周德洪

个人信息Personal Information

研究员 博士生导师

性别:男

毕业院校:华中科技大学

学历:博士研究生毕业

学位:博士学位

在职信息:在岗

所在单位:自动化工程学院

其他联系方式Other Contact Information

邮箱 :

扫描关注

个人简介Personal Profile

周德洪      1989年   四川眉山人

 


2008年-2012年       华中科技大学              自动化                       学士

2012年-2016年       华中科技大学              控制理论与控制工程   博士

2016年-2018年       新加坡南洋理工大学    电气与电子工程学院   博士后

2018年-2020年       加拿大阿尔伯塔大学    电气与计算机系          博士后

2020年-                   电子科技大学              自动化工程学院/(深圳)高等研究院          研究员/博导


实验室VR  电子科技大学电力电子与智慧能源实验室

团队牵头建设有:广东省智能装备自主感知与控制工程技术研究中心;深圳市通感一体与智能无人系统XX重点实验室;深圳市龙华区高端装备智能感知与先进控制重点实验室。



四川省“天府峨眉学者”,广东省“珠江人才计划”青年拔尖人才,电子科技大学“百人计划”特聘研究员,博士生导师,IEEE高级会员,入选2022年度、2023年度美国斯坦福大学全球前2%顶尖科学家。


1-提前一年获得博士学位,直博学习期间以第一作者发表中科院一区论文4篇,申请发明专利10项,并协助导师申请面上基金一项。有非常良好的学术论文写作经验和技巧,指导20级博士生刘立杰发表中科院一区论文5篇,并获得2023年博士研究生国家奖学金21级硕士生黄峥沁发表中科院一区论文2篇,并获得2023年硕士研究生国家奖学金,四川省优秀毕业生,前往加拿大阿尔伯塔大学攻读博士学位22级硕士生张钊发表中科院一区论文2篇,提前攻读本校博士学位。培养研究生入选电子科技大学“学术新秀”:刘立杰;入选“学术青苗”:黄铮沁、张钊。


2-先后在新加坡南洋理工大学和加拿大阿尔伯塔大学从事博士后工作,在加拿大课题组一年半时间发表了一区论文9篇,同时在学术圈积攒了大量人脉,可推荐学生加州理工、普渡、南洋理工、阿尔伯塔、慕尼黑工大、瑞典皇家理工等学府深造;


3-首次申报便获得国家自然科学基金面上项目支持(NSFC:62173067,多能集成单级式多端口电机驱动拓扑衍生及控制方法),省级科技计划项目5项,市级科技计划项目3项,并先后获得电子科技大学“百人计划”,四川省高层次人才计划,广东省高层次人才计划;在项目申报上具有丰富的经验,欢迎有志向的博士加入到课题组共同发展,本人将全力支撑各位的项目申报、论文撰写等,也会给课题组的博士生充分的项目申报锻炼机会与专业指导;


4-在企业项目方面,本团队已经与某电源设备公司,新能源发电公司,xx微电子公司开展了长期合作,每年横向课题经费超过500万,课题组有丰富锻炼和动手机会,在学生阶段便可加入产品研发,积累经验。


5-累计发表学术论文80余篇,第一/通讯作者发表中科院一区论文32篇(包括IEEE Transaction on Industrial Electronics,IEEE Transaction on Power Electronics),申请/授权中国发明专利30余项。


6-2020年IEEE Transaction on Power Electronics杰出审稿人。


7-论文被引1600余次(Google Scholar)。



招生信息每年拟招收博士研究生1-2名和硕士生3-5名研究方向包括但不限于先进控制、电力电子与电机驱动、新能源。有意者欢迎发邮件至dhzhou@uestc.edu.cn.


