation factor and propagation delay in the i-th path
respectively.

B. OFDM RECEIVER

The original 802.11g OFDM receiver [18] is used to decode
the actual data (payload) from the received OFDM frames
which traverse across the radio network. As Fig. 1 shows,
the OFDM frame has three distinct regions: Preamble,
Header, and Payload. The Preamble is used for synchro-
nization and channel equalization, and it includes 10 short
training symbols and 2 long training symbols. We make some
modifications to extract the CSI values from the long training
symbols at the beginning of the received OFDM frames. A
minor modification on the OFDM receiver source code allows
us to extract more fine-grained CSI data. This is another
innovation in this paper. To the best of our knowledge, no one
has adopted such a method for gesture recognition yet. Fig. 2
depicts the brief architecture of our OFDM receiver.

In our OFDM system, before decoding the received signal,
we extract CSI directly after the channel estimator. More
importantly, our OFDM receiver can correct the frequency
and phase offsets incurred by the desynchrony of local oscil-
lators between the sender and receiver. Due to space limita-
tion, we refer the interested reader to [18] for details.

C. MULTIPATH MITIGATION

According to previous research [11], the propagation paths
of WiFi signals can be split into two categories: non-user
reflected paths and user reflected paths. The former, including
LOS paths and paths reflected from static objects, is resilient
to human movements, and only relates to the static envi-
ronment. Let Hy(f) represent the aggregated CFRs of all
non-user reflected paths. The paths reflected from people can
be further divided into two detailed subcategories: the first
is that the signals initially reflect from the human body and
then return directly to the receiver, the second is that the
signals experience further reflections after reflecting from
the user before arriving at the receiver in the environment.
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The amplitudes of the second subcategory in the received
signals are relatively lower than that of the first subcate-
gory, since the signals have experienced severe fading after
multiple reflections. Therefore, only the first component in
the second category is considered as the valid paths reflected
from the human body. We denote the aggregated CFRs of the
user reflected paths as Hy(f, ¢). It is formulated as:

Hd(f’ t) = Zak(f, t)e_jQ‘”ka(f) (3)

keD

where D is the set of the user directly reflected paths. There-
fore, Eq. (2) can be rewritten as:

H(f, 1) = e Y (H(f) + Hy(f, 1)) 4

As mentioned in III-B, the phase and frequency offsets of
CSI values have been corrected. In other words, the item
of e /27A" is removed during the signal reception. Thus,
the actual received signal is formulated as:

H(f,1) = Hs(f) + Ha(f, 1). &)

We differentiate the above equation with respect to 7. Since
the item of Hy(f) is not related to time #, it will be eliminated
after the differentiation. Then we derive

dH(f, 1) = dHy(f, 1). 6)

In practice, the first order difference is implemented on the
CSI values of the denoised subcarrier to obtain dH (f, t). After
that, we can effectively mitigate the multipath effects, and
promote the robustness of our system to the environment
changes.

IV. THE WIGRUS SYSTEM

WiGrus is a wireless system that exploits WiFi signals to
recognize human hand gestures based on the SDR platform.
Fig. 3 presents the gesture sketches. All these gestures are
the most frequently used in HCI and relevant researches.
Fig. 4 shows the flowchart of WiGrus. It starts by using a
laptop connected with the USRP to collect CSI from the
received WiFi signals in our experimental environment. Then,
our system extracts the gesture features from the CSI data
after the signal preprocessing as well as noise reduction and
multipath mitigation. After processing, each gesture has its
unique features. At last, we use the 2-stage-RF algorithm to
classify these gestures.

A. CSI COLLECTION
The first step of gesture recognition is collecting CSI data.
Based on section III-A and section III-B, CSI is obtained by
sampling on CFR which is parsed from the preamble located
at the beginning of the WiFi OFDM frame [23]. According to
Eq. (1), the CFR value is calculated by

Y(f’ t)

H(f7f)=m @)
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FIGURE 4. The flowchart of WiGrus.

since H(f, t) is a complex number, it can be mathematically
defined as:

H(f 1) = Ae" ®)
where A and ¢ are the amplitude and phase of CFR
respectively.

