Current position: Home > Scientific Research > Paper Publications
Paper Publications
- 2017-08-14
[1] Michael R. Lyu , Irwin King , Jianke Zhu , Rong Jin , and Zenglin Xu , Efficient convex relaxation for transductive support vector machinepp. 1641-1648, Aug 2007.
- 2017-08-14
[2] Michael R. Lyu , Zenglin Xu , Steven C. Hoi , and Jianke Zhu , An effective approach to 3d deformable surface tracking, In ECCV ’08: Proceedings of the 10th European Conference on Computer Vision, pp. 766-779, Aug 2008.
- 2017-08-14
[3] Michael R. Lyu , Irwin King , Zenglin Xu , and Kaizhu Huang , Semi-supervised learning from general unlabeled data, In ICDM ’08: Proceedings of IEEE International Conference on Data Mining, pp. 273-282,
- 2017-08-14
[4] Michael RLyu , Irwin King , Kaizhu Huang , Rong Jin , and Zenglin Xu , Semi-supervised text categorization by active search, In CIKM ’08: Proceedings of the thirteenth ACM international conference on Information and knowledge, pp. 1517-1518, Aug 2008.
- 2017-08-14
[5] Michael Lyu , Irwin King , Rong Jin , and Zenglin Xu , An extended level method for e cient multiple kernel learningpp. 1825-1832, Aug 2008.
- 2017-08-14
[6] Irwin King , Michael R. Lyu , Jieping Ye , Rong Jin , and Zenglin Xu , Non-monotonic feature selection, In ICML ’09: Proceedings of the 26th Annual International Conference on Machine Learning, pp. 1145-1152, Aug 2009.
- 2017-08-14
[7] Errki Oja , Zenglin Xu , Irwin King , and Zhirong Yang , Zhirong Yang, Irwin King, Zenglin Xu, and Errki Ojapp. 2169-2177,
- 2017-08-14
[8] Zhirong Yang , Michael Lyu , Irwin King , Jianke Zhu , Rong Jin , and Zenglin Xu , Adaptive regularization for transductive support vector machinepp. 2125-2133, Aug 2009.
- 2017-08-14
[9] Irwin King , Michael R. Lyu , Rong Jin , and Zenglin Xu , Discriminative semi-supervised feature selection via manifold regularizationpp. 1303, Aug 2009.
- 2017-08-14
[10] Cheng-Lin Liu , Zenglin Xu , Rong Jin , and Kaizhu Huang , Robust metric learning by smooth optimization, In UAI ’10: Proceedings of the Twenty-Sixth Conference on Uncertainty in Artificial Intelligence, pp. 244-251, Aug 2010.
- 2017-08-14
[11] Michael R. Lyu , Irwin King , Zenglin Xu , and Haiqin Yang , Online learning for group lassopp. 1191-1198, Aug 2010.
- 2017-08-14
[12] Michael R. Lyu , Irwin King , Haiqin Yang , Rong Jin , and Zenglin Xu , Simple and e cient multiple kernel learning by group lassopp. 1175{, Aug 2010.
- 2017-08-14
[13] Irwin King , Michael R. Lyu , Shenghuo Zhu , Rong Jin , and Zenglin Xu , Smooth optimization for effective multiple kernel learning, AAAI Press, Aug 2010.
- 2017-08-14
[14] Yuan (Alan) Qi , Feng Yan , and Zenglin Xu , Sparse matrix-variate t process blockmodels, AAAI Press, Aug 2011.
- 2017-08-14
[15] Yuan (Alan) Qi , Zenglin Xu , and Feng Yan , Sparse matrix-variate Gaussian process blockmodels for network modeling, In UAI ’11: Proceedings of the Twenty-Seventh Conference on Uncertainty in Artificial Intelligence, pp. 745–752, Aug 2011.
- 2017-08-14
[16] Yuan (Alan) Qi , Feng Yan , and Zenglin Xu , In nite tucker decomposition: Non-parametric Bayesian models for multiway data analysispp. 1023,
- 2017-08-14
[17] Zenglin Xu , Michael R. Lyu , Irwin King , and Shouyuan Chen , Recovering pairwise interaction tensorAug 2013.
- 2017-08-14
[18] Yuan (Alan) Qi , Zenglin Xu , and Shandian Zhe , Joint association discovery and diagnosis of Alzheimer’s disease by supervised heterogeneous multiview learning
- 2017-08-14
[19] Jan P. Allebach , Zenglin Xu , and Bin Shen , Kernel Tapering: a Simple and E effective Approach to Sparse Kernels for Image ProcessingAug 2014.
- 2017-08-14
[20] Youngja Park , Ian Molloy , Suresh N. Chari , Zenglin Xu , Ninghui Li , and Christopher Gates , Detecting Insider Information Theft Using Features from File Access LogsAug 2014.