欢迎优秀博士毕业生加入课题组做博士后,课题组将提供丰厚的待遇,年薪36万起,支持申报各类国家级、省部级课题,支撑其平台与团队建设。


科研项目:

[1]  多能集成单级式多端口电机驱动拓扑衍生及控制方法,国家自然科学基金面上项目,纵向课题,主持, 2022-2025,60 万

[2]  面向光储联合发电的多端口逆变器及其关键应用技术研究,四川省自然科学基金面上项目,纵向课题,主持,2023-2024,20万

[3]  面向光储充一体化电站的多端口变流器关键技术研究,广东省自然科学基金面上项目,纵向课题,主持,2024-2026,15万

[4]  面向海上风电惯量提升的风储一体化多端口变流关键技术研究,广东省自然科学基金海上风电联合基金面上项目,纵向课题,主持,2023A1515240060,2024-2026,30万

[5]  面向复合能源电动汽车的多端口电机驱动器关键技术研究,深圳市自然科学基金面上项目,纵向课题,主持,2024-2026,30万

[6]  基于多端口并网逆变器的高能效分布式光储联合发电关键技术研究,深圳市自然科学基金面上项目,纵向课题,主持,2023-2025,30万

[7]  面向航空航天装备的混合集成高功率密度电源关键技术研发,深圳市技术攻关重点项目,纵向课题,主持,2023-2025,200万

[8]  混合能源电动汽车电力电子接口关键技术研究,电子科技大学杰出人才启动经费,纵向课题,主持,2020-2023,50万


企业委托课题:

[1]  基于强化学习的数据中心水冷系统节能算法研究,深圳市腾讯计算机系统有限公司,主持,2023-2024,20万

[2]  高性能航空永磁同步电机驱动研究与开发,企业委托项目,主持,2023-2024,205万

[3]  高效率模块电源与车载综合电源研究与开发,企业委托项目,联合主持,2021-2022,308万


担任东方电气集团启能公司高级技术专家、中国电子信息产业集团xx公司高级技术专家、奥海科技独立董事等。

担任广东省重点研发计划评审专家、深圳市发改委评审专家、深圳市科创委重点基金指南凝练专家等。


Selected Journal Papers (My student’s names are underlined):

2024

[1] D. Zhou*, Z. Zhang, X. Liu,  Z. Shen, and J. Zou, "Dual Discontinuous PWM-Based Power Distribution Control of Multisource Inverters," in IEEE Transactions on Power Electronics, doi: 10.1109/TPEL.2024.3403881, 2024.

[2] D. Zhou*, Z. Zhang,  Z. Shen, and J. Zou, "Modulated Model Predictive Control of Multisource Inverters With Flexible Power Distribution," in IEEE Transactions on Industrial Electronics, doi: 10.1109/TIE.2024.3374397, 2024.

[3] D. Zhou*, L. Liu, Y. Mao, and J. Zou,  "Asymmetrical Level-Shifted PWM-Based Power Distribution Control of Single-Stage Multiport Inverter-Connected Islanded Microgrids," in IEEE Transactions on Power Electronics, doi: 10.1109/TPEL.2024.3404277, 2024.

[4] L. Liu, D. Zhou*, J. Zou and Z. Shen, "Opposite Vector Modulation-Based Bidirectional Power Allocation for Single-Stage Multiport Inverter-Connected Hybrid Energy Storage System," in IEEE Transactions on Power Electronics, doi:10.1109/TPEL.2024.3376356, 2024.

[5] K. Liao, D. Zhou*, Z. Shen and J. Zou, " A Dual-DC-Port Rectifier with Active Power Ripple Suppression Under Unbalanced Grid Conditions," IEEE Transactions on Power Electronics, vol. 39, no. 6, pp. 7481-7491, June 2024.  

[6] Z. Wang, D. Zhou*,  X. Liu, Z. Shen, and J. Zou, "Sideband Harmonic-Based Talkative Power Conversion," in IEEE Transactions on Power Electronics, accept, 2024.