The CSI measurement is represented by
Hi1 Hip Hi s
Hy1 Hap H 52
H=| . ) 9)
Hp1  Hpp Hy 50

where n denotes the number of sampling points. Each column
denotes a CSI stream. In our OFDM system, the amount
of subcarriers is 52. So we collect 52 CSI streams for each
gesture measurement in total.

B. DATA PREPROCESSING

Data preprocessing mainly contains two steps: Timestamp
segmentation and sample alignment. Due to the discontinu-
ous transmissions of wireless signals, the number of sampling
points in each CSI measurement is unequal, which is not
conducive to subsequent processes. To address this problem,

VOLUME 7, 2019

Amplitude
S 8 %

=3

0 50 100

Phase (rad)

0 50 100 150 200 250
Sample Index

FIGURE 5. Raw CSI amplitude and phase (unwrapped) of circle gesture on
the 10-th subcarrier.

each gesture is constrained to be finished within 2 seconds
and timestamps are attached to each group of the collected
CSI measurements. Thanks to these timestamps, the CSI
data can be segmented into pieces by every 2 seconds so
that the raw CSI data group can be split into multiple ges-
ture instances. In our experiments, when we use a device
(e.g., laptop or smartphone), which connected to the wireless
router that has 100M network bandwidth, to download files
with maximum speed, more than 1300 CSI sampling points
are collected per second. We randomly sample 1024 points
per second from these received data to guarantee each CSI
measurement has equal sampling points. Then through apply-
ing equidistant down-sampling, we obtain the sampling rates
of 512,256, 128, and so on, which are used for comparing the
impacts of different sampling rates. Taking the computation
and accuracy into account, we set the default sampling rate
for subsequent experiments to 128.

C. NOISE REDUCTION AND MULTIPATH MITIGATION

The received CSI data are extremely noisy. Fig. 5 shows the
raw amplitude and phase of CSI data. To deal with the noise
and multipath effects stemmed from the static environment,
some techniques are employed.

One major source of noise comes from the internal state
transitions in the sender and receiver, e.g., transmission power
change and transmission rate adaption [13]. This noise results
in high amplitude impulse and burst noise, which brings a
challenge for traditional filters such as low-pass or median fil-
ters. So a PCA-based denoising method is adopted, which is
proposed in CARM [13]. In WiGrus, we apply the PCA-based
denoising method to all CSI streams, and then use a low-pass
filter to filter out the rest noise. Subsequently, as section III-C
mentioned, the first order difference is carried out on the
filtered signal to remove the multipath effects stemmed from
the static environment. Finally, we get 52 reconstructed CSI
streams, which are called principal components (PCs). Only
the second PC among the new PC streams is reserved, because
the 2nd has the minimum noise and retains enough infor-
mation to identify the gestures according to our observation.
Fig. 6 shows the first three reconstructed PCs. In the end,
we extract the phase and amplitude from the selected PC.
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FIGURE 6. The first three PCs of the new reconstructed 52 CSI streams.
According to the left circles, the first PC has too much noise; according to
the right circles, the third PC loses valid information; so the second PC is
the most suitable.
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FIGURE 7. The CSI amplitude and phase of selected PC.

As Fig. 7 presents, the processed amplitude and phase have
similar variation tendency.

D. FEATURE EXTRACTION

Two kinds of feature extraction mechanisms are proposed.
One is extracting the mean values of CSI data after back-
ground removal. The other is Discrete Wavelet Trans-
form (DWT)-based statistic feature extraction.

Background CSI data is collected before performing ges-
tures, and then we subtract the background data from the
collected gesture data. Before implementing the noise reduc-
tion and multipath mitigation, we extract the mean values
of amplitude and phase on each subcarrier respectively in
advance. Here we obtain 104 mean values of the amplitude
and phase from 52 subcarriers in total.

