![]() | 112 |
个人信息Personal Information
教授 博士生导师
性别:男
毕业院校:东京大学
学历:博士研究生毕业
学位:理学博士学位
在职信息:在职人员
所在单位:基础与前沿研究院
入职时间:2019-11-01
学科:计算数学
办公地点:清水河校区6号科研楼B217
扫描关注
- [1] A fully-discrete finite element scheme and projection-iteration algorithm for a dynamic contact problem with multi-contact zones and unilateral constraint, J. Sci. Comput., vol. 1, pp. No. 3, 28 pp,
- [2] The numerical methods for the coupled fluid flow under the leak interface condition of the friction-type, Numer. Math., vol. 153, no. 4, pp. 729-773,
- [3] The stability analysis of a 2D Keller-Segel-Navier-Stokes system in fast signal diffusion, European J. Appl. Math., vol. 34, no. 1, pp. 160-209,
- [4] The convergence analysis of semi- and fully-discrete projection-decoupling schemes for the generalized Newtonian models, J. Sci. Comput., vol. 91, no. 2, pp. No. 57, 47 pp., Apr 2022.
- [5] Guanyu Zhou , An analysis on the finite volume schemes and the discrete Lyapunov inequalities for the chemotaxis system, J. Sci. Comput., vol. 87, no. 2, Aug 2021.
- [6] Guanyu Zhou , Takahito Kashiwabara , Issei Oikawa , Eric Chung , and Ming-Cheng Shiue , An analysis on the penalty and Nitsche's methods for the Stokes-Darcy system with a curved interface, Appl. Numer. Math., vol. 165, pp. 83-118, Feb 2021.
- [7] Lina Zhao , Eric T. Chung , Eun-Jae Park , and Guanyu Zhou , Staggered DG method for coupling of the Stokes and Darcy-Forchheimer problems, SIAM J. Numer. Anal., vol. 59, pp. 1-31, Jan 2021.
- [8] Guanyu Zhou , Issei Oikawa , and Takahito Kashiwabara , The Crouzeix-Raviart element for the Stokes equations with the slip boundary condition on a curved boundary, J. Comput. Appl. Math., vol. 383, pp. 113123, Jan 2021.
- [9] Buyang Li , Yuki Ueda , and Guanyu Zhou , A second-order stabilization method for linearizing and decoupling nonlinear parabolic systems, SIAM J. Numer. Anal., vol. 58, pp. 2736–2763, Sep 2020.
- [10] Guanyu Zhou , Takahito Kashiwabara , Issei Oikawa , Eric Chung , and Ming-Cheng Shiue , Some DG schemes for the Stokes–Darcy problem using P1/P1 element, Jpn. J. Ind. Appl. Math., vol. 36, pp. 1101–1128, Aug 2019.
- [11] Takahito Kashiwabara , Issei Oikawa , and Guanyu Zhou , Penalty method with Crouzeix-Raviart approximation for the Stokes equations under slip boundary condition., ESAIM Math. Model. Numer. Anal., vol. 53, pp. 869 - 891, Jun 2019.
- [12] Guanyu Zhou , The fictitious domain method with L2‐penalty for the Stokes problem with the Dirichlet boundary condition, Numer. Methods Partial Differential Equations, vol. 34, Nov 2017.
- [13] Guanyu Zhou , The fictitious domain method with H1-penalty for the Stokes problem with Dirichlet boundary condition, Appl. Numer. Math., vol. 123, pp. 1-21, Sep 2017.
- [14] Guanyu Zhou , Takahito Kashiwabara , and Issei Oikawa , A penalty method for the time-dependent Stokes problem with the slip boundary condition and its finite element approximation, Appl. Math., vol. 62, pp. 377–403, Jul 2017.
- [15] Guanyu Zhou , The fictitious domain method for the Stokes problem with Neumann/free-traction boundary condition, Jpn. J. Ind. Appl. Math., vol. 34, pp. 585–610, Jun 2017.
- [16] Guanyu Zhou , The fictitious domain method with penalty for the parabolic problem in moving-boundary domain: the error estimate of penalty and the finite element approximation, Appl. Numer. Math., vol. 115, pp. 42-67, Jan 2017.
- [17] Guanyu Zhou and Norikazu Saito , Finite volume methods for a Keller-Segel system: discrete energy, error estimates and numerical blow-up analysis, Numer. Math., vol. 135, Feb 2016.
- [18] Takahito Kashiwabara , Issei Oikawa , and Guanyu Zhou , Penalty method with P1/P1 finite element approximation for the Stokes equations under the slip boundary condition, Numer. Math., vol. 134, pp. 705–740, Jan 2016.
- [19] Guanyu Zhou and Norikazu Saito , The Navier-Stokes equations under a unilateral boundary condition of Signorini's type, J. Math. Fluid Mech., vol. 18, pp. 481–510, Feb 2016.
- [20] Guanyu Zhou , Takahito Kashiwabara , and Issei Oikawa , Penalty method for the stationary Navier-Stokes problems under the slip boundary condition, J. Sci. Comput., vol. 68, pp. 339–374, Dec 2015.