[7] D. Zhou*, Y. Mao, and J. Zou, " Double Zero-Sequence Voltage Injection-Based Power Distribution Control of Single-Stage Multiport Inverter-Fed Hybrid Electric Vehicles ", IEEE Transactions on Industrial Electronics, Accepted, 2024

[8] Y. Huang, C. Xie, C. Peng,  D. Zhou, and J. Zou, " Rethink and Design of Capacitor-Current-Feedback Active Damping for Grid-Following Inverters from A Passivity Enhancement Perspective," IEEE Journal of Emerging and Selected Topics in Power Electronics, , vol. 12, no. 3, pp. 2947-2959, June 2024.  

[9] X. Li, D. Zhou, S. Jia, X. Liu and J. Zou, " A WPT System with Wide-Range Voltage Gains and Soft Switching via Primary-Side Hybrid Modulation," IEEE Transactions on Power Electronics, vol. 39, no. 7, pp. 8985-8997, July 2024.  

[10] X. Liu, R. Chen, F. Li, D. Zhou, and J. Zou, " A WPT System with DC-link Series/Parallel AC-link Parallel Rectifiers for AUVs with Multiple Charging Voltages and Currents," IEEE Transactions on Power  Electronics, doi: 10.1109/TPEL.2024.3398990, 2024.  


2023

[1] Z. Huang, D. Zhou*L. Wang, Z. Shen and Y. Li, "A Review of Single-Stage Multiport Inverters for Multisource Applications," in IEEE Transactions on Power Electronics, vol. 38, no. 5, pp. 6566-6584, May 2023 (2023年深圳市第三届优秀科技学术论文)

[2] L. Liu, D. Zhou*, J. Zou and W. Wang, "Zero Vector Regulation-Based Closed-Loop Power Distribution Strategy for Dual-DC-Port DC-AC Converter-Connected PV-Battery Hybrid Systems," in IEEE Transactions on Power Electronics, vol. 38, no. 6, pp. 6956-6968, June 2023.

[3] D. Zhou*, K. Luo,  Z. Shen, and J. Zou, "Deadbeat Power Distribution Control of Single-Stage Multiport Inverter-Fed PMSM Drive for Hybrid Electric Vehicles," in IEEE Transactions on Power Electronics, vol. 38, no. 6, pp. 7586-7597, June 2023.

[4] L. Liu, D. Zhou*, J. Zou and W. Wang, "Decoupled Modeling and Wide-Range Power Distribution Strategy for the Multisource Inverter in Microgrids," in IEEE Transactions on Power Electronics, vol. 38, no. 10, pp. 12078-12090, Oct. 2023

[5] Z. Huang, D. Zhou*, Z. Shen, and J. Zou, "Directed Graph-based Topology Derivation Method for Single-Stage Multiport Inverters" in IEEE Transactions on Power Electronics, vol. 38, no. 11, pp. 14614-14627, Nov. 2023

[6] L. Liu, D. Zhou*, J. Zou, Z. Shen, and X. Fu,  "Direct Duty Cycle Control-Based Power Allocation Strategy for Single-Stage Multiport Inverter in Islanded Microgrid," in IEEE Transactions on Power Electronics, vol. 38, no. 12, pp. 14956-14967, Dec. 2023

[7] D. Zhou*, K. Luo,  Z. Shen, and J. Zou, "Vector Space Decomposition-Based Power Flow Control of Single-Stage Multiport Inverter-Fed PMSM Drive for Hybrid Electric Vehicles," in IEEE Transactions on Industrial Electronics, vol. 71, no. 8, pp. 8514-8524, Aug. 2024

[8] Z. Shen, Z. Li, D. Zhou, J. Zou, and D. Jiang, "A Computationally Efficient Carrier-Based PWM Strategy for Asymmetrical Six-Phase Motor Drive of Electric Vehicle with  Unified Zero-Sequence Signal," IEEE Transactions on Transportation Electrification, 2023, doi: 10.1109/TTE.2023.3339976.