To extract the intrinsic features of the gesture, two aspects
should be taken into consideration simultaneously: duration
and frequency. Duration represents the persistent period of a
gesture, while frequency represents the speed of the user per-
forms a gesture. DWT [24], [25] provides a time-frequency
representation of a signal, which exactly satisfies our require-
ments. In the decomposition stage of DWT, a signal is
recursively split into a detail coefficient vector and an approx-
imation coefficient vector for specified levels [25].
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In our work, we use Daubechies (db4) wavelet with six
levels to decompose our selected CSI stream after the noise
reduction and multipath mitigation. Then we use the corre-
sponding six detail coefficient vectors and one approxima-
tion coefficient vector to extract features from 7 statistical
magnitudes which include the mean, maximum, minimum,
maximum energy, minimum energy, variance, and mean of
energy. In the end, we obtain 98 DWT-based features. With
the previous 104 features, we have 202 features in total.

E. GESTURE CLASSIFICATION

So far, we have obtained a mass of features, then the last step
is building our classification model. According to previous
researches [9], [11], [12], there are mainly three machine
learning algorithms that have been used to classify gestures,
including K-Nearest Neighbors (KNN) [26], Support Vector
Machine (SVM) [27], and Decision Tree (DT) [28]. In this
paper, we propose a 2-stage-RF algorithm based on Random
Forest(RF) [29]. In order to verify the performance of our
algorithm, we compare it with the most popular classification
algorithm, convolutional neural network (CNN).

1) 2-STAGE-RF

Random Forest is an extended variant of Bagging [30] ensem-
ble learning, and all base learners of Random Forest are con-
structed with classification decision trees. In order to achieve
a great integration, the individual learner should have a high
accuracy and the difference between the learners should be as
large as possible. Thus, bagging and random feature selection
are introduced in Random Forest to promote the random-
ness in the process of constructing decision trees. Bagging
increases the diversity of base learners by sampling with
replacement on the raw dataset to grow new base learners,
while random feature selection exploits different feature sub-
spaces drawn at random from the whole feature space to split
the node in the process of tree construction. We implement
the combination by averaging the prediction probability of all
trees, and the class probability of a single tree is the fraction
of samples of the same class in a leaf node.

In our work, more than 200 features are extracted, yet some
features may be useless. Excessive features even bring the
costs of training speed and model size. Therefore, feature
selection is required. In Random Forest, out-of-bag (OOB)
estimate is used to evaluate the feature importance which is
non-negative and sum-one. We use the feature importance
to remove the useless features, then retrain our model with
the remaining features. Details of 2-stage-RF are described
in Algorithm 1.

Our proposed algorithm mainly includes two stages: in the
first stage, training a simple Random Forest model with T
trees, and the feature importance of this model is used to
select the meaningful features. In the second stage, we retrain
the forest model of T trees with the selected features, to gen-
erate the final Random Forest model. 7} does not need to be
a large number. In our work 77 is set to 3 which means the
cost of training such a forest is almost negligible, and it works
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Algorithm 1 The 2-stage-RF Algorithm for Gesture Classi-
fication.
Input:
Gesture dataset D;
Tree number of the first stage: 77;
Tree number of the second stage: T;
Feature subspace size: f;
Feature selection threshold: ¢.
Output:
Classification model ¢, (D).

1. fort=1,2,...,T].

2: Generate a new dataset D; from D by sampling with
replacement, and the instances that are not sampled con-
stitute D7,

3: Train a decision tree with D;, denoted as ¢(D;). For each
node in the tree, drawn at random f features from all
features, and choose the feature with the least Gini index
value to split the node.

4: end for.

5: Combine all trees with the average probability of the
same class instances in a leaf node, and obtain model
¢r,(D).

6: Use all OOB collections D;’”b (1 <t < Ty) to evaluate
the importance of each feature.

7: Update dataset D from the raw dataset, and only reserve
the features whose feature importance is larger than ¢.

