1. 基本情况:
敬蒙蒙,男,中共党员,计算机科学与技术专业博士,信息与软件工程学院讲师。
主要研究迁移学习,零样本学习,跨模态检索等。
近年来发表20多篇论文,其中CCF-A / 中科院一区Top论文17篇,包括NeurIPS,ICCV,CVPR,TIP等,CCF-B/中科院二区论文3篇,2篇论文引用量进入全球计算机领域前1%,入选ESI高被引论文。所发表论文多次提出了该领域内的原创性概念,如快速域适应,不完整跨模态检索,自适应分量嵌入等。Google学术引用超过1100次,H指数15,累计影响因子超过100,连续3年担任顶会ACM CIKM的程序委员会委员,担任计算机领域多个顶级期刊和会议的审稿人,包括IEEE TPAMI, CVPR, ICCV,TMM等。受邀在第二届CCF全国优秀博士生论坛作口头报告。近年来,主研和参与多项国家自然科学基金重大项目、 国家自然科学基金面上项目及青年基金等各类科研项目。
2. 个人主页:
学院主页:https://sise.uestc.edu.cn/info/1037/11598.htm
谷歌学术:https://scholar.google.com.hk/citations?user=gVByeFUAAAAJ&hl=zh-CN
3. 代表性论文:
[1] Jing Mengmeng, Zhen Xiantong, Li Jingjing, et al. Order-preserving Consistency Regularization
for Domain Adaptation and Generalization. ICCV, 2023. CCF-A
[2] Jing Mengmeng, Zhen Xiantong, Li Jingjing, et al. Variational model perturbation for
source-free domain adaptation . NeurIPS, 2023. CCF-A
[3] Jing Mengmeng, Li Jingjing, Lu Ke, et al. Visually Source-Free Domain Adaptation via
Adversarial Style Matching. IEEE Transactions on Image Processing , 2024. 中科院一区Top
[4] Jing Mengmeng, Zhao Jidong, Li Jingjing, et al. Adaptive Component Embedding for Domain
Adaptation. IEEE Transactions on Cybernetics , 2021. 中科院一区Top
[5] Jing Mengmeng, Meng Lichao, Li Jingjing, et al. Adversarial Mixup Ratio Confusion for
Unsupervised Domain Adaptation. IEEE Transactions on Multimedia,2023. 中科院一区Top
[6] Jing Mengmeng, Li Jingjing, Zhu Lei, et al. Balanced Open Set Domain Adaptation via Centroid
Alignment. AAAI, 2021. CCF-A
[7] Jing Mengmeng, Li Jingjing, Zhu Lei, et al. Incomplete Cross-modal Retrieval with Dual-Aligned
Variational Autoencoders. ACM Multimedia, 2020. CCF-A
[8] Jing Mengmeng, Li Jingjing, Lu Ke, et al. Learning explicitly transferable representations for
domain adaptation. Neural Networks, 2020. 中科院一区Top
[9] Zuo Lin, Jing Mengmeng, Li Jingjing,et al. Challenging tough samples in unsupervised domain
adaptation. Pattern Recognition, 2021. 中科院一区Top
[10] Li Jingjing, Jing Mengmeng, Lu Ke,et al. Locality Preserving Joint Transfer for Domain
Adaptation. IEEE Transactions on Image Processing, 2019. 中科院一区Top
[11] Liu Jieyan, Jing Mengmeng, et al. Open Set Domain Adaptation via Joint Alignment and
Category Separation. IEEE Transactions on Neural Networks and Learning Systems,2023. 中科院一区
Top
[12] Li Jingjing, Jing Mengmeng, Lu Ke, et al. Leveraging the Invariant Side of Generative
Zero-Shot Learning. CVPR, 2019. CCF-A
[13] Li Jingjing, Jing Mengmeng, Lu Ke, et al. From Zero-Shot Learning to Cold-Start
Recommendation. AAAI, 2019. CCF-A
[14] Li Jingjing, Jing Mengmeng, Lu Ke,et al. Investigating the Bilateral Connections in Generative
Zero-Shot Learning. IEEE Transactions on Cybernetics , 2021. 中科院一区Top
[15] Li Jingjing, Jing Mengmeng, Su Hongzu, et al. Faster Domain Adaptation Networks. IEEE
Transactions on Knowledge and Data Engineering, 2022. 中科院一区Top
[16] Li Jingjing, Jing Mengmeng, Zhu Lei, et al. Learning Modality-Invariant Latent Representations
for Generalized Zero-shot Learning. ACM Multimedia, 2020. CCF-A
[17] Li Jingjing, Jing Mengmeng, Lu Ke, et al. Alleviating Feature Confusion for Generative
Zero-shot Learning. ACM Multimedia, 2020. CCF-A
[18] Xie Yue, Du Zhekai, Li Jingjing, Jing Mengmeng, et al. Joint metric and feature representation
learning for unsupervised domain adaptation. Knowledge Based Systems, 2020. 中科院一区Top
[19] Ma Ao, You Fuming, Jing Mengmeng, et al. Multi-source domain adaptation with graph
embedding and adaptive label prediction.Information Processing & Management, 2020. 中科院一区
Top
[20] Jing Mengmeng, Li Jingjing, Zhao Jidong, et al. Learning Distribution-Matched Landmarks for
Unsupervised Domain Adaptation. DASFAA, 2018. CCF-B
[21] Jing Mengmeng, Li Jingjing, Lu, Ke, et al. Adaptive component embedding for unsupervised
domain adaptation. ICME, 2019. CCF-B
[22] Ding Yongqi, Zuo Lin, Jing Mengmeng, et al. Shrinking Your TimeStep: Towards Low-Latency
Neuromorphic Object Recognition with Spiking Neural Networks. AAAI, 2024. CCF-A
4. 科研项目:
[1] 面向集成电路封装缺陷检测的视觉领域自适应方法研究,国家自然科学基金面上项目,主研
[2] 面向跨领域跨模态迁移的自适应机器学习算法研究,国家自然科学基金面上项目,主研
[3] 协同视觉语义理解和社会媒体分析的关键技术研究,国家自然科学基金面上项目,参研
[4] 移动交互环境下的大媒体内容分析与检索,国家自然科学基金重点项目,参研
[5] 深度流形网络机理及其应用研究,国家自然科学基金专项项目,主研
5. 荣誉和奖励:
四川省优秀毕业生
成电优秀毕业生
成电学术新秀
成电优秀博士论文获得者
6. 学术服务:
1) Program Committee: ACM CIKM, 2021-2023
2) IEEE Transactions on Pattern Analysis and Machine Intelligence、IEEE Transactions on Multimedia、Expert Systems With Applications、Information Sciences、ICCV、CVPR、AAAI等计算机领域顶级期刊和会议的审稿人