Conference

[1] H. Guan, D. Zhou*, “A Modified Space-Vector Modulation-based Flexible Power Control for Single-Stage Dual-Port Inverter-Connected Hybrid Electric Vehicles”, China Power Electronics and Energy Conversion Conference (CPEEC), 2023

[2] Z. Huang, D. Zhou*, Z. Shen, J. Zou, "Family of Single-Stage Multiport Inverters for Hybrid Renewable Energy Generation", The 2nd IEEE International Power Electronics and Application Symposium (PEAS), 2023

[3] X. Yang, D. Zhou*, ,Z. Shen, J. Zou, “Optimized Interleaved PWM of Internal-Parallel Multilevel Converter-Fed Dual-Three-Phase PMSM Drives With Reduced Torque Ripples”, The 49th Annual Conference of the IEEE Industrial Electronics Society(IECON), 2023

[4] L. Liu, D. Zhou*,  J. Zou, "A Flexible Power Allocation Strategy for Dual-DC-Port Inverter-Connected PV-Battery Hybrid Systems", The 49th Annual Conference of the IEEE Industrial Electronics Society (IECON), 2023

[5] L. Liu, D. Zhou*,  J. Zou, "High-Efficiency Quasi-Single-Stage Battery-Supercapacitor Hybrid Energy Storage System", The 49th Annual Conference of the IEEE Industrial Electronics Society (IECON), 2023

[6] L. Liu, D. Zhou*,  J. Zou, "Deadbeat Power Control Strategy for Dual-DC-Port Inverter-Connected PV-Battery Hybrid Systems", China Power Electronics and Energy Conversion Conference (CPEEC), 2023

[7] K. Luo, D. Zhou*, J. Zou, X. Zhou, and Z. Shen “Decoupling Control of Single-Stage Multiport Inverter-Fed Motor Drives Using Zero-Sequence Voltage Injection”, The 49th Annual Conference of the IEEE Industrial Electronics Society (IECON), 2023.

[8] K. Luo, D. Zhou*, J. Zou, X. Zhou,  and Z. Shen, “Binary Search Based Flexible Power Control for Single-Stage Multiport Inverter-Fed Motor Drives”, The 2nd IEEE International Power Electronics and Application Symposium (PEAS), 2023. (大会优秀论文)


专利

[1] 周德洪;王龙广;沈泽微;邹见效,一种具有宽增益的LLC谐振型DC变换器系统及应用方法,ZL202310197239.1

[2] 周德洪,张钊,沈泽微 ,邹见效, 一种准单级式变母线电压电机驱动装置及控制方法, CN202310627344.4

[3] 周德洪,管洪鑫,沈泽微,邹见效, 一种单级式多端口电机驱动装置及功率分配方法, CN202310635708.3

[4] 周德洪,刘海川,沈泽微,邹见效, 一种宽功率调节范围的多端口电机驱动系统及控制方法, CN202310438102.0

[5] 周德洪,丁宇,沈泽微,邹见效, 基于单级式多端口逆变器的无差拍功率分配控制方法, CN202310542580.6

[6] 周德洪,李铭轩,沈泽微,邹见效, 一种面向微电网的准单级式多端口逆变器系统及调制方法, CN2023105414680.0

[7] 周德洪;陈秋羽;沈泽微;邹见效,单级式多端口电机驱动系统及控制方法,CN202310197239.1

[8] 周德洪;张文钟;沈泽微;邹见效,基于矢量分解的单级式多端口电机驱动器功率分配方法,CN202311476587.9

[9] 周德洪;廖凯;沈泽微;邹见效,一种内嵌功率解耦功能的单级式双直流端口并网整流器,CN202311038196.9

[10] 周德洪;黄峥沁;沈泽微;邹见效, 一种基于有向图的多端口逆变器拓扑衍生方法,CN202311245153.8

[11] 周德洪,刘立杰,沈泽微,万宇星,邹见效, 基于占空比的多端口光储联合发电系统控制方法, CN202311790409.3

[12] 周德洪,刘立杰,沈泽微,姜圣阳,邹见效, 基于零矢量调节的多端口光储混合发电系统功率分配方法, CN202311799195.6

[13] 周德洪,刘立杰,沈泽微,吴倩,邹见效, 基于矢量分解的多端口光储混合发电系统功率分配方法, CN202311799141.X


2022

[1] M. Zhang, Z. Zhang, Z. Li, H. Chen and D. Zhou, "A Unified Open-Circuit-Fault Diagnosis Method for Three-Level Neutral-Point-Clamped Power Converters," in IEEE Transactions on Power Electronics, vol. 38, no. 3, pp. 3834-3846, March 2023. 