8: Replace 71 with T and repeat the steps 1-5, producing
the model ¢r, (D).

9: return ¢r,(D).

well for selecting the meaningful features and promoting the
overall training speed as well as the recognition accuracy. f
is set to »/m, where m is the number of all features, and ¢ is
set to 0.001. The experimental results will be presented in the
next section.

2) CONVOLUTIONAL NEURAL NETWORK

Manual extraction of features often requires prior knowl-
edge and elaborate design. CNN-based feature extraction
methods have become highly popular in recent years.
We investigate the use of CNN for gesture feature extrac-
tion and classification. Since the CSI data have 52 sub-
carrier signals and each signal has both amplitude and
phase information, we now do not use the PCA-based
noise reduction methods. Only the background elimi-
nation, multipath mitigation, and low-pass filtering are
employed to retain information for all subcarriers. Thus,
the input size of each gesture instance can be expressed
as (N_SAMPLE,N_SUBCARRIER, N_CHANNEL), where
N_SAMPLE represents the number of sampling points per
gesture instance, N_SUBCARRIER represents the number
of subcarriers, and N_CHANNEL is the number of chan-
nels. For this input size, we can easily use CNN to extract
features and classify it, just same as what we do in image
processing.
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FIGURE 8. The structure of convolutional module. Except for the number
of input and output channels of the convolutional layer, the other
parameters of each module are exactly the same.

Considering that gesture instances are segmented by times-
tamp, this implementation is simple but not precise. Thus,
we choose to use Random Forest as the final output layer,
which was proposed in Deep Neural Decision Forests [31].
Compared with using SVM or logistic regression as the
output layer, using Random Forest as the final output layer
can effectively deal with large disturbances of input data
(because the gesture segmentation according to timestamp
cannot accurately guarantee that the current time period cor-
responds to the beginning and ending of a gesture). This
problem can be effectively alleviated by averaging the outputs
of multiple trees in the forest.

Our network consists of convolutional modules and proba-
bility decision trees, which are connected by fully connected
layers. A convolutional module consists of a convolutional
layer, a Batch Normalization (BN) [32] layer, a ReLU layer
and a max-pooling layer, as Fig. 8 shows. The probabilistic
decision tree consists of split nodes and leaf nodes. The
inputs of the split nodes are learned by the convolutional
modules, and the leaf nodes are the prediction probability
of the category to which the gesture instance belongs. The
predicted output of the tree is calculated by summing the
predicted output of each leaf node.

The network architecture is illustrated in Fig. 9. The details
of the network input and output are given in Table 1. In the
table, N_BATCH is the batch size that will be used to train the
network, and the number ““2”’ in the raw input size indicates
the amplitude and phase. The number of leaf nodes N_LEAF
is determined by N_DEPTH which means the depth of the
tree (N_LEAF = QN_DEPTH ), and N_TREE represents the
number of the probability decision trees. The details about
this network design are not the focus of this article. Lim-
ited by space, interested readers please refer to [31] for
details. The hyper-parameters of the network are determined
by a 5-folds cross-validation. In addition to the common
parameters of traditional CNN, N_DEPTH and N_TREE are
included. The final prediction of the model is the average of
the output of all trees. In this paper, we utilize RMSProp [33]
as optimizer, and the learning rate is set to 0.001. In the pro-
cess of gradient descent, RMSProp can prevent severe oscil-
lation and accelerate convergence. The selection of learning
rate is based on the cross-validation. With a small learning
rate, the convergence process is more stable. Using RMSProp
and fixed learning rate is only a rough and simple choice.
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FIGURE 9. The architecture of our CNN model. The predicted output of the tree is obtained by summing the predicted output of each leaf node,
and the final output of the model is the average of the outputs of all trees.

