向渝
开通时间:..
最后更新时间:..
2003年6月获工学博士学位;2006年7月晋升副教授,2014-2015年澳大利亚墨尔本大学访问学者。主要研究方向为智能交通系统目标检测和防碰撞、基于深度学习的气动建模和网络流量异常感知。
中国计算机学会互联网专委会委员、四川省海外高层次留学人才、四川省科技厅科技项目评审专家、担任多个国际学术会议程序委员会委员、国际国内重要学术期刊审稿人。
主持国家自然科学基金原创探索项目、国家数值风洞工程一期项目、科技部科技支撑计划项目、国家发改委CNGI项目、四川省省级战略性新兴产业发展促进资金项目等多项重要科研项目,参与863计划等多项国家项目。
在IEEE IoT Journal、IEEE TAES、IEEE TITS、IEEE TVT、IET Communications、JNCA、Computer Networks、ITSC、ACM/IEEE ANCS、电子学报、空气动力学报等国内外重要学术刊物和国际会议发表论文40余篇。
近年来发表的部分论文:
2023:
Y. Xiang, L. Hu, G. Zhang, J. Zhang and W. Wang, "A Manifold-Based Airfoil Geometric-Feature Extraction and Discrepant Data Fusion Learning Method," in IEEE Transactions on Aerospace and Electronic Systems, doi: 10.1109/TAES.2023.3276735. Accepted, Early access
Bai, X., Wang, W., Zhang, J., Wang, Y., & Xiang, Y. (2023). Novel deep learning methods for 3D flow field segmentation and classification. arXiv preprint arXiv:2305.11884.
2022:
Y. Xiang, Y. Huang, H. Xu, G. Zhang and W. Wang, "A Multi-Characteristic Learning Method with Micro-Doppler Signatures for Pedestrian Identification," 2022 IEEE 25th International Conference on Intelligent Transportation Systems (ITSC), 2022, pp. 3794-3799, doi: 10.1109/ITSC55140.2022.9922125
L. Hu, W. Wang, Y. Xiang and J. Zhang, "Flow Field Reconstructions with GANs based on Radial Basis Functions," in IEEE Transactions on Aerospace and Electronic Systems, doi: 10.1109/TAES.2022.3152706.
Liwei Hu, Yu Xiang, Jun Zhang, Zifang Shi, Wenzheng Wang, Aerodynamic data predictions based on multi-task learning, Applied Soft Computing,Volume 116, 2022, 108369, https://doi.org/10.1016/j.asoc.2021.108369. (通信作者)
2021:
张骏,张广博,程艳青,胡力卫,向渝,汪文勇,“一种气动大差异性数据多任务学习方法”,空气动力学学报,2021, 39(s): 1-10.
J. Fang, Y. Xiang, Y. Huang, Y. Cui and W. Wang, "A Vehicle Control Model to Alleviate Traffic Instability," in IEEE Transactions on Vehicular Technology, 2021, 70(10), pp. 9863–9876 doi: 10.1109/TVT.2021.3109800. (通信作者)
L.Huang, J.Ran, W.Wang, T.Yang and Y.Xiang, A Multi-channel Anomaly Detection Method with Feature Selection and Multi-scale analysis. Computer Networks,Volume 185,2021,107645, doi:10.1016/j.comnet.2020.107645. (通信作者)
2020:
Hu L, Xiang Y, Zhan J, et al. Aerodynamic Data Predictions Based on Multi-task Learning[J]. arXiv preprint arXiv:2010.09475, 2020.
Hu L, Wang W, Xiang Y, et al. Flow Field Reconstructions with GANs based on Radial Basis Functions[J]. arXiv preprint arXiv:2009.02285, 2020.
Hu L, Zhang J, Xiang Y, et al. Neural Networks-Based Aerodynamic Data Modeling: A Comprehensive Review[J]. IEEE Access, 2020, 8: 90805-90823.
Y. Xiang, S. Huang, M. Li, J. Li and W. Wang, "Rear-End Collision Avoidance-Based on Multi-Channel Detection," in IEEE Transactions on Intelligent Transportation Systems, vol. 21, no. 8, pp. 3525-3535, Aug. 2020, doi: 10.1109/TITS.2019.2930731.
2019:
Xiang Y, Ran J, Huang L, et al. A Traffic Anomaly Detection Method based on Multi-Scale Decomposition and Multi-Channel Detector[C]//2019 ACM/IEEE Symposium on Architectures for Networking and Communications Systems (ANCS). IEEE, Sept. 2019: 1-6. DOI: 10.1109/ANCS.2019.8901897
J. Li, Y. Xiang, J. Fang, W. Wang and Y. Pi, "Research on Multiple Sensors Vehicle Detection with EMD-Based Denoising," in IEEE Internet of Things Journal, vol. 6, no. 4, pp. 6262-6270, Aug. 2019. DOI: 10.1109/JIOT.2018.2890541 (通信作者)
2018:
Xiang Y, Gou L, He L, et al. A SVR–ANN combined model based on ensemble EMD for rainfall prediction[J]. Applied Soft Computing, 2018, 73: 874-883.
2016:
Xiang Y, Wang X, He L, Wang W, Moran W (2016) Spatial-Temporal Analysis of Environmental Data of North Beijing District Using Hilbert-Huang Transform. PLOS ONE 11(12): e0167662. doi: 10.1371/journal.pone.0167662
Xiang Y, Xuan Z, Tang M, et al. 3D space detection and coverage of wireless sensor network based on spatial correlation [J]. Journal of Network and Computer Applications, 2016, 61: 93-101.
1991.9 -- 1995.7
电子科技大学
 电子工程
 大学本科毕业
 工学学士学位
1995.9 -- 1998.3
电子科技大学
 通信与信息系统
 硕士研究生毕业
 工学硕士学位
1998.9 -- 2003.6
电子科技大学
 通信与信息系统
 博士研究生毕业
 工学博士学位
2008.7 -- 至今
电子科技大学计算机科学与工程学院 副教授
2003.7 -- 2008.6
电子科技大学信息中心 副教授
智能交通系统目标检测和防碰撞
基于深度学习的气动建模
网络流量异常感知