2021

[1] D. Zhou, J. Wang, Y. Li, J. Zou and K. Sun, "Model Predictive Power Control of Grid-Connected Quasi Single-Stage Converters for High-Efficiency Low-Voltage ESS Integration," in IEEE Transactions on Industrial Electronics, vol. 69, no. 2, pp. 1124-1134, Feb. 2022.

[2] J. Wang, K. Sun, D. Zhou, and Y. Li, "Virtual SVPWM-Based Flexible Power Control for Dual-DC-Port DC–AC Converters in PV–Battery Hybrid Systems," in IEEE Transactions on Power Electronics, vol. 36, no. 10, pp. 11431-11443, Oct. 2021.


2020

[1] D. Zhou, L. Ding, and Y. Li, “Two-stage optimization-based model predictive control of 5l-anpc converter-fed pmsm drives,” IEEE Transactions on Industrial Electronics,  2021, 68(5): 3739-3749.

[2] D. Zhou, Z. Quan, Y. Li, and J. Zou, “A general constant-switching-frequency model-predictive control of multilevel converters with quasi-ps-pwm/ls-pwm output,” IEEE Transactions on Power Electronics, vol. 35, no. 11, pp. 12429–12441, 2020.

[3] D. Zhou, L. Ding, and Y. Li, “Two-stage model predictive control of npc inverter-fed pmsm drives under balanced and unbalanced dc links,” IEEE Transactions on Industrial Electronics, 2021, 68(5): 3750-3759

[4] D. Zhou, Z. Quan, and Y. Li, “Simplified predictive duty cycle control of multilevel converters with internal identical structure,” IEEE Transactions on Power Electronics, vol. 35, no. 11, pp. 12416–12428, 2020.

[5] D. Zhou, J. Wang, N. Hou, Y. Li, and J. Zou, “Dual-Port Inverters with Internal DC-DC Conversion for Adjustable DC-Link Voltage Operation of Electric Vehicles,” IEEE Transactions on Power Electronics, 2021, 36(6): 6917-6928.

[6] C. Xue, D. Zhou and Y. Li, "Finite-Control-Set Model Predictive Control for Three-Level NPC Inverter-Fed PMSM Drives With $LC$ Filter," in IEEE Transactions on Industrial Electronics, vol. 68, no. 12, pp. 11980-11991, Dec. 2021.

[7] C. Xue, D. Zhou and Y. Li, "Hybrid Model Predictive Current and Voltage Control for LCL-Filtered Grid-Connected Inverter," in IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 9, no. 5, pp. 5747-5760, Oct. 2021.

[8] J. Wang, X. Liu, Q. Xiao, D. Zhou, H. Qiu, and Y. Tang, “Modulated model predictive control for modular multilevel converters with easy implementation and enhanced steady-state performance,” IEEE Transactions on Power Electronics, vol. 35, no. 9, pp. 9107–9118, 2020.

[9] C. Jiang, Z. Quan, D. Zhou and Y. Li, "A Centralized CB-MPC to Suppress Low-Frequency ZSCC in Modular Parallel Converters," in IEEE Transactions on Industrial Electronics, vol. 68, no. 4, pp. 2760-2771, April 2021.

[10] F. Wu, J. Sun, D. Zhou, Y. Liu, T. Geng, and J. Zhao, “Simplified fourier series based transistor open-circuit fault location method in voltage-source inverter fed induction motor,” IEEE Access, vol. 8, pp. 83 953–83 964, 2020.