TABLE 1. The details of our CNN model. CM means convolutional module, while FC means fully connected layer.

| type || channels || weight/keep_prob || input_size I output_size |
CM(1) 16 - (N_BATCH,256,52,2) (N_BATCH,128,26,16)
CM(2) 32 - (N_BATCH,128,26,16) (N_BATCH,64,14,32)
CM(3) 64 - (N_BATCH,64,14,32) (N_BATCH,32.8.,64)
CM(4) 128 - (N_BATCH,32.8.64) (N_BATCH,16,4,128)
FC(1) - (8192,1024)/0.5 (N_BATCH,8192) (N_BATCH,1024)
FC(2) - (1024,N_LEAF)/0.5 (N_BATCH,1024) (N_BATCH,N_LEAF)

Interested readers may consider using learning rate schedul-
ing and Adam optimizer, which may have better performance.
The dropout [34] rate of fully connected layer is set to 0.5, and
N_DEPTH is 5, meaning that N_LEAF 1is 32. In addition,
N_TREE is 10, and 50 epochs are trained. We extract 20%
from the whole dataset as validation set for early stopping.

V. EVALUATION
A. EXPERIMENT METHODOLOGY
Our experimental device consists of two major components.
A wireless router (TP-Link TL-WR886N) with 3 antennas is
fixed as the transmitter, and the USRP N210 with one SBX
daughterboard as well as one antenna (VERT2450) is fixed
as the receiver which is connected to a laptop installed with
GNU Radio [35]. All the experiments are conducted in the
2.4GHz frequency band with 20MHz bandwidth channels.
We conduct experiments in three different environments.
The first one is an office room whose size is 7.35 x 7.6 m2,
and there are multiple tables and chairs in the room. Fig. 10 is
the plan of the office. The second is a bedroom whose size is
4.5 x 5.2 m?, and the room contains a bed, a table, a sofa, and
a closet. The third is a corridor without any obstacles and with
the size 1.8 x 11.4 m?. Most of the following experiments are
done in the first environment, unless otherwise specified.
We invite 5 volunteers, including four males and one
female whose age ranges from 21 to 26. Data collection is
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done in the LOS scenario of the office, as Fig. 11a shows.
The AP is placed on the table at a height of about 1.2 m,
and the USRP is on another table with a distance of 1.5 m.
The volunteers sit in the middle of the room and perform the
gestures, and each volunteer collects 400 gesture instances
(eight kinds of gestures, 50 for each gesture). Each volunteer
sits in the same position at each collection, and all gestures are
collected at different times within 3 weeks, and the positions
of the tables and chairs in the room have been changed. In the
end, we collect a total of 2,000 gesture instances. The data of
all volunteers are mixed and processed simultaneously.

B. OVERALL PERFORMANCE

We compare the performance of various machine learning
algorithms on our datasets, including SVM, KNN, Decision
Tree, XGBoost [36], 2-stage-RF, and CNN. We randomly
extract 20% of the entire dataset as a test set, and then use a
5-folds cross-validation on the remaining dataset for model
parameter selection and network structure design. Table 2
shows the recognition accuracy of all algorithms. Obviously,
our 2-stage-RF outperforms all other algorithms, reaching a
recognition rate of 96.4% (which is equal to the average value
of the confusion matrix as Fig. 12 presents). Although the
CNN has similar recognition accuracy, the training cost of
CNN is quite expensive. Even if we use a NVIDIA-1060
graphics card for training, it takes about four minutes to
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FIGURE 12. Confusion matrix of the proposed 2-stage-RF algorithm in
LOS scenario.

train the model to converge and 1.34 seconds to complete
the prediction (in which the signal processing time is 0.78s
and 0.56s is used for CNN prediction). We tried to use a
deeper network, but there was an obvious overfitting. Because
of our limited training data, it was not suitable to use too
deep or complex networks, such as the network with tens or
even hundreds of layers used in computer vision. At the same
time, the structure design and hyper-parameter selection of
CNN are also very cumbersome, and it takes a lot of time to
verify. The network with residual block or dense block may
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TABLE 2. The performances of all algorithms.

Algorithm H Accuracy

SVM 0.926
KNN 0.896
Decision Tree 0.822
2-stage-RF 0.964
XGBoost 0.912
CNN 0.958
=@ Time of Training
== Time of Prediction
600 -
g
£ 400
)
g
=
200
0 o— —
SVM KNN 2-stage-RF  XGBoost DT

FIGURE 13. Running time comparison of the aforementioned algorithms.
Since the training and prediction time of CNN is much higher than other
machine learning algorithms, it is not marked in this figure.

solve the problem of overfitting, but it still needs massive
data to train the model. Fig. 13 shows the running time of
training and prediction of all algorithms. For the 2-stage-RF
algorithm, although it needs to extract features manually, each
extracted feature is definite and this algorithm can be flexibly
applied to gesture recognition in various scenarios. However,
when we use CNN, we cannot know exactly what features
are extracted each time. CNN is a black-box model with
poor interpretability. In summary, our 2-stage-RF is superior
in prediction accuracy, time efficiency, and flexibility. The
experimental result demonstrates that the WiGrus is robust to
environment changes and works well on different individuals.

C. FEATURE SELECTION

In this paper, the number of features extracted manually is
202. Here we only discuss these algorithms other than CNN,
because the features of CNN are automatically extracted by
the convolutional modules. Fig. 14 plots the curves of recog-
nition accuracy when increasing the number of features on the
aforementioned algorithms. In order to compare intuitively,
here Random Forest is trained only once with 100 trees,
which is different from our proposed algorithm. According
to our observation, when the tree number of this forest is
100, it achieves the prominent performance and almost no
promotion as the number increases. Obviously, the curve
of each algorithm is pretty zigzag, and some features even
degrade the accuracy of prediction. Hence it cannot achieve
the best performance when all features are used. In contrast,
we train another Random Forest with 3 trees first, and then
utilize the feature importance of this model to select the valid
features. Subsequently, we retrain all models with the selected
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features, except XGBoost which uses the feature importance
of itself. Fig. 15 shows the variations of accuracy before and
after feature selection. Obviously, the performances of all
models have been improved, and the Random Forest-based
model, exactly our proposed 2-stage-RF algorithm, maintains
the most outstanding performance.

D. ROBUSTNESS ANALYSIS

We conducted several sets of comparative experiments to
verify the robustness of WiGrus under different influential
factors. The data of the first three sets of comparative exper-
iments were collected in the LOS scenario of the office
environment. The experimental data of NLOS were collected
in the NLOS scenario of the office environment, and the
data of the last experiment were collected in the bedroom
and the corridor respectively. The subsequent experimental
data collection was performed by the same volunteer, and
we collected additional data for each set of comparative
experiments. Subsequent experiments are conducted to verify
the robustness of the 2-stage-RF algorithm. Moreover, it per-
forms well under different circumstances.

1) IMPACT OF INTERFERENCE

We first study the impact of interference when there are differ-
ent numbers of people in our office. We collect the CSI data
while people are working on their seats, and the number of
people is equivalent to the number of interferences (including
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the user who is performing gestures). Data collection was
implemented under different interference numbers. In each
case, 400 samples were collected (50 samples per gesture).
Therefore, extra 2000 gesture samples were collected, and the
data collection methods of other experiments were similar.
Fig. 16 presents the result of our experiment, and it manifests
that our system still has an accuracy of around 92% when
there are 5 interferences. Even if the interference number
is 9, WiGrus still holds a recognition accuracy of more than
80% which is much higher than that of a random guess.
It demonstrates that WiGrus works well in a majority of home
and office environments.

2) IMPACT OF SAMPLING RATE

WiGrus utilizes timestamps to split the consecutively
received WiFi packets into gesture instances (each of which
lasts 2 seconds). We require the volunteer to finish a gesture
within 2 seconds. As section I'V-A mentioned, we collect the
raw CSI measurements with maximum downloading speed,
which leads to a high sampling rate. Then through the down-
sampling, we obtain the following sampling rates as Fig. 17
shows. The accuracy of WiGrus improves, on the whole, with
the increases of the sampling rate. When the sampling rate
is 128 (which means 256 sampling points for each gesture),
our system has obtained a fairly high precision around 96%.
When the sampling rate is 1024, 98% of accuracy is achieved.
It obviously demonstrates our system works well even with-
out high occupation on the bandwidth of our network.