2019

[1] D. Zhou, Z. Quan, and Y. Li, “Hybrid model predictive control of anpc converters with decoupled low-frequency and high-frequency cells,” IEEE Transactions on Power Electronics, vol. 35, no. 8, pp. 8569–8580, 2020.

[2] D. Zhou, Z. Quan, and Y. Li, “Model predictive control of a nine-level internal parallel multilevel converter with phase-shifted pulsewidth modulation,” IEEE Transactions on Industrial Electronics, vol. 67, no. 11, pp. 9073–9082, 2020.

[3] D. Zhou, C. Jiang, Z. Quan, and Y. R. Li, “Vector shifted model predictive power control of three-level neutral-point-clamped rectifiers,” IEEE Transactions on Industrial Electronics, vol. 67, no. 9, pp. 7157–7166, 2020.

[4] D. Zhou, P. Tu, H. Qiu, and Y. Tang, “Finite-control-set model predictive control of modular multilevel converters with cascaded open-circuit fault ride-through,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 8, no. 3, pp. 2943–2953, 2020.


2018

[1] D. Zhou, H. Qiu, S. Yang, and Y. Tang, “Submodule voltage similarity-based open-circuit fault diagnosis for modular multilevel converters,” IEEE Transactions on Power Electronics, vol. 34, no. 8, pp. 8008–8016, 2019.

[2] D. Zhou, S. Yang, and Y. Tang, “Model-predictive current control of modular multilevel converters with phase-shifted pulsewidth modulation,” IEEE Transactions on Industrial Electronics, vol. 66, no. 6, pp. 4368–4378, 2019.

[3] D. Zhou, P. Tu, and Y. Tang, “Multivector model predictive power control of three-phase rectifiers with reduced power ripples under nonideal grid conditions,” IEEE Transactions on Industrial Electronics, vol. 65, no. 9, pp. 6850–6859, 2018.

[4] D. Zhou, S. Yang, and Y. Tang, “A voltage-based open-circuit fault detection and isolation approach for modular multilevel converters with model predictive control,” IEEE Transactions on Power Electronics, vol. 33, no. 11, pp. 9866–9874, 2018.

[5] D. Zhou and Y. Tang, “A model predictive control-based open-circuit fault diagnosis and tolerant scheme of three-phase ac-dc rectifiers,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 7, no. 4, pp. 2158–2169, 2019.


2017

[1] D. Zhou, X. Li, and Y. Tang, “Multiple-vector model-predictive power control of three-phase four-switch rectifiers with capacitor voltage balancing,” IEEE Transactions on Power Electronics, vol. 33, no. 7, pp. 5824–5835, 2018.

[2] F. Wu, J. Zhao, Y. Liu, D. Zhou, and H. Luo, “Primary source inductive energy analysis based real-time multiple open-circuit fault diagnosis in two-level three-phase pwm boost rectifier,” IEEE Transactions on Power Electronics, vol. 33, no. 4, pp. 3411–3423, 2018.

[3] L. Tian, J. Zhao, and D. Zhou, “Finite control set model predictive control scheme of four-switch three-phase rectifier with load current observer,” Control Engineering Practice, vol. 73, pp. 186–194, 2018.


2016

[1] D. Zhou, Y. Li, J. Zhao, F. Wu, and H. Luo, “An embedded closed-loop fault-tolerant control scheme for nonredundant vsi-fed induction motor drives,” IEEE Transactions on Power Electronics, vol. 32, no. 5, pp. 3731–3740, 2017.

[2] D. Zhou, J. Zhao, and Y. Liu, “Independent control scheme for nonredundant two-leg fault-tolerant back-to-back converter-fed induction motor drives,” IEEE Transactions on Industrial Electronics, vol. 63, no. 11, pp. 6790–6800, 2016.

[3] D. Zhou, J. Zhao, and Y. Li, “Model-predictive control scheme of five-leg ac-dc-ac converter-fed induction motor drive,” IEEE Transactions on Industrial Electronics, vol. 63, no. 7, pp. 4517–4526, 2016.