3) IMPACT OF DISTANCE

We study the relation between WiGrus’s recognition accuracy
and the distance from the AP to USRP. Fig. 18 presents
that the average accuracy decreases when increasing the dis-
tance from the WiFi signal source to the target receiver. The
main reason is that one part of our feature extraction is
based on the mean of signal amplitude and phase. With the
change of distance, these features will be greatly affected,
and degrade our recognition accuracy. WiGrus still has an
accuracy around 90%, when the distance from the sender to
receiver is 5.5 meters, which is sufficient for whole-home
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gesture recognition in the majority of usage scenarios.
Besides, only one AP is employed in our experiments.

4) IMPACT OF NLOS

As Fig.11b depicted, the laptop connected with the USRP,
and one AP is placed in adjacent rooms separated by a wall,
and the user is on the side of the USRP. Via this layout,
we examine the availability of WiGrus in NLOS scenario.
Fig. 19 shows the accuracy comparison under LOS and NLOS
scenarios. The experimental result indicates that our system
reaches an average accuracy of 96% in LOS and 92% in
NLOS scenarios respectively. Fig. 20 shows the confusion
matrix in NLOS scenario. This is because WiFi signal inten-
sity decays dramatically when it passes through the wall.
In the future, we may consider using higher frequency WiFi
signals or more receiving antennas to solve this problem. This
means WiGrus can be applied in a wide range of fields to
recognize human gesture precisely.

5) PERFORMANCE ON DIFFERENT ENVIRONMENTS

We collect data in the bedroom and corridor environments to
verify the performance of our system. In the bedroom envi-
ronment, the USRP and AP are placed on the table and closet
respectively, about 4 meters apart, and have about the same
height. The volunteer sits on the bed to perform gestures,
and the positions of the AP, volunteer, and receiver do not
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constitute a straight line. In the corridor environment, the AP
is placed on the ground, and the USRP is placed on a table
with a height of 1.2 meters, and the distance between them is
7 meters. The volunteer sits between them and does not form
a straight line. We use it to simulate this situation in which
the signals are reflected multiple times from the wall before
arriving at the receiver. Finally, we get a recognition rate
of 95% in the bedroom environment, which is close to what
we get in the office environment. However, in the corridor
environment, the recognition rate is 91%. After the signals are
reflected multiple times in the environment, the attenuation of
the signals will have a serious impact on the identification.
Nonetheless, the conclusions show that our system works
well for a variety of environments with a good recognition
accuracy.

VI. CONCLUSION

In this paper, we build a WiFi-based gesture recognition sys-
tem, namely WiGrus. We creatively combine USRP and WiFi
to obtain more fine-grained information from the WiFi signal
including both amplitude and phase. Furthermore, we pro-
pose a 2-stage-RF algorithm for gesture classification. Then
we conduct a series of experiments to verify the robustness
of our recognition system. The experimental results demon-
strate that our algorithm provides the best performance in
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terms of both the recognition accuracy and time complexity,
compared with other machine learning algorithms including
SVM, KNN, Decision Tree, XGBoost and CNN. In addition,
it also manifests that WiGrus can precisely identify the ges-
tures under different scenarios and is robust to multi-person
interference, the changes of distance and sampling rate. Our
proposed WiGrus can recognize gestures with an accuracy
of 96% in LOS and 92% in NLOS scenarios respectively in
the office environment, and has an accuracy of 95% in the
bedroom environment and 91% in the corridor environment
respectively. Future works will focus on more advanced IEEE
802.11 protocols, unsupervised gesture classification, and
multi-antenna techniques, and we will collect more data to
train deeper and more complex neural networks, which may
achieve better performances.
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