2015

[1] D. Zhou, J. Zhao, and Y. Liu, “Finite-control-set model predictive control scheme of three-phase four-leg back-to-back converter-fed induction motor drive,” IET Electric Power Applications, vol. 11, no. 5, pp. 761–767, 2017.

[2] C. Huang, F. Wu, J. Zhao, and D. Zhou, “A novel fault diagnosis method in svpwm voltage-source inverters for vector controlled induction motor drives,” International Journal of Applied Electromagnetics and Mechanics, vol. 50, pp. 97–111, 2016.


2014

[1] D. Zhou, J. Zhao, and Y. Liu, “Predictive torque control scheme for three-phase four-switch inverter-fed induction motor drives with dc-link voltages offset suppression,” IEEE Transactions on Power Electronics, vol. 30, no. 6, pp. 3309–3318, 2015.

[2] J. Zhang, J. Zhao, D. Zhou, and C. Huang, “High-performance fault diagnosis in pwm voltage-source inverters for vector-controlled induction motor drives,” IEEE Transactions on Power Electronics, vol. 29, no. 11, pp. 6087–6099, 2014.



Selected Conference Papers:

[1] D. Zhou and Y. Tang, “An online open-circuit fault diagnosis and fault tolerant scheme for three-phase ac-dc converters with model predictive control,” in 2018 International Power Electronics Conference (IPEC-Niigata 2018 -ECCE Asia),  pp. 434–438, 2018.

[2] D. Zhou, Z. Quan, and Y. Ryan Li, “Model predictive control of 5l-anpc converters with level-shifted pulse-width-modulation,” in 2020 IEEE Energy Conversion Congress and Exposition (ECCE), pp. 2182–2188, 2020.

[3] D. Zhou, Z. Quan, and Y. R. Li, “Simplified model predictive control of multilevel converters with internal identical structure,” in 2020 IEEE Energy Conversion Congress and Exposition (ECCE), pp. 4362–4369, 2020.

[4] D. Zhou, L. Ding, Z. Quan, and Y. R. Li, “Model predictive control of 5l-anpc converter-fed pmsm drives with two-stage optimization,” in 2020 IEEE Applied Power Electronics Conference and Exposition (APEC), pp. 237–242, 2020.

[5] D. Zhou, Z. Quan, and Y. R. Li, “Hybrid model predictive control of active-neutral-point-clamped multilevel converters,” in 2019 IEEE Energy Conversion Congress and Exposition (ECCE),  pp. 6357–6363, 2019.

[6] D. Zhou, H. Qiu, S. Yang, and Y. Tang, “Similarity-based fast open-circuit fault diagnosis method for modular multilevel converters,” in 2019 10th International Conference on Power Electronics and ECCE Asia (ICPE 2019 - ECCE Asia), pp. 1830–1835, 2019.

[7] D. Zhou, S. Yang, and Y. Tang, “Integrating phase-shifted pulse-width modulation to model predictive current control of modular multilevel converters,” in 2018 IEEE Energy Conversion Congress and Exposition (ECCE), pp. 4845–4850, 2018.

[8] D. Zhou, P. Tu, H. Qiu, and Y. Tang, “Cascaded open-circuit fault ride-through of modular multilevel converters with model predictive control,” in 2018 IEEE Energy Conversion Congress and Exposition (ECCE), pp. 113–118, 2018.

[9] D. Zhou, S. Yang, and Y. Tang, “A fast open-circuit fault diagnosis scheme for modular multilevel converters with model predictive control,” in 2018 International Power Electronics Conference (IPEC-Niigata 2018 -ECCE Asia), pp. 428–433, 2018.

[10] D. Zhou, J. Zhao, and Y. Liu, “Online tuning of weighting factors based on sugeno fuzzy method in predictive torque control of four-switch three-phase inverter-fed im,” in 2016 International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM), pp. 734–739, 2016.

[11] D. Zhou and J. Zhao, “A sliding mode flux observer for online rotor and stator resistance estimation in predictive torque controlled induction motor drive,” in 2015 34th Chinese Control Conference (CCC),  pp. 4228–4232, 2015.

[12] C. Jiang, Z. Quan, D. Zhou, and Y. R. Li, “Carrier-based mpc for interleaved 2l-vsis with reduced low-order zero-sequence circulating current,” in 2019 IEEE Energy Conversion Congress and Exposition (ECCE), pp. 1474–1481, 2019.

[13] Y. Li, C. Huang, D. Zhou, and J. Zhao, “A carrier-based control scheme for five-leg back-to-back converter-fed induction motor drive,” in 2016 IEEE 11th Conference on Industrial Electronics and Applications (ICIEA),  pp. 1239–1244, 2016.

[14] R. Tjandra, S. Wen, D. Zhou, and Y. Tang, “Optimal sizing of bess for hybrid electric ship using multi-objective particle swarm optimization,” in 2019 10th International Conference on Power Electronics and ECCE Asia (ICPE 2019 - ECCE Asia), pp. 1460–1466, 2019.


申请/授权的发明专利:

[1] 沈泽微;李志坚;周德洪;邹见效;马翠鹏;凡时财,抑制对称六相交流电机零序电流的方法及系统,ZL202210491429.X

[2] 沈泽微;马翠鹏;周德洪;邹见效;李志坚;付晓明,一种抑制三电平五相交流电机共模噪声的系统及方法,CN202210890060.X 

[3] 沈泽微;陈怡帆;周德洪;王晨旭;邹见效, Buck-Boost LLC变换器的效率优化控制方法, CN202310388836.2

[4] 沈泽微;石岩松;周德洪;邹见效;刘宇纯;一种移相全桥DC/DC变换器的效率优化控制方法, CN202310396064.7

[5] 沈泽微;宋希璐;周德洪;邹见效;魏航, 基于纹波预测的三电平逆变器脉冲延时补偿系统及方法,CN202211593940.7

[6] 沈泽微; 魏航; 周德洪; 邹见效; 熊浚龙,一种基于电流抵消的DC-DC变换器纹波消除方法,CN202310760065.5

[7] 沈泽微; 王代鑫; 熊浚龙; 周德洪; 邹见效; 魏航,一种逆变器交流侧输出电流纹波消除装置,CN202310509681.3

[8] 沈泽微; 林思易; 周德洪; 邹见效; 刘佶佞,一种开绕组电机驱动系统的双逆变器温度平衡控制方法,CN202310475478.9

[9] 沈泽微; 郭峰; 周德洪; 邹见效; 王鑫,一种图腾柱无桥PFC变换器电感电流纹波峰值控制方法,CN202310475487.8

[10] 沈泽微; 田寅喆; 周德洪; 邹见效; 王健,一种高频谐振变换器的动态死区调节方法,CN202310366255.9


[1] 赵金;周德洪,一种三相四开关感应电动机变频调速系统的预测控制方法,201410474341.2

[2] 赵金;周德洪;李云华,一种三相四开关变频调速系统中电容电压漂移的抑制方法,201610171325.5

[3] 赵金;周德洪;颜宸,四象限感应电机驱动系统的模型预测控制方法,201610170994.0 

[4] 赵金;周德洪;李云华,一种三相五桥臂功率变换器的变频调速控制方法,201510407620.1

[5] 赵金;周德洪;颜宸,一种低成本的双PWM功率变换器模型预测控制方法,201610171340.X

[6] 赵金;周德洪,一种五桥臂的可控整流变频调速系统的模型预测控制方法,201510413839.2

[7] 赵金;周德洪,三相六开关整流器负载电流观测的直接功率预测控制方法,201410476612.8 

[8] 赵金;周德洪,一种三相四开关整流器直接功率控制的模型预测控制方法,201410476613.2 




  • 教育经历Education Background
  • 工作经历Work Experience
  • 研究方向Research Focus
  • 社会兼职Social Affiliations
    暂无内容
    暂无内容

团队成员Research Group

团队名称:自动化研究所